Targeted proteomics reveals promising biomarkers of disease activity and organ involvement in antineutrophil cytoplasmic antibody-associated vasculitis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Jun Ishizaki, Ayako Takemori, Koichiro Suemori, Takuya Matsumoto, Yoko Akita, Ken-ei Sada, Yukio Yuzawa, Koichi Amano, Yoshinari Takasaki, Masayoshi Harigai, Yoshihiro Arimura, Hirofumi Makino, Masaki Yasukawa, Nobuaki Takemori, Hitoshi Hasegawa, for the Research Committee of Intractable Vasculitis Syndrome and the Research Committee of Intractable Renal Disease of the Ministry of Health, Labour and Welfare of Japan

ABSTRACT

BACKGROUND: Targeted proteomics, which involves quantitative analysis of targeted proteins using selected reaction monitoring (SRM) mass spectrometry, has emerged as a new methodology for discovery of clinical biomarkers. In this study, we used targeted serum proteomics to identify circulating biomarkers for prediction of disease activity and organ involvement in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). METHODS: A large-scale SRM assay targeting 135 biomarker candidates was established using a triple-quadrupole mass spectrometer coupled with nanoflow liquid chromatography. Target proteins in serum samples from patients in the active and remission (6 months after treatment) stages were quantified using the established assays. Identified marker candidates were further validated by enzyme-linked immunosorbent assay using serum samples (n = 169) collected in a large-cohort Japanese study (the RemIT-JAV-RPGN study). RESULTS: Our proteomic analysis identified the following proteins as biomarkers for discriminating patients with highly active AAV from those in remission or healthy control subjects: tenascin C (TNC), C-reactive protein (CRP), tissue inhibitor of metalloproteinase 1 (TIMP1), leucine-rich alpha-2-glycoprotein 1, S100A8/A9, CD93, matrix metalloproteinase 9, and transketolase (TKT). Of these, TIMP1 was the best-performing marker of disease activity, allowing distinction between mildly active AAV and remission. Moreover, in contrast to CRP, serum levels of TIMP1 in patients with active AAV were significantly higher than those in patients with infectious diseases. The serum levels of TKT and CD93 were higher in patients with renal involvement than in those without, and they predicted kidney outcome. The level of circulating TNC was elevated significantly in patients with lung infiltration. AAV severity was associated with markers reflecting organ involvement (TKT, CD93, and TNC) rather than inflammation. The eight markers and myeloperoxidase (MPO)-ANCA were clustered into three groups: MPO-ANCA, renal involvement (TKT and CD93), and inflammation (the other six markers). CONCLUSIONS: We have identified promising biomarkers of disease activity, disease severity, and organ involvement in AAV with a targeted proteomics approach using serum samples obtained from a large-cohort Japanese study. Especially, our analysis demonstrated the effectiveness of TIMP1 as a marker of AAV activity. In addition, we identified TKT and CD93 as novel markers for evaluation of renal involvement and kidney outcome in AAV. More... »

PAGES

218

References to SciGraph publications

  • 2009-04. A review on research progress of transketolase in NEUROSCIENCE BULLETIN
  • 2009-12. A nationwide survey of rapidly progressive glomerulonephritis in Japan: etiology, prognosis and treatment diversity in CLINICAL AND EXPERIMENTAL NEPHROLOGY
  • 2014-02. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins in NATURE METHODS
  • 2016-06-28. Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer in NATURE COMMUNICATIONS
  • 2013-01. Circulating complement activation in patients with anti-neutrophil cytoplasmic antibody–associated vasculitis in KIDNEY INTERNATIONAL
  • 1998-11. Tenascin is Increased in Epithelial Lining Fluid in Fibrotic Lung Disorders in LUNG
  • 2013-01. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry in NATURE METHODS
  • 2010-12. Towards a knowledge-based Human Protein Atlas in NATURE BIOTECHNOLOGY
  • 2009-12. Detection and characterization of soluble CD93 released during inflammation in INFLAMMATION RESEARCH
  • 2014-02. Cytokine functions of TIMP-1 in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2009-12. The role of tenascin-C in tissue injury and tumorigenesis in JOURNAL OF CELL COMMUNICATION AND SIGNALING
  • 2012-06. Selected reaction monitoring–based proteomics: workflows, potential, pitfalls and future directions in NATURE METHODS
  • 2013-06. Leukocyte and serum S100A8/S100A9 expression reflects disease activity in ANCA-associated vasculitis and glomerulonephritis in KIDNEY INTERNATIONAL
  • 2016-11. Circulating C3 levels predict renal and global outcome in patients with renal vasculitis in CLINICAL RHEUMATOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13075-017-1429-3

    DOI

    http://dx.doi.org/10.1186/s13075-017-1429-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091992179

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28962592


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteomics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ehime University", 
              "id": "https://www.grid.ac/institutes/grid.255464.4", 
              "name": [
                "Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ishizaki", 
            "givenName": "Jun", 
            "id": "sg:person.0606433212.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606433212.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ehime University", 
              "id": "https://www.grid.ac/institutes/grid.255464.4", 
              "name": [
                "Division of Proteomics Research, Proteo-Science Center, Ehime University, 791-0295, Toon, Ehime, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takemori", 
            "givenName": "Ayako", 
            "id": "sg:person.01300102144.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300102144.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ehime University", 
              "id": "https://www.grid.ac/institutes/grid.255464.4", 
              "name": [
                "Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Suemori", 
            "givenName": "Koichiro", 
            "id": "sg:person.0775140221.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775140221.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ehime University", 
              "id": "https://www.grid.ac/institutes/grid.255464.4", 
              "name": [
                "Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Matsumoto", 
            "givenName": "Takuya", 
            "id": "sg:person.01022725352.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022725352.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ehime University", 
              "id": "https://www.grid.ac/institutes/grid.255464.4", 
              "name": [
                "Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akita", 
            "givenName": "Yoko", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Okayama University", 
              "id": "https://www.grid.ac/institutes/grid.261356.5", 
              "name": [
                "Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sada", 
            "givenName": "Ken-ei", 
            "id": "sg:person.0705044575.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705044575.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fujita Health University", 
              "id": "https://www.grid.ac/institutes/grid.256115.4", 
              "name": [
                "Department of Nephrology, Fujita Health University School of Medicine, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yuzawa", 
            "givenName": "Yukio", 
            "id": "sg:person.0605601010.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605601010.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jichi Medical University Saitama Medical Center", 
              "id": "https://www.grid.ac/institutes/grid.415020.2", 
              "name": [
                "Department of Rheumatology and Clinical Immunology, Saitama Medical Center, Saitama Medical University, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amano", 
            "givenName": "Koichi", 
            "id": "sg:person.01023355176.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023355176.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Koshigaya Municipal Hospital", 
              "id": "https://www.grid.ac/institutes/grid.415496.b", 
              "name": [
                "Department of Rheumatology, Juntendo University Koshigaya Hospital, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takasaki", 
            "givenName": "Yoshinari", 
            "id": "sg:person.0752424231.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752424231.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tokyo Women's Medical University", 
              "id": "https://www.grid.ac/institutes/grid.410818.4", 
              "name": [
                "Division of Epidemiology and Pharmacoepidemiology of Rheumatic Diseases, Institute of Rheumatology, Tokyo Women\u2019s Medical University, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harigai", 
            "givenName": "Masayoshi", 
            "id": "sg:person.0670103754.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670103754.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kyorin University", 
              "id": "https://www.grid.ac/institutes/grid.411205.3", 
              "name": [
                "Nephrology and Rheumatology, First Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arimura", 
            "givenName": "Yoshihiro", 
            "id": "sg:person.01210261571.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210261571.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Okayama University Hospital", 
              "id": "https://www.grid.ac/institutes/grid.412342.2", 
              "name": [
                "Okayama University Hospital, Okayama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Makino", 
            "givenName": "Hirofumi", 
            "id": "sg:person.01326213552.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326213552.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ehime University", 
              "id": "https://www.grid.ac/institutes/grid.255464.4", 
              "name": [
                "Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yasukawa", 
            "givenName": "Masaki", 
            "id": "sg:person.0730073225.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730073225.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ehime University", 
              "id": "https://www.grid.ac/institutes/grid.255464.4", 
              "name": [
                "Division of Proteomics Research, Proteo-Science Center, Ehime University, 791-0295, Toon, Ehime, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takemori", 
            "givenName": "Nobuaki", 
            "id": "sg:person.01055422507.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055422507.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ehime University", 
              "id": "https://www.grid.ac/institutes/grid.255464.4", 
              "name": [
                "Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hasegawa", 
            "givenName": "Hitoshi", 
            "id": "sg:person.0774026463.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774026463.10"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "for the Research Committee of Intractable Vasculitis Syndrome and the Research Committee of Intractable Renal Disease of the Ministry of Health, Labour and Welfare of Japan", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/1529-0131(200009)43:9<2025::aid-anr13>3.0.co;2-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000933274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/ard.2008.101279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001734475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c4mb00556b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001834226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/art.30615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002756270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1210-1248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002756332", 
              "https://doi.org/10.1038/nbt1210-1248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1210-1248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002756332", 
              "https://doi.org/10.1038/nbt1210-1248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/md.0b013e318205a4c6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004735264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/md.0b013e318205a4c6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004735264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004810879", 
              "https://doi.org/10.1038/nmeth.2763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/ard.2003.017954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006409955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/art.37715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007034872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0096538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008048955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbapap.2014.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008600139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/rheumatology/40.2.147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008663874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012911207", 
              "https://doi.org/10.1038/nmeth.2015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pmic.200401335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014452519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pmic.200401335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014452519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/art.27580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015392623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/art.27580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015392623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbamcr.2010.01.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016664126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c6mb00209a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017239150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2016.06.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018247124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12079-009-0075-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019271587", 
              "https://doi.org/10.1007/s12079-009-0075-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12079-009-0075-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019271587", 
              "https://doi.org/10.1007/s12079-009-0075-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00007619", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019354447", 
              "https://doi.org/10.1007/pl00007619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/14397595.2016.1140274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020074833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ki.2012.313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020193890", 
              "https://doi.org/10.1038/ki.2012.313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10067-016-3384-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020814699", 
              "https://doi.org/10.1007/s10067-016-3384-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10067-016-3384-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020814699", 
              "https://doi.org/10.1007/s10067-016-3384-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/art.39814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020833119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-013-1457-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021253575", 
              "https://doi.org/10.1007/s00018-013-1457-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022312814", 
              "https://doi.org/10.1038/nmeth.2309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1681/asn.2014040407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026011138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1681/asn.2014040407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026011138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1159/000442323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026645797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/rheumatology/ker280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029052127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jchromb.2014.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029687708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10157-009-0201-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032020926", 
              "https://doi.org/10.1007/s10157-009-0201-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/art.1780400928", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032541017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15252/emmm.201404874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034181202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15252/emmm.201404874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034181202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035157869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12264-009-1113-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036337097", 
              "https://doi.org/10.1007/s12264-009-1113-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12264-009-1113-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036337097", 
              "https://doi.org/10.1007/s12264-009-1113-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036379922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pharmthera.2016.07.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037061700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00011-009-0064-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037737931", 
              "https://doi.org/10.1007/s00011-009-0064-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00011-009-0064-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037737931", 
              "https://doi.org/10.1007/s00011-009-0064-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00011-009-0064-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037737931", 
              "https://doi.org/10.1007/s00011-009-0064-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15252/emmm.201404873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038396434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15252/emmm.201404873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038396434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2796.2011.02364.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040565505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/002215540004800909", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041386181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/002215540004800909", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041386181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/annrheumdis-2012-201981", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043126220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/ard.2006.054593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044437304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ki.2013.2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044894804", 
              "https://doi.org/10.1038/ki.2013.2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/rheumatology/keg072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045479035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m110.149955", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045671880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/14.8.656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046358488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5483/bmbrep.2012.45.11.233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046749386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1053/j.ajkd.2005.09.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049559599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/ard.2006.062711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051356932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051841506", 
              "https://doi.org/10.1038/ncomms11906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.271.52.33568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052464406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ndt/gfv336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059933190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/scitranslmed.3003989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062687497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/138945012799424651", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069182026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4330/wjc.v7.i2.52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072525413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1189/jlb.70.5.793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074951667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074996824", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077331690", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "BACKGROUND: Targeted proteomics, which involves quantitative analysis of targeted proteins using selected reaction monitoring (SRM) mass spectrometry, has emerged as a new methodology for discovery of clinical biomarkers. In this study, we used targeted serum proteomics to identify circulating biomarkers for prediction of disease activity and organ involvement in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV).\nMETHODS: A large-scale SRM assay targeting 135 biomarker candidates was established using a triple-quadrupole mass spectrometer coupled with nanoflow liquid chromatography. Target proteins in serum samples from patients in the active and remission (6\u00a0months after treatment) stages were quantified using the established assays. Identified marker candidates were further validated by enzyme-linked immunosorbent assay using serum samples (n\u2009=\u2009169) collected in a large-cohort Japanese study (the RemIT-JAV-RPGN study).\nRESULTS: Our proteomic analysis identified the following proteins as biomarkers for discriminating patients with highly active AAV from those in remission or healthy control subjects: tenascin C (TNC), C-reactive protein (CRP), tissue inhibitor of metalloproteinase 1 (TIMP1), leucine-rich alpha-2-glycoprotein 1, S100A8/A9, CD93, matrix metalloproteinase 9, and transketolase (TKT). Of these, TIMP1 was the best-performing marker of disease activity, allowing distinction between mildly active AAV and remission. Moreover, in contrast to CRP, serum levels of TIMP1 in patients with active AAV were significantly higher than those in patients with infectious diseases. The serum levels of TKT and CD93 were higher in patients with renal involvement than in those without, and they predicted kidney outcome. The level of circulating TNC was elevated significantly in patients with lung infiltration. AAV severity was associated with markers reflecting organ involvement (TKT, CD93, and TNC) rather than inflammation. The eight markers and myeloperoxidase (MPO)-ANCA were clustered into three groups: MPO-ANCA, renal involvement (TKT and CD93), and inflammation (the other six markers).\nCONCLUSIONS: We have identified promising biomarkers of disease activity, disease severity, and organ involvement in AAV with a targeted proteomics approach using serum samples obtained from a large-cohort Japanese study. Especially, our analysis demonstrated the effectiveness of TIMP1 as a marker of AAV activity. In addition, we identified TKT and CD93 as novel markers for evaluation of renal involvement and kidney outcome in AAV.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13075-017-1429-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1297499", 
            "issn": [
              "1478-6354", 
              "1478-6362"
            ], 
            "name": "Arthritis Research & Therapy", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "name": "Targeted proteomics reveals promising biomarkers of disease activity and organ involvement in antineutrophil cytoplasmic antibody-associated vasculitis", 
        "pagination": "218", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "539cf32bfa45db385003a371ff9eaa5fe6efa25349d0e4410265e20a32bd6e7c"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28962592"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101154438"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13075-017-1429-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091992179"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13075-017-1429-3", 
          "https://app.dimensions.ai/details/publication/pub.1091992179"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000541.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13075-017-1429-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13075-017-1429-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13075-017-1429-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13075-017-1429-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13075-017-1429-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    413 TRIPLES      21 PREDICATES      96 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13075-017-1429-3 schema:about N1733007ed6af457c83262b928733a13d
    2 N2fe5882022cc4846814d8887749f3745
    3 N4f391b2f35cd466294d94861a327e213
    4 N4fc3bf20fc264dc5bf101c86ea7bb13a
    5 N56e112017a654bf6841213b68814862b
    6 N5e738dc00e5544a1b8b7486e79a393ef
    7 N9a77cdbc998a4f9286ef4c18febf8100
    8 Ne1462d93f2284a429acf90e7d7d35490
    9 anzsrc-for:11
    10 anzsrc-for:1103
    11 schema:author N07f9fc7a94ef44f4a764e3ddb9177e7d
    12 schema:citation sg:pub.10.1007/pl00007619
    13 sg:pub.10.1007/s00011-009-0064-0
    14 sg:pub.10.1007/s00018-013-1457-3
    15 sg:pub.10.1007/s10067-016-3384-9
    16 sg:pub.10.1007/s10157-009-0201-7
    17 sg:pub.10.1007/s12079-009-0075-1
    18 sg:pub.10.1007/s12264-009-1113-y
    19 sg:pub.10.1038/ki.2012.313
    20 sg:pub.10.1038/ki.2013.2
    21 sg:pub.10.1038/nbt1210-1248
    22 sg:pub.10.1038/ncomms11906
    23 sg:pub.10.1038/nmeth.2015
    24 sg:pub.10.1038/nmeth.2309
    25 sg:pub.10.1038/nmeth.2763
    26 https://app.dimensions.ai/details/publication/pub.1074996824
    27 https://app.dimensions.ai/details/publication/pub.1077331690
    28 https://doi.org/10.1002/1529-0131(200009)43:9<2025::aid-anr13>3.0.co;2-o
    29 https://doi.org/10.1002/art.1780400928
    30 https://doi.org/10.1002/art.27580
    31 https://doi.org/10.1002/art.30615
    32 https://doi.org/10.1002/art.37715
    33 https://doi.org/10.1002/art.39814
    34 https://doi.org/10.1002/pmic.200401335
    35 https://doi.org/10.1016/j.bbamcr.2010.01.003
    36 https://doi.org/10.1016/j.bbapap.2014.06.003
    37 https://doi.org/10.1016/j.cell.2016.06.041
    38 https://doi.org/10.1016/j.jchromb.2014.07.006
    39 https://doi.org/10.1016/j.pharmthera.2016.07.015
    40 https://doi.org/10.1039/c4mb00556b
    41 https://doi.org/10.1039/c6mb00209a
    42 https://doi.org/10.1053/j.ajkd.2005.09.022
    43 https://doi.org/10.1074/jbc.271.52.33568
    44 https://doi.org/10.1074/jbc.m110.149955
    45 https://doi.org/10.1093/bioinformatics/14.8.656
    46 https://doi.org/10.1093/bioinformatics/btq054
    47 https://doi.org/10.1093/nar/gkj040
    48 https://doi.org/10.1093/ndt/gfv336
    49 https://doi.org/10.1093/rheumatology/40.2.147
    50 https://doi.org/10.1093/rheumatology/keg072
    51 https://doi.org/10.1093/rheumatology/ker280
    52 https://doi.org/10.1097/md.0b013e318205a4c6
    53 https://doi.org/10.1111/j.1365-2796.2011.02364.x
    54 https://doi.org/10.1126/scitranslmed.3003989
    55 https://doi.org/10.1136/annrheumdis-2012-201981
    56 https://doi.org/10.1136/ard.2003.017954
    57 https://doi.org/10.1136/ard.2006.054593
    58 https://doi.org/10.1136/ard.2006.062711
    59 https://doi.org/10.1136/ard.2008.101279
    60 https://doi.org/10.1159/000442323
    61 https://doi.org/10.1177/002215540004800909
    62 https://doi.org/10.1189/jlb.70.5.793
    63 https://doi.org/10.1371/journal.pone.0096538
    64 https://doi.org/10.15252/emmm.201404873
    65 https://doi.org/10.15252/emmm.201404874
    66 https://doi.org/10.1681/asn.2014040407
    67 https://doi.org/10.2174/138945012799424651
    68 https://doi.org/10.3109/14397595.2016.1140274
    69 https://doi.org/10.4330/wjc.v7.i2.52
    70 https://doi.org/10.5483/bmbrep.2012.45.11.233
    71 schema:datePublished 2017-12
    72 schema:datePublishedReg 2017-12-01
    73 schema:description BACKGROUND: Targeted proteomics, which involves quantitative analysis of targeted proteins using selected reaction monitoring (SRM) mass spectrometry, has emerged as a new methodology for discovery of clinical biomarkers. In this study, we used targeted serum proteomics to identify circulating biomarkers for prediction of disease activity and organ involvement in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). METHODS: A large-scale SRM assay targeting 135 biomarker candidates was established using a triple-quadrupole mass spectrometer coupled with nanoflow liquid chromatography. Target proteins in serum samples from patients in the active and remission (6 months after treatment) stages were quantified using the established assays. Identified marker candidates were further validated by enzyme-linked immunosorbent assay using serum samples (n = 169) collected in a large-cohort Japanese study (the RemIT-JAV-RPGN study). RESULTS: Our proteomic analysis identified the following proteins as biomarkers for discriminating patients with highly active AAV from those in remission or healthy control subjects: tenascin C (TNC), C-reactive protein (CRP), tissue inhibitor of metalloproteinase 1 (TIMP1), leucine-rich alpha-2-glycoprotein 1, S100A8/A9, CD93, matrix metalloproteinase 9, and transketolase (TKT). Of these, TIMP1 was the best-performing marker of disease activity, allowing distinction between mildly active AAV and remission. Moreover, in contrast to CRP, serum levels of TIMP1 in patients with active AAV were significantly higher than those in patients with infectious diseases. The serum levels of TKT and CD93 were higher in patients with renal involvement than in those without, and they predicted kidney outcome. The level of circulating TNC was elevated significantly in patients with lung infiltration. AAV severity was associated with markers reflecting organ involvement (TKT, CD93, and TNC) rather than inflammation. The eight markers and myeloperoxidase (MPO)-ANCA were clustered into three groups: MPO-ANCA, renal involvement (TKT and CD93), and inflammation (the other six markers). CONCLUSIONS: We have identified promising biomarkers of disease activity, disease severity, and organ involvement in AAV with a targeted proteomics approach using serum samples obtained from a large-cohort Japanese study. Especially, our analysis demonstrated the effectiveness of TIMP1 as a marker of AAV activity. In addition, we identified TKT and CD93 as novel markers for evaluation of renal involvement and kidney outcome in AAV.
    74 schema:genre research_article
    75 schema:inLanguage en
    76 schema:isAccessibleForFree true
    77 schema:isPartOf N63e8d3eb3c104f33a351b3fcdc0c8e07
    78 N698f18727778400bb481ceaf611e30b9
    79 sg:journal.1297499
    80 schema:name Targeted proteomics reveals promising biomarkers of disease activity and organ involvement in antineutrophil cytoplasmic antibody-associated vasculitis
    81 schema:pagination 218
    82 schema:productId N01ab8702f13e497dae3022f4e724b860
    83 N8354612dbe0b40e5994a9d328884d2fb
    84 Ne907975d30cf4ac290c059d24e1ea0e8
    85 Neab5ecb62a634039ae3353d7e9626ca8
    86 Nf850658e3b8445969a7f8f346e93236b
    87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091992179
    88 https://doi.org/10.1186/s13075-017-1429-3
    89 schema:sdDatePublished 2019-04-10T18:25
    90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    91 schema:sdPublisher N71311a9ec5cd4b5d99c4bef314261b25
    92 schema:url https://link.springer.com/10.1186%2Fs13075-017-1429-3
    93 sgo:license sg:explorer/license/
    94 sgo:sdDataset articles
    95 rdf:type schema:ScholarlyArticle
    96 N01ab8702f13e497dae3022f4e724b860 schema:name dimensions_id
    97 schema:value pub.1091992179
    98 rdf:type schema:PropertyValue
    99 N02a4a4853e09481fa196abdf0f9b4727 rdf:first sg:person.0705044575.68
    100 rdf:rest Nea511c2888974c8dbde70ab395f07120
    101 N07f9fc7a94ef44f4a764e3ddb9177e7d rdf:first sg:person.0606433212.35
    102 rdf:rest N604317b33359425c8905bdf7e2d60612
    103 N1733007ed6af457c83262b928733a13d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Aged
    105 rdf:type schema:DefinedTerm
    106 N20ada58c20c94c878d6fc1f74b5a9081 rdf:first sg:person.0774026463.10
    107 rdf:rest N43d0a61d56a44c07b6cf7b03a9ee3fb9
    108 N2fe5882022cc4846814d8887749f3745 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Middle Aged
    110 rdf:type schema:DefinedTerm
    111 N43d0a61d56a44c07b6cf7b03a9ee3fb9 rdf:first Nd8ed5e0d75d7456ba61729ed563d5e46
    112 rdf:rest rdf:nil
    113 N4f391b2f35cd466294d94861a327e213 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Humans
    115 rdf:type schema:DefinedTerm
    116 N4fc3bf20fc264dc5bf101c86ea7bb13a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Biomarkers
    118 rdf:type schema:DefinedTerm
    119 N56e112017a654bf6841213b68814862b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Female
    121 rdf:type schema:DefinedTerm
    122 N5d686f7af3024801acc788e6f6465184 rdf:first sg:person.0670103754.78
    123 rdf:rest N94ef56f50d204f25aa4b8c2af55e7872
    124 N5e738dc00e5544a1b8b7486e79a393ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis
    126 rdf:type schema:DefinedTerm
    127 N604317b33359425c8905bdf7e2d60612 rdf:first sg:person.01300102144.87
    128 rdf:rest N929d0963bbe942afbc05b8dba2fd6467
    129 N63e8d3eb3c104f33a351b3fcdc0c8e07 schema:volumeNumber 19
    130 rdf:type schema:PublicationVolume
    131 N698f18727778400bb481ceaf611e30b9 schema:issueNumber 1
    132 rdf:type schema:PublicationIssue
    133 N71311a9ec5cd4b5d99c4bef314261b25 schema:name Springer Nature - SN SciGraph project
    134 rdf:type schema:Organization
    135 N769dfb954bff4daa8b7af731b653e480 rdf:first sg:person.0730073225.12
    136 rdf:rest Neb1be1612a8640e8963ba35c7e095209
    137 N7fb7c17fd6654ddfaf68f86b8cddcdee rdf:first Ncd97e7bd61bd4205acd6316c458d94c9
    138 rdf:rest N02a4a4853e09481fa196abdf0f9b4727
    139 N83519898bd1f4e3faaf981e44105f6f8 rdf:first sg:person.01022725352.06
    140 rdf:rest N7fb7c17fd6654ddfaf68f86b8cddcdee
    141 N8354612dbe0b40e5994a9d328884d2fb schema:name doi
    142 schema:value 10.1186/s13075-017-1429-3
    143 rdf:type schema:PropertyValue
    144 N929d0963bbe942afbc05b8dba2fd6467 rdf:first sg:person.0775140221.86
    145 rdf:rest N83519898bd1f4e3faaf981e44105f6f8
    146 N94ef56f50d204f25aa4b8c2af55e7872 rdf:first sg:person.01210261571.66
    147 rdf:rest Nf3b240b27b50444ca030fd86c85a1c9e
    148 N9a77cdbc998a4f9286ef4c18febf8100 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Male
    150 rdf:type schema:DefinedTerm
    151 Ncd57df9db9234c24beacbe1091295107 rdf:first sg:person.01023355176.35
    152 rdf:rest Ncd7542ea7047491f8dff193146145968
    153 Ncd7542ea7047491f8dff193146145968 rdf:first sg:person.0752424231.88
    154 rdf:rest N5d686f7af3024801acc788e6f6465184
    155 Ncd97e7bd61bd4205acd6316c458d94c9 schema:affiliation https://www.grid.ac/institutes/grid.255464.4
    156 schema:familyName Akita
    157 schema:givenName Yoko
    158 rdf:type schema:Person
    159 Nd8ed5e0d75d7456ba61729ed563d5e46 schema:familyName for the Research Committee of Intractable Vasculitis Syndrome and the Research Committee of Intractable Renal Disease of the Ministry of Health, Labour and Welfare of Japan
    160 rdf:type schema:Person
    161 Ne1462d93f2284a429acf90e7d7d35490 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Proteomics
    163 rdf:type schema:DefinedTerm
    164 Ne907975d30cf4ac290c059d24e1ea0e8 schema:name readcube_id
    165 schema:value 539cf32bfa45db385003a371ff9eaa5fe6efa25349d0e4410265e20a32bd6e7c
    166 rdf:type schema:PropertyValue
    167 Nea511c2888974c8dbde70ab395f07120 rdf:first sg:person.0605601010.43
    168 rdf:rest Ncd57df9db9234c24beacbe1091295107
    169 Neab5ecb62a634039ae3353d7e9626ca8 schema:name nlm_unique_id
    170 schema:value 101154438
    171 rdf:type schema:PropertyValue
    172 Neb1be1612a8640e8963ba35c7e095209 rdf:first sg:person.01055422507.25
    173 rdf:rest N20ada58c20c94c878d6fc1f74b5a9081
    174 Nf3b240b27b50444ca030fd86c85a1c9e rdf:first sg:person.01326213552.92
    175 rdf:rest N769dfb954bff4daa8b7af731b653e480
    176 Nf850658e3b8445969a7f8f346e93236b schema:name pubmed_id
    177 schema:value 28962592
    178 rdf:type schema:PropertyValue
    179 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    180 schema:name Medical and Health Sciences
    181 rdf:type schema:DefinedTerm
    182 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    183 schema:name Clinical Sciences
    184 rdf:type schema:DefinedTerm
    185 sg:journal.1297499 schema:issn 1478-6354
    186 1478-6362
    187 schema:name Arthritis Research & Therapy
    188 rdf:type schema:Periodical
    189 sg:person.01022725352.06 schema:affiliation https://www.grid.ac/institutes/grid.255464.4
    190 schema:familyName Matsumoto
    191 schema:givenName Takuya
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022725352.06
    193 rdf:type schema:Person
    194 sg:person.01023355176.35 schema:affiliation https://www.grid.ac/institutes/grid.415020.2
    195 schema:familyName Amano
    196 schema:givenName Koichi
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023355176.35
    198 rdf:type schema:Person
    199 sg:person.01055422507.25 schema:affiliation https://www.grid.ac/institutes/grid.255464.4
    200 schema:familyName Takemori
    201 schema:givenName Nobuaki
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055422507.25
    203 rdf:type schema:Person
    204 sg:person.01210261571.66 schema:affiliation https://www.grid.ac/institutes/grid.411205.3
    205 schema:familyName Arimura
    206 schema:givenName Yoshihiro
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210261571.66
    208 rdf:type schema:Person
    209 sg:person.01300102144.87 schema:affiliation https://www.grid.ac/institutes/grid.255464.4
    210 schema:familyName Takemori
    211 schema:givenName Ayako
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300102144.87
    213 rdf:type schema:Person
    214 sg:person.01326213552.92 schema:affiliation https://www.grid.ac/institutes/grid.412342.2
    215 schema:familyName Makino
    216 schema:givenName Hirofumi
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326213552.92
    218 rdf:type schema:Person
    219 sg:person.0605601010.43 schema:affiliation https://www.grid.ac/institutes/grid.256115.4
    220 schema:familyName Yuzawa
    221 schema:givenName Yukio
    222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605601010.43
    223 rdf:type schema:Person
    224 sg:person.0606433212.35 schema:affiliation https://www.grid.ac/institutes/grid.255464.4
    225 schema:familyName Ishizaki
    226 schema:givenName Jun
    227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606433212.35
    228 rdf:type schema:Person
    229 sg:person.0670103754.78 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
    230 schema:familyName Harigai
    231 schema:givenName Masayoshi
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670103754.78
    233 rdf:type schema:Person
    234 sg:person.0705044575.68 schema:affiliation https://www.grid.ac/institutes/grid.261356.5
    235 schema:familyName Sada
    236 schema:givenName Ken-ei
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705044575.68
    238 rdf:type schema:Person
    239 sg:person.0730073225.12 schema:affiliation https://www.grid.ac/institutes/grid.255464.4
    240 schema:familyName Yasukawa
    241 schema:givenName Masaki
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730073225.12
    243 rdf:type schema:Person
    244 sg:person.0752424231.88 schema:affiliation https://www.grid.ac/institutes/grid.415496.b
    245 schema:familyName Takasaki
    246 schema:givenName Yoshinari
    247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752424231.88
    248 rdf:type schema:Person
    249 sg:person.0774026463.10 schema:affiliation https://www.grid.ac/institutes/grid.255464.4
    250 schema:familyName Hasegawa
    251 schema:givenName Hitoshi
    252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774026463.10
    253 rdf:type schema:Person
    254 sg:person.0775140221.86 schema:affiliation https://www.grid.ac/institutes/grid.255464.4
    255 schema:familyName Suemori
    256 schema:givenName Koichiro
    257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775140221.86
    258 rdf:type schema:Person
    259 sg:pub.10.1007/pl00007619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019354447
    260 https://doi.org/10.1007/pl00007619
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1007/s00011-009-0064-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037737931
    263 https://doi.org/10.1007/s00011-009-0064-0
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1007/s00018-013-1457-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021253575
    266 https://doi.org/10.1007/s00018-013-1457-3
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1007/s10067-016-3384-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020814699
    269 https://doi.org/10.1007/s10067-016-3384-9
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1007/s10157-009-0201-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032020926
    272 https://doi.org/10.1007/s10157-009-0201-7
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1007/s12079-009-0075-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019271587
    275 https://doi.org/10.1007/s12079-009-0075-1
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1007/s12264-009-1113-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1036337097
    278 https://doi.org/10.1007/s12264-009-1113-y
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/ki.2012.313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020193890
    281 https://doi.org/10.1038/ki.2012.313
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/ki.2013.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044894804
    284 https://doi.org/10.1038/ki.2013.2
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/nbt1210-1248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002756332
    287 https://doi.org/10.1038/nbt1210-1248
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/ncomms11906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051841506
    290 https://doi.org/10.1038/ncomms11906
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/nmeth.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012911207
    293 https://doi.org/10.1038/nmeth.2015
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/nmeth.2309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022312814
    296 https://doi.org/10.1038/nmeth.2309
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/nmeth.2763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004810879
    299 https://doi.org/10.1038/nmeth.2763
    300 rdf:type schema:CreativeWork
    301 https://app.dimensions.ai/details/publication/pub.1074996824 schema:CreativeWork
    302 https://app.dimensions.ai/details/publication/pub.1077331690 schema:CreativeWork
    303 https://doi.org/10.1002/1529-0131(200009)43:9<2025::aid-anr13>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1000933274
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1002/art.1780400928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032541017
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1002/art.27580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015392623
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1002/art.30615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002756270
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1002/art.37715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007034872
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1002/art.39814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020833119
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1002/pmic.200401335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014452519
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1016/j.bbamcr.2010.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016664126
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1016/j.bbapap.2014.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008600139
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1016/j.cell.2016.06.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018247124
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1016/j.jchromb.2014.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029687708
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1016/j.pharmthera.2016.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037061700
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1039/c4mb00556b schema:sameAs https://app.dimensions.ai/details/publication/pub.1001834226
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1039/c6mb00209a schema:sameAs https://app.dimensions.ai/details/publication/pub.1017239150
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1053/j.ajkd.2005.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049559599
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1074/jbc.271.52.33568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052464406
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1074/jbc.m110.149955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045671880
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1093/bioinformatics/14.8.656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046358488
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.1093/bioinformatics/btq054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036379922
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.1093/nar/gkj040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035157869
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.1093/ndt/gfv336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059933190
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.1093/rheumatology/40.2.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008663874
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.1093/rheumatology/keg072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045479035
    348 rdf:type schema:CreativeWork
    349 https://doi.org/10.1093/rheumatology/ker280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029052127
    350 rdf:type schema:CreativeWork
    351 https://doi.org/10.1097/md.0b013e318205a4c6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004735264
    352 rdf:type schema:CreativeWork
    353 https://doi.org/10.1111/j.1365-2796.2011.02364.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040565505
    354 rdf:type schema:CreativeWork
    355 https://doi.org/10.1126/scitranslmed.3003989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062687497
    356 rdf:type schema:CreativeWork
    357 https://doi.org/10.1136/annrheumdis-2012-201981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043126220
    358 rdf:type schema:CreativeWork
    359 https://doi.org/10.1136/ard.2003.017954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006409955
    360 rdf:type schema:CreativeWork
    361 https://doi.org/10.1136/ard.2006.054593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044437304
    362 rdf:type schema:CreativeWork
    363 https://doi.org/10.1136/ard.2006.062711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051356932
    364 rdf:type schema:CreativeWork
    365 https://doi.org/10.1136/ard.2008.101279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001734475
    366 rdf:type schema:CreativeWork
    367 https://doi.org/10.1159/000442323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026645797
    368 rdf:type schema:CreativeWork
    369 https://doi.org/10.1177/002215540004800909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041386181
    370 rdf:type schema:CreativeWork
    371 https://doi.org/10.1189/jlb.70.5.793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074951667
    372 rdf:type schema:CreativeWork
    373 https://doi.org/10.1371/journal.pone.0096538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008048955
    374 rdf:type schema:CreativeWork
    375 https://doi.org/10.15252/emmm.201404873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038396434
    376 rdf:type schema:CreativeWork
    377 https://doi.org/10.15252/emmm.201404874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034181202
    378 rdf:type schema:CreativeWork
    379 https://doi.org/10.1681/asn.2014040407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026011138
    380 rdf:type schema:CreativeWork
    381 https://doi.org/10.2174/138945012799424651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069182026
    382 rdf:type schema:CreativeWork
    383 https://doi.org/10.3109/14397595.2016.1140274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020074833
    384 rdf:type schema:CreativeWork
    385 https://doi.org/10.4330/wjc.v7.i2.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072525413
    386 rdf:type schema:CreativeWork
    387 https://doi.org/10.5483/bmbrep.2012.45.11.233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046749386
    388 rdf:type schema:CreativeWork
    389 https://www.grid.ac/institutes/grid.255464.4 schema:alternateName Ehime University
    390 schema:name Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan
    391 Division of Proteomics Research, Proteo-Science Center, Ehime University, 791-0295, Toon, Ehime, Japan
    392 rdf:type schema:Organization
    393 https://www.grid.ac/institutes/grid.256115.4 schema:alternateName Fujita Health University
    394 schema:name Department of Nephrology, Fujita Health University School of Medicine, Aichi, Japan
    395 rdf:type schema:Organization
    396 https://www.grid.ac/institutes/grid.261356.5 schema:alternateName Okayama University
    397 schema:name Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
    398 rdf:type schema:Organization
    399 https://www.grid.ac/institutes/grid.410818.4 schema:alternateName Tokyo Women's Medical University
    400 schema:name Division of Epidemiology and Pharmacoepidemiology of Rheumatic Diseases, Institute of Rheumatology, Tokyo Women’s Medical University, Tokyo, Japan
    401 rdf:type schema:Organization
    402 https://www.grid.ac/institutes/grid.411205.3 schema:alternateName Kyorin University
    403 schema:name Nephrology and Rheumatology, First Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan
    404 rdf:type schema:Organization
    405 https://www.grid.ac/institutes/grid.412342.2 schema:alternateName Okayama University Hospital
    406 schema:name Okayama University Hospital, Okayama, Japan
    407 rdf:type schema:Organization
    408 https://www.grid.ac/institutes/grid.415020.2 schema:alternateName Jichi Medical University Saitama Medical Center
    409 schema:name Department of Rheumatology and Clinical Immunology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
    410 rdf:type schema:Organization
    411 https://www.grid.ac/institutes/grid.415496.b schema:alternateName Koshigaya Municipal Hospital
    412 schema:name Department of Rheumatology, Juntendo University Koshigaya Hospital, Saitama, Japan
    413 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...