Sleeping Beauty transposon integrates into non-TA dinucleotides View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Yabin Guo, Yin Zhang, Kaishun Hu

ABSTRACT

Background: Sleeping Beauty transposon (SB) has become an increasingly important genetic tool for generating mutations in vertebrate cells. It is widely thought that SB exclusively integrates into TA dinucleotides. However, this strict TA-preference has not been rigorously tested in large numbers of insertion sites that now can be detected with next generation sequencing. Li et al. found 71 SB insertions in non-TA dinucleotides in 2013, suggesting that TA dinucleotides are not the only sites of SB integration, yet further studies on this topic have not been carried out. Results: In this study, we re-analyzed 600 million pairs of Illumina sequence reads from a high-throughput SB mutagenesis screen and identified 28 thousand SB insertions in non-TA sites. We recovered some of these non-TA sites using PCR and confirmed that at least a subset of the insertions at non-TA sites are real integrations. The consensus sequence of these non-TA sites shows an asymmetric pattern distinct from the symmetric pattern of the canonical TA sites. Perfect similarity between the downstream flanking sequence and SB transposon ends indicates there may be interaction between the transposon DNA binding domain of transposase and the target DNA. Conclusion: The TA-preference of SB transposon is not as strict as what people had thought. And the SB integrations at non-TA sites might be guided by the interaction between the transposon DNA binding domain of SB transposase and the target DNA. More... »

PAGES

8

Journal

TITLE

Mobile DNA

ISSUE

1

VOLUME

9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13100-018-0113-8

DOI

http://dx.doi.org/10.1186/s13100-018-0113-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100865333

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29445422


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University", 
          "id": "https://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Yabin", 
        "id": "sg:person.015235053363.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015235053363.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University", 
          "id": "https://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yin", 
        "id": "sg:person.01112213055.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112213055.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University", 
          "id": "https://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Kaishun", 
        "id": "sg:person.0707671526.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707671526.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ymthe.2005.06.484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000641515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006541515", 
          "https://doi.org/10.1038/nmeth.1923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007468874", 
          "https://doi.org/10.1038/nature03691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007468874", 
          "https://doi.org/10.1038/nature03691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007468874", 
          "https://doi.org/10.1038/nature03691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.25.6.2085-2094.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010990576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmicrobiol.2016.212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014007270", 
          "https://doi.org/10.1038/nmicrobiol.2016.212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1016382107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020294592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(99)01777-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021937163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)80436-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025106858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025139076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.099648.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026690944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m204001200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027286291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-15-1697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027570948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029153128", 
          "https://doi.org/10.1038/nbt.1526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6822(89)90117-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033876784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034767313", 
          "https://doi.org/10.1038/ng.343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034767313", 
          "https://doi.org/10.1038/ng.343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1121543109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036170988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036767364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.081075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040975532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.081075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040975532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1115433109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043334542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1305066110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044789759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.113.152744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047972912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.113.152744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047972912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddr140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052694121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/15384047.2014.986944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072288032"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Background: Sleeping Beauty transposon (SB) has become an increasingly important genetic tool for generating mutations in vertebrate cells. It is widely thought that SB exclusively integrates into TA dinucleotides. However, this strict TA-preference has not been rigorously tested in large numbers of insertion sites that now can be detected with next generation sequencing. Li et al. found 71 SB insertions in non-TA dinucleotides in 2013, suggesting that TA dinucleotides are not the only sites of SB integration, yet further studies on this topic have not been carried out.\nResults: In this study, we re-analyzed 600 million pairs of Illumina sequence reads from a high-throughput SB mutagenesis screen and identified 28 thousand SB insertions in non-TA sites. We recovered some of these non-TA sites using PCR and confirmed that at least a subset of the insertions at non-TA sites are real integrations. The consensus sequence of these non-TA sites shows an asymmetric pattern distinct from the symmetric pattern of the canonical TA sites. Perfect similarity between the downstream flanking sequence and SB transposon ends indicates there may be interaction between the transposon DNA binding domain of transposase and the target DNA.\nConclusion: The TA-preference of SB transposon is not as strict as what people had thought. And the SB integrations at non-TA sites might be guided by the interaction between the transposon DNA binding domain of SB transposase and the target DNA.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13100-018-0113-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1042561", 
        "issn": [
          "1759-8753"
        ], 
        "name": "Mobile DNA", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Sleeping Beauty transposon integrates into non-TA dinucleotides", 
    "pagination": "8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "efc6ddc4fc8114c898e3799250b9e5e01a964c449999d837f32593a0c96ada24"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29445422"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101519891"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13100-018-0113-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100865333"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13100-018-0113-8", 
      "https://app.dimensions.ai/details/publication/pub.1100865333"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/s13100-018-0113-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13100-018-0113-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13100-018-0113-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13100-018-0113-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13100-018-0113-8'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13100-018-0113-8 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N452438fc14524227a21c25f444fb57e3
4 schema:citation sg:pub.10.1038/nature03691
5 sg:pub.10.1038/nbt.1526
6 sg:pub.10.1038/ng.343
7 sg:pub.10.1038/nmeth.1923
8 sg:pub.10.1038/nmicrobiol.2016.212
9 https://doi.org/10.1016/0042-6822(89)90117-7
10 https://doi.org/10.1016/j.ymthe.2005.06.484
11 https://doi.org/10.1016/s0092-8674(00)80436-5
12 https://doi.org/10.1016/s0168-9525(99)01777-1
13 https://doi.org/10.1073/pnas.1016382107
14 https://doi.org/10.1073/pnas.1115433109
15 https://doi.org/10.1073/pnas.1121543109
16 https://doi.org/10.1073/pnas.1305066110
17 https://doi.org/10.1074/jbc.m204001200
18 https://doi.org/10.1093/hmg/ddr140
19 https://doi.org/10.1093/nar/gku534
20 https://doi.org/10.1093/nar/gkw1164
21 https://doi.org/10.1101/gr.099648.109
22 https://doi.org/10.1128/mcb.25.6.2085-2094.2005
23 https://doi.org/10.1158/0008-5472.can-15-1697
24 https://doi.org/10.1534/genetics.107.081075
25 https://doi.org/10.1534/genetics.113.152744
26 https://doi.org/10.4161/15384047.2014.986944
27 schema:datePublished 2018-12
28 schema:datePublishedReg 2018-12-01
29 schema:description Background: Sleeping Beauty transposon (SB) has become an increasingly important genetic tool for generating mutations in vertebrate cells. It is widely thought that SB exclusively integrates into TA dinucleotides. However, this strict TA-preference has not been rigorously tested in large numbers of insertion sites that now can be detected with next generation sequencing. Li et al. found 71 SB insertions in non-TA dinucleotides in 2013, suggesting that TA dinucleotides are not the only sites of SB integration, yet further studies on this topic have not been carried out. Results: In this study, we re-analyzed 600 million pairs of Illumina sequence reads from a high-throughput SB mutagenesis screen and identified 28 thousand SB insertions in non-TA sites. We recovered some of these non-TA sites using PCR and confirmed that at least a subset of the insertions at non-TA sites are real integrations. The consensus sequence of these non-TA sites shows an asymmetric pattern distinct from the symmetric pattern of the canonical TA sites. Perfect similarity between the downstream flanking sequence and SB transposon ends indicates there may be interaction between the transposon DNA binding domain of transposase and the target DNA. Conclusion: The TA-preference of SB transposon is not as strict as what people had thought. And the SB integrations at non-TA sites might be guided by the interaction between the transposon DNA binding domain of SB transposase and the target DNA.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N8596472200b54c3ea794cec5458263e2
34 Nabc7b388b2fe414cb1d0839a96c9c957
35 sg:journal.1042561
36 schema:name Sleeping Beauty transposon integrates into non-TA dinucleotides
37 schema:pagination 8
38 schema:productId N1d143ff1b30042e89a0b47af9fee4ba1
39 N4b033cc98b324a5aa7e54125fcef03fc
40 N4e4bfb6500fa4f588bb46554a8436946
41 N75b7aaef2cfa4c158a9d20088187b8ff
42 Nadfff97b30ff4f478955390b14845e70
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100865333
44 https://doi.org/10.1186/s13100-018-0113-8
45 schema:sdDatePublished 2019-04-10T13:06
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N77da3dabfdbf4cfabfa3a60167d840ad
48 schema:url http://link.springer.com/10.1186/s13100-018-0113-8
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N1d143ff1b30042e89a0b47af9fee4ba1 schema:name doi
53 schema:value 10.1186/s13100-018-0113-8
54 rdf:type schema:PropertyValue
55 N452438fc14524227a21c25f444fb57e3 rdf:first sg:person.015235053363.48
56 rdf:rest N752792b5cfa44fc4b663a6d69f9df6d4
57 N4b033cc98b324a5aa7e54125fcef03fc schema:name dimensions_id
58 schema:value pub.1100865333
59 rdf:type schema:PropertyValue
60 N4e4bfb6500fa4f588bb46554a8436946 schema:name nlm_unique_id
61 schema:value 101519891
62 rdf:type schema:PropertyValue
63 N752792b5cfa44fc4b663a6d69f9df6d4 rdf:first sg:person.01112213055.32
64 rdf:rest Nbc863f4e44c84bb1abfb7e4d79148765
65 N75b7aaef2cfa4c158a9d20088187b8ff schema:name readcube_id
66 schema:value efc6ddc4fc8114c898e3799250b9e5e01a964c449999d837f32593a0c96ada24
67 rdf:type schema:PropertyValue
68 N77da3dabfdbf4cfabfa3a60167d840ad schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N8596472200b54c3ea794cec5458263e2 schema:volumeNumber 9
71 rdf:type schema:PublicationVolume
72 Nabc7b388b2fe414cb1d0839a96c9c957 schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 Nadfff97b30ff4f478955390b14845e70 schema:name pubmed_id
75 schema:value 29445422
76 rdf:type schema:PropertyValue
77 Nbc863f4e44c84bb1abfb7e4d79148765 rdf:first sg:person.0707671526.68
78 rdf:rest rdf:nil
79 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
80 schema:name Biological Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
83 schema:name Genetics
84 rdf:type schema:DefinedTerm
85 sg:journal.1042561 schema:issn 1759-8753
86 schema:name Mobile DNA
87 rdf:type schema:Periodical
88 sg:person.01112213055.32 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
89 schema:familyName Zhang
90 schema:givenName Yin
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112213055.32
92 rdf:type schema:Person
93 sg:person.015235053363.48 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
94 schema:familyName Guo
95 schema:givenName Yabin
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015235053363.48
97 rdf:type schema:Person
98 sg:person.0707671526.68 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
99 schema:familyName Hu
100 schema:givenName Kaishun
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707671526.68
102 rdf:type schema:Person
103 sg:pub.10.1038/nature03691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007468874
104 https://doi.org/10.1038/nature03691
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/nbt.1526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029153128
107 https://doi.org/10.1038/nbt.1526
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/ng.343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034767313
110 https://doi.org/10.1038/ng.343
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
113 https://doi.org/10.1038/nmeth.1923
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nmicrobiol.2016.212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014007270
116 https://doi.org/10.1038/nmicrobiol.2016.212
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0042-6822(89)90117-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033876784
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.ymthe.2005.06.484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000641515
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0092-8674(00)80436-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025106858
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0168-9525(99)01777-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021937163
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1073/pnas.1016382107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020294592
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1073/pnas.1115433109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043334542
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1073/pnas.1121543109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036170988
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1073/pnas.1305066110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044789759
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1074/jbc.m204001200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027286291
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1093/hmg/ddr140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052694121
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1093/nar/gku534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025139076
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1093/nar/gkw1164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036767364
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1101/gr.099648.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026690944
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1128/mcb.25.6.2085-2094.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010990576
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1158/0008-5472.can-15-1697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027570948
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1534/genetics.107.081075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040975532
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1534/genetics.113.152744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047972912
151 rdf:type schema:CreativeWork
152 https://doi.org/10.4161/15384047.2014.986944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072288032
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.12981.33 schema:alternateName Sun Yat-sen University
155 schema:name Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...