Insertion sequence elements-mediated structural variations in bacterial genomes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Etienne Nzabarushimana, Haixu Tang

ABSTRACT

Mobile genetic elements (MGEs) impact the evolution and stability of their host genomes. Insertion sequence (IS) elements are the most common MGEs in bacterial genomes and play a crucial role in mediating large-scale variations in bacterial genomes. It is understood that IS elements and MGEs in general coexist in a dynamical equilibrium with their respective hosts. Current studies indicate that the spontaneous movement of IS elements does not follow a constant rate in different bacterial genomes. However, due to the paucity and sparsity of the data, these observations are yet to be conclusive. In this paper, we conducted a comparative analysis of the IS-mediated genome structural variations in ten mutation accumulation (MA) experiments across eight strains of five bacterial species containing IS elements, including four strains of the E. coli. We used GRASPER algorithm, a denovo structural variation (SV) identification algorithm designed to detect SVs involving repetitive sequences in the genome. We observed highly diverse rates of IS insertions and IS-mediated recombinations across different bacterial species as well as across different strains of the same bacterial species. We also observed different rates of the elements from the same IS family in different bacterial genomes, suggesting that the distinction in rates might not be due to the different composition of IS elements across bacterial genomes. More... »

PAGES

29

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13100-018-0134-3

DOI

http://dx.doi.org/10.1186/s13100-018-0134-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106413201

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30181787


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indiana University Bloomington", 
          "id": "https://www.grid.ac/institutes/grid.411377.7", 
          "name": [
            "School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nzabarushimana", 
        "givenName": "Etienne", 
        "id": "sg:person.01326111022.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326111022.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indiana University Bloomington", 
          "id": "https://www.grid.ac/institutes/grid.411377.7", 
          "name": [
            "School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Haixu", 
        "id": "sg:person.01021561633.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021561633.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1534/genetics.115.176834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000056114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.115.176834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000056114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11033-016-4084-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004294801", 
          "https://doi.org/10.1007/s11033-016-4084-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11033-016-4084-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004294801", 
          "https://doi.org/10.1007/s11033-016-4084-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009040805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/284601a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013133318", 
          "https://doi.org/10.1038/284601a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.116.030130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019399184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.116.030130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019399184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.116.030130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019399184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fct.2008.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021225470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021481390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msq101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022595754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1512136112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022768066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2006.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022946849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1014330107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025375395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12862-015-0560-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033298931", 
          "https://doi.org/10.1186/s12862-015-0560-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.resmic.2003.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038103754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01435235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040418369", 
          "https://doi.org/10.1007/bf01435235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01435235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040418369", 
          "https://doi.org/10.1007/bf01435235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044360857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gene.2016.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044420538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msv119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047197866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2013.0129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047714193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-cellbio-100814-125514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047796989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/tpbi.2002.1603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048153411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.genet.40.110405.090448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052339033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn3730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053434673", 
          "https://doi.org/10.1038/nrn3730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1006570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054007655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0684-84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056556566", 
          "https://doi.org/10.1038/scientificamerican0684-84"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msw224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059923329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/microbiolspec.mdna3-0030-2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062731210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1040841x.2017.1303661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084851871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/microbiolspec.mdna3-0062-2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088810510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra1510092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090903203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/genes9050254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103993961"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Mobile genetic elements (MGEs) impact the evolution and stability of their host genomes. Insertion sequence (IS) elements are the most common MGEs in bacterial genomes and play a crucial role in mediating large-scale variations in bacterial genomes. It is understood that IS elements and MGEs in general coexist in a dynamical equilibrium with their respective hosts. Current studies indicate that the spontaneous movement of IS elements does not follow a constant rate in different bacterial genomes. However, due to the paucity and sparsity of the data, these observations are yet to be conclusive. In this paper, we conducted a comparative analysis of the IS-mediated genome structural variations in ten mutation accumulation (MA) experiments across eight strains of five bacterial species containing IS elements, including four strains of the E. coli. We used GRASPER algorithm, a denovo structural variation (SV) identification algorithm designed to detect SVs involving repetitive sequences in the genome. We observed highly diverse rates of IS insertions and IS-mediated recombinations across different bacterial species as well as across different strains of the same bacterial species. We also observed different rates of the elements from the same IS family in different bacterial genomes, suggesting that the distinction in rates might not be due to the different composition of IS elements across bacterial genomes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13100-018-0134-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3482619", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1042561", 
        "issn": [
          "1759-8753"
        ], 
        "name": "Mobile DNA", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Insertion sequence elements-mediated structural variations in bacterial genomes", 
    "pagination": "29", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a3f793f244f2ee3dc25432e80b96969c6dadcea5b840ec9be8bc3098b0d5e880"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30181787"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101519891"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13100-018-0134-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106413201"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13100-018-0134-3", 
      "https://app.dimensions.ai/details/publication/pub.1106413201"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000572.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13100-018-0134-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13100-018-0134-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13100-018-0134-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13100-018-0134-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13100-018-0134-3'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13100-018-0134-3 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nd49ea17a61b84fa0b9f59b2861319dc9
4 schema:citation sg:pub.10.1007/bf01435235
5 sg:pub.10.1007/s11033-016-4084-x
6 sg:pub.10.1038/284601a0
7 sg:pub.10.1038/nrn3730
8 sg:pub.10.1038/scientificamerican0684-84
9 sg:pub.10.1186/s12862-015-0560-5
10 https://doi.org/10.1006/tpbi.2002.1603
11 https://doi.org/10.1016/j.fct.2008.02.006
12 https://doi.org/10.1016/j.gene.2016.09.012
13 https://doi.org/10.1016/j.mib.2006.08.005
14 https://doi.org/10.1016/j.resmic.2003.12.008
15 https://doi.org/10.1056/nejmra1510092
16 https://doi.org/10.1073/pnas.1014330107
17 https://doi.org/10.1073/pnas.1512136112
18 https://doi.org/10.1080/1040841x.2017.1303661
19 https://doi.org/10.1089/cmb.2013.0129
20 https://doi.org/10.1093/molbev/msq101
21 https://doi.org/10.1093/molbev/msv119
22 https://doi.org/10.1093/molbev/msw224
23 https://doi.org/10.1093/nar/gkw647
24 https://doi.org/10.1128/microbiolspec.mdna3-0030-2014
25 https://doi.org/10.1128/microbiolspec.mdna3-0062-2014
26 https://doi.org/10.1146/annurev-cellbio-100814-125514
27 https://doi.org/10.1146/annurev.genet.40.110405.090448
28 https://doi.org/10.1371/journal.pcbi.1003680
29 https://doi.org/10.1371/journal.pgen.1000128
30 https://doi.org/10.1371/journal.pgen.1006570
31 https://doi.org/10.1534/g3.116.030130
32 https://doi.org/10.1534/genetics.115.176834
33 https://doi.org/10.3390/genes9050254
34 schema:datePublished 2018-12
35 schema:datePublishedReg 2018-12-01
36 schema:description Mobile genetic elements (MGEs) impact the evolution and stability of their host genomes. Insertion sequence (IS) elements are the most common MGEs in bacterial genomes and play a crucial role in mediating large-scale variations in bacterial genomes. It is understood that IS elements and MGEs in general coexist in a dynamical equilibrium with their respective hosts. Current studies indicate that the spontaneous movement of IS elements does not follow a constant rate in different bacterial genomes. However, due to the paucity and sparsity of the data, these observations are yet to be conclusive. In this paper, we conducted a comparative analysis of the IS-mediated genome structural variations in ten mutation accumulation (MA) experiments across eight strains of five bacterial species containing IS elements, including four strains of the E. coli. We used GRASPER algorithm, a <i>de</i><i>novo</i> structural variation (SV) identification algorithm designed to detect SVs involving repetitive sequences in the genome. We observed highly diverse rates of IS insertions and IS-mediated recombinations across different bacterial species as well as across different strains of the same bacterial species. We also observed different rates of the elements from the same IS family in different bacterial genomes, suggesting that the distinction in rates might not be due to the different composition of IS elements across bacterial genomes.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf Na803a849c7514bd99e445a43283d0edd
41 Nb195d2e6c59f4822ac34791e9ee659cd
42 sg:journal.1042561
43 schema:name Insertion sequence elements-mediated structural variations in bacterial genomes
44 schema:pagination 29
45 schema:productId N0a8e50c00db84c1ea1efde29e444524f
46 N5558fde0d26644ca9e584d2c09676b5a
47 N7857d7b2726d4df189813147c2e1f9f8
48 N8be668d4e8d8475389b68a88f021c700
49 Nc8619d01d9f84f8d9c2d411800a9bb70
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106413201
51 https://doi.org/10.1186/s13100-018-0134-3
52 schema:sdDatePublished 2019-04-10T14:19
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nf7e9bd5c1ebb4489a970aeb1d4a84f79
55 schema:url https://link.springer.com/10.1186%2Fs13100-018-0134-3
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0a8e50c00db84c1ea1efde29e444524f schema:name dimensions_id
60 schema:value pub.1106413201
61 rdf:type schema:PropertyValue
62 N2a8468335995406d954b8eed98d3e40c rdf:first sg:person.01021561633.10
63 rdf:rest rdf:nil
64 N5558fde0d26644ca9e584d2c09676b5a schema:name nlm_unique_id
65 schema:value 101519891
66 rdf:type schema:PropertyValue
67 N7857d7b2726d4df189813147c2e1f9f8 schema:name readcube_id
68 schema:value a3f793f244f2ee3dc25432e80b96969c6dadcea5b840ec9be8bc3098b0d5e880
69 rdf:type schema:PropertyValue
70 N8be668d4e8d8475389b68a88f021c700 schema:name doi
71 schema:value 10.1186/s13100-018-0134-3
72 rdf:type schema:PropertyValue
73 Na803a849c7514bd99e445a43283d0edd schema:volumeNumber 9
74 rdf:type schema:PublicationVolume
75 Nb195d2e6c59f4822ac34791e9ee659cd schema:issueNumber 1
76 rdf:type schema:PublicationIssue
77 Nc8619d01d9f84f8d9c2d411800a9bb70 schema:name pubmed_id
78 schema:value 30181787
79 rdf:type schema:PropertyValue
80 Nd49ea17a61b84fa0b9f59b2861319dc9 rdf:first sg:person.01326111022.97
81 rdf:rest N2a8468335995406d954b8eed98d3e40c
82 Nf7e9bd5c1ebb4489a970aeb1d4a84f79 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
85 schema:name Biological Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
88 schema:name Genetics
89 rdf:type schema:DefinedTerm
90 sg:grant.3482619 http://pending.schema.org/fundedItem sg:pub.10.1186/s13100-018-0134-3
91 rdf:type schema:MonetaryGrant
92 sg:journal.1042561 schema:issn 1759-8753
93 schema:name Mobile DNA
94 rdf:type schema:Periodical
95 sg:person.01021561633.10 schema:affiliation https://www.grid.ac/institutes/grid.411377.7
96 schema:familyName Tang
97 schema:givenName Haixu
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021561633.10
99 rdf:type schema:Person
100 sg:person.01326111022.97 schema:affiliation https://www.grid.ac/institutes/grid.411377.7
101 schema:familyName Nzabarushimana
102 schema:givenName Etienne
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326111022.97
104 rdf:type schema:Person
105 sg:pub.10.1007/bf01435235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040418369
106 https://doi.org/10.1007/bf01435235
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s11033-016-4084-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004294801
109 https://doi.org/10.1007/s11033-016-4084-x
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/284601a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013133318
112 https://doi.org/10.1038/284601a0
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nrn3730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053434673
115 https://doi.org/10.1038/nrn3730
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/scientificamerican0684-84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056556566
118 https://doi.org/10.1038/scientificamerican0684-84
119 rdf:type schema:CreativeWork
120 sg:pub.10.1186/s12862-015-0560-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033298931
121 https://doi.org/10.1186/s12862-015-0560-5
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1006/tpbi.2002.1603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048153411
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.fct.2008.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021225470
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.gene.2016.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044420538
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.mib.2006.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022946849
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.resmic.2003.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038103754
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1056/nejmra1510092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090903203
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1073/pnas.1014330107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025375395
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1073/pnas.1512136112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022768066
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/1040841x.2017.1303661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084851871
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1089/cmb.2013.0129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047714193
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1093/molbev/msq101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022595754
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1093/molbev/msv119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047197866
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1093/molbev/msw224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059923329
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/nar/gkw647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009040805
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1128/microbiolspec.mdna3-0030-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062731210
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1128/microbiolspec.mdna3-0062-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088810510
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1146/annurev-cellbio-100814-125514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047796989
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1146/annurev.genet.40.110405.090448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052339033
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1371/journal.pcbi.1003680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044360857
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1371/journal.pgen.1000128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021481390
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1371/journal.pgen.1006570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054007655
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1534/g3.116.030130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019399184
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1534/genetics.115.176834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000056114
168 rdf:type schema:CreativeWork
169 https://doi.org/10.3390/genes9050254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103993961
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.411377.7 schema:alternateName Indiana University Bloomington
172 schema:name School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...