Microbiome dysbiosis is associated with disease duration and increased inflammatory gene expression in systemic sclerosis skin View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Michael E. Johnson, Jennifer M. Franks, Guoshuai Cai, Bhaven K. Mehta, Tammara A. Wood, Kimberly Archambault, Patricia A. Pioli, Robert W. Simms, Nicole Orzechowski, Sarah Arron, Michael L. Whitfield

ABSTRACT

BACKGROUND: Infectious agents have long been postulated to be disease triggers for systemic sclerosis (SSc), but a definitive link has not been found. Metagenomic analyses of high-throughput data allows for the unbiased identification of potential microbiome pathogens in skin biopsies of SSc patients and allows insight into the relationship with host gene expression. METHODS: We examined skin biopsies from a diverse cohort of 23 SSc patients (including lesional forearm and non-lesional back samples) by RNA-seq. Metagenomic filtering and annotation was performed using the Integrated Metagenomic Sequencing Analysis (IMSA). Associations between microbiome composition and gene expression were analyzed using single-sample gene set enrichment analysis (ssGSEA). RESULTS: We find the skin of SSc patients exhibits substantial changes in microbial composition relative to controls, characterized by sharp decreases in lipophilic taxa, such as Propionibacterium, combined with increases in a wide range of gram-negative taxa, including Burkholderia, Citrobacter, and Vibrio. CONCLUSIONS: Microbiome dysbiosis is associated with disease duration and increased inflammatory gene expression. These data provide a comprehensive portrait of the SSc skin microbiome and its association with local gene expression, which mirrors the molecular changes in lesional skin. More... »

PAGES

49

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13075-019-1816-z

DOI

http://dx.doi.org/10.1186/s13075-019-1816-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111954603

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30728065


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dartmouth College", 
          "id": "https://www.grid.ac/institutes/grid.254880.3", 
          "name": [
            "Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johnson", 
        "givenName": "Michael E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dartmouth College", 
          "id": "https://www.grid.ac/institutes/grid.254880.3", 
          "name": [
            "Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA", 
            "Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franks", 
        "givenName": "Jennifer M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dartmouth College", 
          "id": "https://www.grid.ac/institutes/grid.254880.3", 
          "name": [
            "Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA", 
            "Department of Environmental Health Science, University of South Carolina Arnold School of Public Health, Columbia, SC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Guoshuai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dartmouth College", 
          "id": "https://www.grid.ac/institutes/grid.254880.3", 
          "name": [
            "Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehta", 
        "givenName": "Bhaven K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dartmouth College", 
          "id": "https://www.grid.ac/institutes/grid.254880.3", 
          "name": [
            "Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wood", 
        "givenName": "Tammara A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dartmouth College", 
          "id": "https://www.grid.ac/institutes/grid.254880.3", 
          "name": [
            "Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Archambault", 
        "givenName": "Kimberly", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dartmouth College", 
          "id": "https://www.grid.ac/institutes/grid.254880.3", 
          "name": [
            "Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pioli", 
        "givenName": "Patricia A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239424.a", 
          "name": [
            "Division of Rheumatology, Arthritis Center, Boston University Medical Center, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simms", 
        "givenName": "Robert W.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dartmouth\u2013Hitchcock Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413480.a", 
          "name": [
            "Division of Rheumatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orzechowski", 
        "givenName": "Nicole", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Francisco", 
          "id": "https://www.grid.ac/institutes/grid.266102.1", 
          "name": [
            "Division of Dermatology, University of California, San Francisco, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arron", 
        "givenName": "Sarah", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dartmouth College", 
          "id": "https://www.grid.ac/institutes/grid.254880.3", 
          "name": [
            "Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA", 
            "Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA", 
            "Department of Biomedical Data Science, Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Whitfield", 
        "givenName": "Michael L.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0114017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000221496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0114017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000221496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002209653", 
          "https://doi.org/10.1038/nature08460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002209653", 
          "https://doi.org/10.1038/nature08460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00002281-200211000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004585084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00002281-200211000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004585084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1171700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004794278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jid.2014.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009834720", 
          "https://doi.org/10.1038/jid.2014.127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/art.39572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012139673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015722031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/art.1780230510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016214841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.131029.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018652972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ajd.12253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020952996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jid.2011.472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021428303", 
          "https://doi.org/10.1038/jid.2011.472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbspin.2010.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028447016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.autrev.2010.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030757469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13075-015-0721-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033624558", 
          "https://doi.org/10.1186/s13075-015-0721-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034186592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1635114100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038029497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0002696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040122023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000094670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042726945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jid.2013.423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049578484", 
          "https://doi.org/10.1038/jid.2013.423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0064546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050553396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051000143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jid.2013.130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052111577", 
          "https://doi.org/10.1038/jid.2013.130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053365587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1085-5629(98)80058-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054681562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074653483", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074765621", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078790743", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079704019", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bty026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100429977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458929"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Infectious agents have long been postulated to be disease triggers for systemic sclerosis (SSc), but a definitive link has not been found. Metagenomic analyses of high-throughput data allows for the unbiased identification of potential microbiome pathogens in skin biopsies of SSc patients and allows insight into the relationship with host gene expression.\nMETHODS: We examined skin biopsies from a diverse cohort of 23 SSc patients (including lesional forearm and non-lesional back samples) by RNA-seq. Metagenomic filtering and annotation was performed using the Integrated Metagenomic Sequencing Analysis (IMSA). Associations between microbiome composition and gene expression were analyzed using single-sample gene set enrichment analysis (ssGSEA).\nRESULTS: We find the skin of SSc patients exhibits substantial changes in microbial composition relative to controls, characterized by sharp decreases in lipophilic taxa, such as Propionibacterium, combined with increases in a wide range of gram-negative taxa, including Burkholderia, Citrobacter, and Vibrio.\nCONCLUSIONS: Microbiome dysbiosis is associated with disease duration and increased inflammatory gene expression. These data provide a comprehensive portrait of the SSc skin microbiome and its association with local gene expression, which mirrors the molecular changes in lesional skin.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13075-019-1816-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7141032", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5053887", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1297499", 
        "issn": [
          "1478-6354", 
          "1478-6362"
        ], 
        "name": "Arthritis Research & Therapy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Microbiome dysbiosis is associated with disease duration and increased inflammatory gene expression in systemic sclerosis skin", 
    "pagination": "49", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "82ceac51ffdb0498bc138e43f441068cae0f54599cfa651b784a2229bcbf4116"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30728065"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101154438"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13075-019-1816-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111954603"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13075-019-1816-z", 
      "https://app.dimensions.ai/details/publication/pub.1111954603"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88217_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13075-019-1816-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13075-019-1816-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13075-019-1816-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13075-019-1816-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13075-019-1816-z'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13075-019-1816-z schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N9ddedf875d70470e97733d9a257e687d
4 schema:citation sg:pub.10.1038/jid.2011.472
5 sg:pub.10.1038/jid.2013.130
6 sg:pub.10.1038/jid.2013.423
7 sg:pub.10.1038/jid.2014.127
8 sg:pub.10.1038/nature08460
9 sg:pub.10.1038/nmeth.f.303
10 sg:pub.10.1186/s13075-015-0721-3
11 https://app.dimensions.ai/details/publication/pub.1074653483
12 https://app.dimensions.ai/details/publication/pub.1074765621
13 https://app.dimensions.ai/details/publication/pub.1078790743
14 https://app.dimensions.ai/details/publication/pub.1079704019
15 https://doi.org/10.1002/art.1780230510
16 https://doi.org/10.1002/art.39572
17 https://doi.org/10.1016/j.autrev.2010.09.010
18 https://doi.org/10.1016/j.jbspin.2010.10.005
19 https://doi.org/10.1016/s1085-5629(98)80058-8
20 https://doi.org/10.1073/pnas.1635114100
21 https://doi.org/10.1093/bioinformatics/bth078
22 https://doi.org/10.1093/bioinformatics/bth349
23 https://doi.org/10.1093/bioinformatics/bts635
24 https://doi.org/10.1093/bioinformatics/bty026
25 https://doi.org/10.1097/00002281-200211000-00011
26 https://doi.org/10.1101/gr.131029.111
27 https://doi.org/10.1111/ajd.12253
28 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
29 https://doi.org/10.1126/science.1171700
30 https://doi.org/10.1159/000094670
31 https://doi.org/10.1371/journal.pcbi.1004005
32 https://doi.org/10.1371/journal.pone.0002696
33 https://doi.org/10.1371/journal.pone.0064546
34 https://doi.org/10.1371/journal.pone.0114017
35 schema:datePublished 2019-12
36 schema:datePublishedReg 2019-12-01
37 schema:description BACKGROUND: Infectious agents have long been postulated to be disease triggers for systemic sclerosis (SSc), but a definitive link has not been found. Metagenomic analyses of high-throughput data allows for the unbiased identification of potential microbiome pathogens in skin biopsies of SSc patients and allows insight into the relationship with host gene expression. METHODS: We examined skin biopsies from a diverse cohort of 23 SSc patients (including lesional forearm and non-lesional back samples) by RNA-seq. Metagenomic filtering and annotation was performed using the Integrated Metagenomic Sequencing Analysis (IMSA). Associations between microbiome composition and gene expression were analyzed using single-sample gene set enrichment analysis (ssGSEA). RESULTS: We find the skin of SSc patients exhibits substantial changes in microbial composition relative to controls, characterized by sharp decreases in lipophilic taxa, such as Propionibacterium, combined with increases in a wide range of gram-negative taxa, including Burkholderia, Citrobacter, and Vibrio. CONCLUSIONS: Microbiome dysbiosis is associated with disease duration and increased inflammatory gene expression. These data provide a comprehensive portrait of the SSc skin microbiome and its association with local gene expression, which mirrors the molecular changes in lesional skin.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N42b2c482e462457b8ed67cb228a50d35
42 Nd66634454be94d0685e7085c13bf227c
43 sg:journal.1297499
44 schema:name Microbiome dysbiosis is associated with disease duration and increased inflammatory gene expression in systemic sclerosis skin
45 schema:pagination 49
46 schema:productId N091666341b6547abbc7cf00356d2c902
47 N23241156e1e5478e9ab898e9b92abc65
48 N778ba1fecd8e4ba687edf38d817a3915
49 Nd8eed02ae23b4cc297bccace17ccddd0
50 Ne6e818cb3513462bb0cf4e51ddcfaefb
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111954603
52 https://doi.org/10.1186/s13075-019-1816-z
53 schema:sdDatePublished 2019-04-11T13:06
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N01ef3ee072d9463cb07d53c44ca70d42
56 schema:url https://link.springer.com/10.1186%2Fs13075-019-1816-z
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N01ef3ee072d9463cb07d53c44ca70d42 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N091666341b6547abbc7cf00356d2c902 schema:name doi
63 schema:value 10.1186/s13075-019-1816-z
64 rdf:type schema:PropertyValue
65 N1749283da21444f78ada4439f207d9de schema:affiliation https://www.grid.ac/institutes/grid.254880.3
66 schema:familyName Mehta
67 schema:givenName Bhaven K.
68 rdf:type schema:Person
69 N176b773101ba43a4b9c2849db62c15c4 schema:affiliation https://www.grid.ac/institutes/grid.254880.3
70 schema:familyName Whitfield
71 schema:givenName Michael L.
72 rdf:type schema:Person
73 N1825f718e9d84635bec991b8f1cd5d87 rdf:first N3bd5f851df8e4dd6a1665dbd1e86c02a
74 rdf:rest N7206fec7e82044d58d59cac7de365c9b
75 N1c0bdb140c614f17b61eb19a77003292 rdf:first N879ccf44c0694293a53a0a42bee9ad14
76 rdf:rest Nea00dad2dcb545aa9584f74ff3591a39
77 N23241156e1e5478e9ab898e9b92abc65 schema:name readcube_id
78 schema:value 82ceac51ffdb0498bc138e43f441068cae0f54599cfa651b784a2229bcbf4116
79 rdf:type schema:PropertyValue
80 N37257714afd243cc87f68952e0b505fe rdf:first Nb6faeb0898c24a37b93679c777c38c0e
81 rdf:rest N1825f718e9d84635bec991b8f1cd5d87
82 N3ac8b186f72e4bf8b5c3d1c34baf0fc7 rdf:first Nf385c11556d044818edd0f844bea5876
83 rdf:rest Ndb421ce657f4455a8e5f4038529bd97a
84 N3bd5f851df8e4dd6a1665dbd1e86c02a schema:affiliation https://www.grid.ac/institutes/grid.266102.1
85 schema:familyName Arron
86 schema:givenName Sarah
87 rdf:type schema:Person
88 N42b2c482e462457b8ed67cb228a50d35 schema:volumeNumber 21
89 rdf:type schema:PublicationVolume
90 N6c25967d1d86431398a019e1f3bfb3f3 rdf:first N1749283da21444f78ada4439f207d9de
91 rdf:rest Ned4fd6e9433f4c28a5b3b7c9baca2b3e
92 N6d42378cd5a044999b56b349fd91784b rdf:first Nadbd67ef453543d5afec12ada2efc1b4
93 rdf:rest N37257714afd243cc87f68952e0b505fe
94 N7206fec7e82044d58d59cac7de365c9b rdf:first N176b773101ba43a4b9c2849db62c15c4
95 rdf:rest rdf:nil
96 N7499fdc4426249ce9dc0db069892f318 schema:affiliation https://www.grid.ac/institutes/grid.254880.3
97 schema:familyName Johnson
98 schema:givenName Michael E.
99 rdf:type schema:Person
100 N778ba1fecd8e4ba687edf38d817a3915 schema:name pubmed_id
101 schema:value 30728065
102 rdf:type schema:PropertyValue
103 N7c1b749a686140a4835c88eda603c026 schema:affiliation https://www.grid.ac/institutes/grid.254880.3
104 schema:familyName Pioli
105 schema:givenName Patricia A.
106 rdf:type schema:Person
107 N879ccf44c0694293a53a0a42bee9ad14 schema:affiliation https://www.grid.ac/institutes/grid.254880.3
108 schema:familyName Franks
109 schema:givenName Jennifer M.
110 rdf:type schema:Person
111 N9b3d409ef2ed4c16956fc7bd41e7068f schema:affiliation https://www.grid.ac/institutes/grid.254880.3
112 schema:familyName Wood
113 schema:givenName Tammara A.
114 rdf:type schema:Person
115 N9ddedf875d70470e97733d9a257e687d rdf:first N7499fdc4426249ce9dc0db069892f318
116 rdf:rest N1c0bdb140c614f17b61eb19a77003292
117 Nadbd67ef453543d5afec12ada2efc1b4 schema:affiliation https://www.grid.ac/institutes/grid.239424.a
118 schema:familyName Simms
119 schema:givenName Robert W.
120 rdf:type schema:Person
121 Nb6faeb0898c24a37b93679c777c38c0e schema:affiliation https://www.grid.ac/institutes/grid.413480.a
122 schema:familyName Orzechowski
123 schema:givenName Nicole
124 rdf:type schema:Person
125 Nb77d92c4fa334d45847b150507e0232e schema:affiliation https://www.grid.ac/institutes/grid.254880.3
126 schema:familyName Cai
127 schema:givenName Guoshuai
128 rdf:type schema:Person
129 Nd66634454be94d0685e7085c13bf227c schema:issueNumber 1
130 rdf:type schema:PublicationIssue
131 Nd8eed02ae23b4cc297bccace17ccddd0 schema:name dimensions_id
132 schema:value pub.1111954603
133 rdf:type schema:PropertyValue
134 Ndb421ce657f4455a8e5f4038529bd97a rdf:first N7c1b749a686140a4835c88eda603c026
135 rdf:rest N6d42378cd5a044999b56b349fd91784b
136 Ne6e818cb3513462bb0cf4e51ddcfaefb schema:name nlm_unique_id
137 schema:value 101154438
138 rdf:type schema:PropertyValue
139 Nea00dad2dcb545aa9584f74ff3591a39 rdf:first Nb77d92c4fa334d45847b150507e0232e
140 rdf:rest N6c25967d1d86431398a019e1f3bfb3f3
141 Ned4fd6e9433f4c28a5b3b7c9baca2b3e rdf:first N9b3d409ef2ed4c16956fc7bd41e7068f
142 rdf:rest N3ac8b186f72e4bf8b5c3d1c34baf0fc7
143 Nf385c11556d044818edd0f844bea5876 schema:affiliation https://www.grid.ac/institutes/grid.254880.3
144 schema:familyName Archambault
145 schema:givenName Kimberly
146 rdf:type schema:Person
147 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
148 schema:name Biological Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
151 schema:name Genetics
152 rdf:type schema:DefinedTerm
153 sg:grant.5053887 http://pending.schema.org/fundedItem sg:pub.10.1186/s13075-019-1816-z
154 rdf:type schema:MonetaryGrant
155 sg:grant.7141032 http://pending.schema.org/fundedItem sg:pub.10.1186/s13075-019-1816-z
156 rdf:type schema:MonetaryGrant
157 sg:journal.1297499 schema:issn 1478-6354
158 1478-6362
159 schema:name Arthritis Research & Therapy
160 rdf:type schema:Periodical
161 sg:pub.10.1038/jid.2011.472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021428303
162 https://doi.org/10.1038/jid.2011.472
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/jid.2013.130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052111577
165 https://doi.org/10.1038/jid.2013.130
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/jid.2013.423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049578484
168 https://doi.org/10.1038/jid.2013.423
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/jid.2014.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009834720
171 https://doi.org/10.1038/jid.2014.127
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nature08460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002209653
174 https://doi.org/10.1038/nature08460
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
177 https://doi.org/10.1038/nmeth.f.303
178 rdf:type schema:CreativeWork
179 sg:pub.10.1186/s13075-015-0721-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033624558
180 https://doi.org/10.1186/s13075-015-0721-3
181 rdf:type schema:CreativeWork
182 https://app.dimensions.ai/details/publication/pub.1074653483 schema:CreativeWork
183 https://app.dimensions.ai/details/publication/pub.1074765621 schema:CreativeWork
184 https://app.dimensions.ai/details/publication/pub.1078790743 schema:CreativeWork
185 https://app.dimensions.ai/details/publication/pub.1079704019 schema:CreativeWork
186 https://doi.org/10.1002/art.1780230510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016214841
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/art.39572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012139673
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.autrev.2010.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030757469
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.jbspin.2010.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028447016
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s1085-5629(98)80058-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054681562
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1073/pnas.1635114100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038029497
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/bioinformatics/bth078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051000143
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/bioinformatics/bth349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015722031
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/bioinformatics/bts635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053365587
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/bioinformatics/bty026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100429977
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1097/00002281-200211000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004585084
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1101/gr.131029.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018652972
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1111/ajd.12253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020952996
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458929
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.1171700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004794278
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1159/000094670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042726945
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1371/journal.pcbi.1004005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034186592
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1371/journal.pone.0002696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040122023
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1371/journal.pone.0064546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050553396
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1371/journal.pone.0114017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000221496
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.239424.a schema:alternateName Boston Medical Center
227 schema:name Division of Rheumatology, Arthritis Center, Boston University Medical Center, Boston, MA, USA
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.254880.3 schema:alternateName Dartmouth College
230 schema:name Department of Biomedical Data Science, Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
231 Department of Environmental Health Science, University of South Carolina Arnold School of Public Health, Columbia, SC, USA
232 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
233 Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
234 Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.266102.1 schema:alternateName University of California, San Francisco
237 schema:name Division of Dermatology, University of California, San Francisco, USA
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.413480.a schema:alternateName Dartmouth–Hitchcock Medical Center
240 schema:name Division of Rheumatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...