Translating insights into tumor evolution to clinical practice: promises and challenges View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-29

AUTHORS

Matthew W. Fittall, Peter Van Loo

ABSTRACT

Accelerating technological advances have allowed the widespread genomic profiling of tumors. As yet, however, the vast catalogues of mutations that have been identified have made only a modest impact on clinical medicine. Massively parallel sequencing has informed our understanding of the genetic evolution and heterogeneity of cancers, allowing us to place these mutational catalogues into a meaningful context. Here, we review the methods used to measure tumor evolution and heterogeneity, and the potential and challenges for translating the insights gained to achieve clinical impact for cancer therapy, monitoring, early detection, risk stratification, and prevention. We discuss how tumor evolution can guide cancer therapy by targeting clonal and subclonal mutations both individually and in combination. Circulating tumor DNA and circulating tumor cells can be leveraged for monitoring the efficacy of therapy and for tracking the emergence of resistant subclones. The evolutionary history of tumors can be deduced for late-stage cancers, either directly by sampling precursor lesions or by leveraging computational approaches to infer the timing of driver events. This approach can identify recurrent early driver mutations that represent promising avenues for future early detection strategies. Emerging evidence suggests that mutational processes and complex clonal dynamics are active even in normal development and aging. This will make discriminating developing malignant neoplasms from normal aging cell lineages a challenge. Furthermore, insight into signatures of mutational processes that are active early in tumor evolution may allow the development of cancer-prevention approaches. Research and clinical studies that incorporate an appreciation of the complex evolutionary patterns in tumors will not only produce more meaningful genomic data, but also better exploit the vulnerabilities of cancer, resulting in improved treatment outcomes. More... »

PAGES

20

References to SciGraph publications

  • 2015-11-13. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer in NATURE REVIEWS CANCER
  • 2015-11-09. Clock-like mutational processes in human somatic cells in NATURE GENETICS
  • 2017-11-28. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer in NATURE COMMUNICATIONS
  • 2015-11-30. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity in NATURE MEDICINE
  • 2008-03. Physiological heterogeneity in biofilms in NATURE REVIEWS MICROBIOLOGY
  • 2014-12-23. Optimizing lung cancer treatment approaches in NATURE REVIEWS CLINICAL ONCOLOGY
  • 2016-11-21. Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer in NATURE MEDICINE
  • 2006-01. The epigenetic progenitor origin of human cancer in NATURE REVIEWS GENETICS
  • 2018-11-22. Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy in NATURE COMMUNICATIONS
  • 2015-02-09. A Big Bang model of human colorectal tumor growth in NATURE GENETICS
  • 2015-06-22. Subclonal diversification of primary breast cancer revealed by multiregion sequencing in NATURE MEDICINE
  • 2016-08-15. Punctuated Copy Number Evolution and Clonal Stasis in Triple-Negative Breast Cancer in NATURE GENETICS
  • 2018-03-01. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer in NATURE COMMUNICATIONS
  • 2010-10-27. The patterns and dynamics of genomic instability in metastatic pancreatic cancer in NATURE
  • 2015-06-30. ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer in NATURE REVIEWS CLINICAL ONCOLOGY
  • 2005-02-10. Monitoring patients in complete cytogenetic remission after treatment of CML in chronic phase with imatinib: patterns of residual leukaemia and prognostic factors for cytogenetic relapse in LEUKEMIA
  • 2008-04-02. Mining the plasma proteome for cancer biomarkers in NATURE
  • 2014-07-31. Challenges in circulating tumour cell research in NATURE REVIEWS CANCER
  • 2010-11-24. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation in NATURE
  • 2015-11-10. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma in NATURE COMMUNICATIONS
  • 2013-08-14. Signatures of mutational processes in human cancer in NATURE
  • 2012-08-15. Passenger Deletions Generate Therapeutic Vulnerabilities in Cancer in NATURE
  • 2015-03-25. Mutant Allele Tumor Heterogeneity (MATH) and Head and Neck Squamous Cell Carcinoma in HEAD AND NECK PATHOLOGY
  • 2014-10-19. Age-related cancer mutations associated with clonal hematopoietic expansion in NATURE MEDICINE
  • 2015-11-04. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer in NATURE COMMUNICATIONS
  • 2015-04-20. Epigenomic evolution in diffuse large B-cell lymphomas in NATURE COMMUNICATIONS
  • 2017-01-16. Massively parallel digital transcriptional profiling of single cells in NATURE COMMUNICATIONS
  • 2019-01-23. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid in NATURE
  • 2017-03-22. The allosteric inhibitor ABL001 enables dual targeting of BCR–ABL1 in NATURE
  • 2019-01-02. Age-related remodelling of oesophageal epithelia by mutated cancer drivers in NATURE
  • 2018-07-02. Functional diversity and co-operativity between subclonal populations of paediatric glioblastoma and diffuse intrinsic pontine glioma cells in NATURE MEDICINE
  • 2017-08-24. Unravelling biology and shifting paradigms in cancer with single-cell sequencing in NATURE REVIEWS CANCER
  • 2018-06-04. Four evolutionary trajectories underlie genetic intratumoral variation in childhood cancer in NATURE GENETICS
  • 2018-11-26. Aurora kinase A drives the evolution of resistance to third generation EGFR inhibitors in lung cancer in NATURE MEDICINE
  • 2010-11-24. COT/MAP3K8 drives resistance to RAF inhibition through MAP kinase pathway reactivation in NATURE
  • 2015-04-01. The Evolutionary History of Lethal Metastatic Prostate Cancer in NATURE
  • 2019-01-21. Deciphering the genomic, epigenomic, and transcriptomic landscapes of pre-invasive lung cancer lesions in NATURE MEDICINE
  • 2018-11-23. Epigenetic Heterogeneity in Human Colorectal Tumors Reveals Preferential Conservation And Evidence of Immune Surveillance in SCIENTIFIC REPORTS
  • 2016-12-09. Tracing the origin of disseminated tumor cells in breast cancer using single-cell sequencing in GENOME BIOLOGY
  • 2018-07-24. Timing somatic events in the evolution of cancer in GENOME BIOLOGY
  • 2018-08-31. Detecting repeated cancer evolution from multi-region tumor sequencing data in NATURE METHODS
  • 2017-01-09. Scalable whole-genome single-cell library preparation without preamplification in NATURE METHODS
  • 2015-04-27. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes in NATURE METHODS
  • 2016-05-02. Landscape of somatic mutations in 560 breast cancer whole genome sequences in NATURE
  • 2017-09-15. Classifying the evolutionary and ecological features of neoplasms in NATURE REVIEWS CANCER
  • 2018-11-19. Dynamic molecular monitoring reveals that SWI–SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lymphoma in NATURE MEDICINE
  • 2015-03-02. Analysis of the Genetic Phylogeny of Multifocal Prostate Cancer Identifies Multiple Independent Clonal Expansions in Neoplastic and Morphologically Normal Prostate Tissue in NATURE GENETICS
  • 2018-04-16. Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets in NATURE GENETICS
  • 2014-01-21. Molecular analysis of circulating tumour cells—biology and biomarkers in NATURE REVIEWS CLINICAL ONCOLOGY
  • 2010-09-17. Advances in understanding cancer genomes through second-generation sequencing in NATURE REVIEWS GENETICS
  • 2014-04-06. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage in NATURE MEDICINE
  • 2016-06-20. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia in NATURE MEDICINE
  • 2016-01-18. BRCAness revisited in NATURE REVIEWS CANCER
  • 2015-01-19. Integrated genome and transcriptome sequencing from the same cell in NATURE BIOTECHNOLOGY
  • 1982-07. UV-induced mutation hotspots occur at DNA damage hotspots in NATURE
  • 2011-05-31. Future medical applications of single-cell sequencing in cancer in GENOME MEDICINE
  • 2012-10-09. Evolution of the cancer genome in NATURE REVIEWS GENETICS
  • 2010-05-17. Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response and failure in ONCOGENE
  • 2014-05-28. C2c: turning cancer into chronic disease in GENOME MEDICINE
  • 2016-05-09. A comprehensive survey of the mutagenic impact of common cancer cytotoxics in GENOME BIOLOGY
  • 2016-09-28. A saltationist theory of cancer evolution in NATURE GENETICS
  • 2014-08-30. Cancer genomics: one cell at a time in GENOME BIOLOGY
  • 2015-05-27. Whole–genome characterization of chemoresistant ovarian cancer in NATURE
  • 2017-01-30. DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma in NATURE MEDICINE
  • 2017-04-26. Phylogenetic ctDNA analysis depicts early stage lung cancer evolution in NATURE
  • 2012-01-11. Clonal evolution in relapsed acute myeloid leukemia revealed by whole genome sequencing in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13073-019-0632-z

    DOI

    http://dx.doi.org/10.1186/s13073-019-0632-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113093345

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30925887


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers, Tumor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Circulating Tumor DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Clonal Evolution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Heterogeneity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK", 
                "University College London Cancer Institute, 72 Huntley Street, WC1E 6DD, London, UK", 
                "Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fittall", 
            "givenName": "Matthew W.", 
            "id": "sg:person.01052707374.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052707374.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Leuven, Herestraat 49, B-3000, Leuven, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.5596.f", 
              "name": [
                "The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK", 
                "University of Leuven, Herestraat 49, B-3000, Leuven, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Van Loo", 
            "givenName": "Peter", 
            "id": "sg:person.01017630143.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017630143.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s13059-016-1109-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012948179", 
              "https://doi.org/10.1186/s13059-016-1109-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.leu.2403664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018255880", 
              "https://doi.org/10.1038/sj.leu.2403664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011007538", 
              "https://doi.org/10.1038/ng.3441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3641", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036124041", 
              "https://doi.org/10.1038/ng.3641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.3733", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012926250", 
              "https://doi.org/10.1038/nm.3733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms14049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019155899", 
              "https://doi.org/10.1038/ncomms14049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1748", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006797620", 
              "https://doi.org/10.1038/nrg1748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031101673", 
              "https://doi.org/10.1038/ncomms9760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc.2015.21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028210160", 
              "https://doi.org/10.1038/nrc.2015.21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10738", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003206661", 
              "https://doi.org/10.1038/nature10738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/298189a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043955217", 
              "https://doi.org/10.1038/298189a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-018-1476-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105809031", 
              "https://doi.org/10.1186/s13059-018-1476-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-018-0108-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106295063", 
              "https://doi.org/10.1038/s41592-018-0108-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-35621-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110042780", 
              "https://doi.org/10.1038/s41598-018-35621-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9839", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041825720", 
              "https://doi.org/10.1038/ncomms9839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015356616", 
              "https://doi.org/10.1038/nature06916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc.2017.69", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091779103", 
              "https://doi.org/10.1038/nrc.2017.69"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0086-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103271224", 
              "https://doi.org/10.1038/s41588-018-0086-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048283555", 
              "https://doi.org/10.1038/nbt.3129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2013.253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025958755", 
              "https://doi.org/10.1038/nrclinonc.2013.253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050004918", 
              "https://doi.org/10.1038/nature12477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2014.225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036694853", 
              "https://doi.org/10.1038/nrclinonc.2014.225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-018-0323-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111348293", 
              "https://doi.org/10.1038/s41591-018-0323-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-01968-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092917896", 
              "https://doi.org/10.1038/s41467-017-01968-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043842244", 
              "https://doi.org/10.1038/nature11331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-0882-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111629340", 
              "https://doi.org/10.1038/s41586-019-0882-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006835463", 
              "https://doi.org/10.1038/ng.3687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0131-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104356869", 
              "https://doi.org/10.1038/s41588-018-0131-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0452-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002218703", 
              "https://doi.org/10.1186/s13059-014-0452-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-0963-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041856689", 
              "https://doi.org/10.1186/s13059-016-0963-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc4016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046543135", 
              "https://doi.org/10.1038/nrc4016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc3820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004193947", 
              "https://doi.org/10.1038/nrc3820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033792053", 
              "https://doi.org/10.1038/ncomms7921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.4239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010953132", 
              "https://doi.org/10.1038/nm.4239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.3519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051843226", 
              "https://doi.org/10.1038/nm.3519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0811-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110890638", 
              "https://doi.org/10.1038/s41586-018-0811-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gm247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010593159", 
              "https://doi.org/10.1186/gm247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-018-0243-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109946036", 
              "https://doi.org/10.1038/s41591-018-0243-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008423455", 
              "https://doi.org/10.1038/ng.3214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature21702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128593", 
              "https://doi.org/10.1038/nature21702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085068314", 
              "https://doi.org/10.1038/nature22364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051129444", 
              "https://doi.org/10.1038/nature14410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026288009", 
              "https://doi.org/10.1038/nrmicro1838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.3886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046110380", 
              "https://doi.org/10.1038/nm.3886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.3984", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047704521", 
              "https://doi.org/10.1038/nm.3984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005907434", 
              "https://doi.org/10.1038/nature09627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.4273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074246775", 
              "https://doi.org/10.1038/nm.4273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2841", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017741162", 
              "https://doi.org/10.1038/nrg2841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051230535", 
              "https://doi.org/10.1038/nmeth.4140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.4125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031008312", 
              "https://doi.org/10.1038/nm.4125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024712684", 
              "https://doi.org/10.1038/ng.3221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12105-015-0617-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002439258", 
              "https://doi.org/10.1007/s12105-015-0617-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc.2017.58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091328434", 
              "https://doi.org/10.1038/nrc.2017.58"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035733152", 
              "https://doi.org/10.1038/nature09626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-018-0264-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110134194", 
              "https://doi.org/10.1038/s41591-018-0264-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029125143", 
              "https://doi.org/10.1038/nature14347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3370", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051280816", 
              "https://doi.org/10.1038/nmeth.3370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2015.117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002958014", 
              "https://doi.org/10.1038/nrclinonc.2015.117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013331797", 
              "https://doi.org/10.1038/nrg3317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-03215-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101201637", 
              "https://doi.org/10.1038/s41467-018-03215-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-07261-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109974688", 
              "https://doi.org/10.1038/s41467-018-07261-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gm555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036873206", 
              "https://doi.org/10.1186/gm555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2010.154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014304136", 
              "https://doi.org/10.1038/onc.2010.154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-018-0086-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105236505", 
              "https://doi.org/10.1038/s41591-018-0086-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022310913", 
              "https://doi.org/10.1038/nature09460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052925987", 
              "https://doi.org/10.1038/nature17676"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-29", 
        "datePublishedReg": "2019-03-29", 
        "description": "Accelerating technological advances have allowed the widespread genomic profiling of tumors. As yet, however, the vast catalogues of mutations that have been identified have made only a modest impact on clinical medicine. Massively parallel sequencing has informed our understanding of the genetic evolution and heterogeneity of cancers, allowing us to place these mutational catalogues into a meaningful context. Here, we review the methods used to measure tumor evolution and heterogeneity, and the potential and challenges for translating the insights gained to achieve clinical impact for cancer therapy, monitoring, early detection, risk stratification, and prevention. We discuss how tumor evolution can guide cancer therapy by targeting clonal and subclonal mutations both individually and in combination. Circulating tumor DNA and circulating tumor cells can be leveraged for monitoring the efficacy of therapy and for tracking the emergence of resistant subclones. The evolutionary history of tumors can be deduced for late-stage cancers, either directly by sampling precursor lesions or by leveraging computational approaches to infer the timing of driver events. This approach can identify recurrent early driver mutations that represent promising avenues for future early detection strategies. Emerging evidence suggests that mutational processes and complex clonal dynamics are active even in normal development and aging. This will make discriminating developing malignant neoplasms from normal aging cell lineages a challenge. Furthermore, insight into signatures of mutational processes that are active early in tumor evolution may allow the development of cancer-prevention approaches. Research and clinical studies that incorporate an appreciation of the complex evolutionary patterns in tumors will not only produce more meaningful genomic data, but also better exploit the vulnerabilities of cancer, resulting in improved treatment outcomes.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13073-019-0632-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.9694518", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7751189", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6798148", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1040124", 
            "issn": [
              "1756-994X"
            ], 
            "name": "Genome Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "mutational processes", 
          "tumor evolution", 
          "complex evolutionary patterns", 
          "early driver mutations", 
          "evolutionary history", 
          "evolutionary patterns", 
          "vulnerabilities of cancer", 
          "genomic data", 
          "mutational catalogs", 
          "parallel sequencing", 
          "cell lineage", 
          "genetic evolution", 
          "normal development", 
          "driver events", 
          "clonal dynamics", 
          "cancer therapy", 
          "genomic profiling", 
          "subclonal mutations", 
          "complex clonal dynamics", 
          "mutations", 
          "driver mutations", 
          "heterogeneity of cancer", 
          "resistant subclones", 
          "computational approach", 
          "evolution", 
          "lineages", 
          "tumor cells", 
          "tumor DNA", 
          "sequencing", 
          "insights", 
          "DNA", 
          "subclones", 
          "profiling", 
          "promising avenue", 
          "cells", 
          "heterogeneity", 
          "technological advances", 
          "cancer", 
          "development", 
          "late-stage cancer", 
          "vast catalogue", 
          "signatures", 
          "clinical medicine", 
          "avenues", 
          "patterns", 
          "catalogue", 
          "understanding", 
          "aging", 
          "process", 
          "precursor lesions", 
          "advances", 
          "emergence", 
          "events", 
          "dynamics", 
          "timing", 
          "tumors", 
          "modest impact", 
          "early detection strategies", 
          "evidence", 
          "potential", 
          "impact", 
          "combination", 
          "strategies", 
          "promise", 
          "approach", 
          "detection strategy", 
          "study", 
          "challenges", 
          "vulnerability", 
          "data", 
          "medicine", 
          "appreciation", 
          "stratification", 
          "detection", 
          "history", 
          "meaningful context", 
          "context", 
          "therapy", 
          "research", 
          "early detection", 
          "clinical impact", 
          "neoplasms", 
          "lesions", 
          "efficacy of therapy", 
          "method", 
          "monitoring", 
          "prevention", 
          "efficacy", 
          "malignant neoplasms", 
          "clinical studies", 
          "practice", 
          "outcomes", 
          "risk stratification", 
          "clinical practice", 
          "improved treatment outcomes", 
          "treatment outcomes", 
          "widespread genomic profiling", 
          "recurrent early driver mutations", 
          "future early detection strategies", 
          "cancer-prevention approaches", 
          "meaningful genomic data"
        ], 
        "name": "Translating insights into tumor evolution to clinical practice: promises and challenges", 
        "pagination": "20", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113093345"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13073-019-0632-z"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30925887"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13073-019-0632-z", 
          "https://app.dimensions.ai/details/publication/pub.1113093345"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_829.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13073-019-0632-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13073-019-0632-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13073-019-0632-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13073-019-0632-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13073-019-0632-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    481 TRIPLES      22 PREDICATES      202 URIs      126 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13073-019-0632-z schema:about N22eb69fa0a8a4011b0d0d33ca64e4f91
    2 N679ac4e535154e00b619a09c3d941deb
    3 Nac987777844b47e3bac6422b52ec6356
    4 Nb70aba30db4243ac84fe33f36890d216
    5 Ne3ebeba2642040838b0936d11f096116
    6 Nefbc23ecd32e46bf9182a7561fa196b8
    7 Nf576fe313704486c9a5780f936725322
    8 anzsrc-for:06
    9 anzsrc-for:0604
    10 anzsrc-for:11
    11 anzsrc-for:1112
    12 schema:author N44ceee0d6c6746cf80a5665d7b1fe3d1
    13 schema:citation sg:pub.10.1007/s12105-015-0617-1
    14 sg:pub.10.1038/298189a0
    15 sg:pub.10.1038/nature06916
    16 sg:pub.10.1038/nature09460
    17 sg:pub.10.1038/nature09626
    18 sg:pub.10.1038/nature09627
    19 sg:pub.10.1038/nature10738
    20 sg:pub.10.1038/nature11331
    21 sg:pub.10.1038/nature12477
    22 sg:pub.10.1038/nature14347
    23 sg:pub.10.1038/nature14410
    24 sg:pub.10.1038/nature17676
    25 sg:pub.10.1038/nature21702
    26 sg:pub.10.1038/nature22364
    27 sg:pub.10.1038/nbt.3129
    28 sg:pub.10.1038/ncomms14049
    29 sg:pub.10.1038/ncomms7921
    30 sg:pub.10.1038/ncomms9760
    31 sg:pub.10.1038/ncomms9839
    32 sg:pub.10.1038/ng.3214
    33 sg:pub.10.1038/ng.3221
    34 sg:pub.10.1038/ng.3441
    35 sg:pub.10.1038/ng.3641
    36 sg:pub.10.1038/ng.3687
    37 sg:pub.10.1038/nm.3519
    38 sg:pub.10.1038/nm.3733
    39 sg:pub.10.1038/nm.3886
    40 sg:pub.10.1038/nm.3984
    41 sg:pub.10.1038/nm.4125
    42 sg:pub.10.1038/nm.4239
    43 sg:pub.10.1038/nm.4273
    44 sg:pub.10.1038/nmeth.3370
    45 sg:pub.10.1038/nmeth.4140
    46 sg:pub.10.1038/nrc.2015.21
    47 sg:pub.10.1038/nrc.2017.58
    48 sg:pub.10.1038/nrc.2017.69
    49 sg:pub.10.1038/nrc3820
    50 sg:pub.10.1038/nrc4016
    51 sg:pub.10.1038/nrclinonc.2013.253
    52 sg:pub.10.1038/nrclinonc.2014.225
    53 sg:pub.10.1038/nrclinonc.2015.117
    54 sg:pub.10.1038/nrg1748
    55 sg:pub.10.1038/nrg2841
    56 sg:pub.10.1038/nrg3317
    57 sg:pub.10.1038/nrmicro1838
    58 sg:pub.10.1038/onc.2010.154
    59 sg:pub.10.1038/s41467-017-01968-5
    60 sg:pub.10.1038/s41467-018-03215-x
    61 sg:pub.10.1038/s41467-018-07261-3
    62 sg:pub.10.1038/s41586-018-0811-x
    63 sg:pub.10.1038/s41586-019-0882-3
    64 sg:pub.10.1038/s41588-018-0086-z
    65 sg:pub.10.1038/s41588-018-0131-y
    66 sg:pub.10.1038/s41591-018-0086-7
    67 sg:pub.10.1038/s41591-018-0243-z
    68 sg:pub.10.1038/s41591-018-0264-7
    69 sg:pub.10.1038/s41591-018-0323-0
    70 sg:pub.10.1038/s41592-018-0108-x
    71 sg:pub.10.1038/s41598-018-35621-y
    72 sg:pub.10.1038/sj.leu.2403664
    73 sg:pub.10.1186/gm247
    74 sg:pub.10.1186/gm555
    75 sg:pub.10.1186/s13059-014-0452-9
    76 sg:pub.10.1186/s13059-016-0963-7
    77 sg:pub.10.1186/s13059-016-1109-7
    78 sg:pub.10.1186/s13059-018-1476-3
    79 schema:datePublished 2019-03-29
    80 schema:datePublishedReg 2019-03-29
    81 schema:description Accelerating technological advances have allowed the widespread genomic profiling of tumors. As yet, however, the vast catalogues of mutations that have been identified have made only a modest impact on clinical medicine. Massively parallel sequencing has informed our understanding of the genetic evolution and heterogeneity of cancers, allowing us to place these mutational catalogues into a meaningful context. Here, we review the methods used to measure tumor evolution and heterogeneity, and the potential and challenges for translating the insights gained to achieve clinical impact for cancer therapy, monitoring, early detection, risk stratification, and prevention. We discuss how tumor evolution can guide cancer therapy by targeting clonal and subclonal mutations both individually and in combination. Circulating tumor DNA and circulating tumor cells can be leveraged for monitoring the efficacy of therapy and for tracking the emergence of resistant subclones. The evolutionary history of tumors can be deduced for late-stage cancers, either directly by sampling precursor lesions or by leveraging computational approaches to infer the timing of driver events. This approach can identify recurrent early driver mutations that represent promising avenues for future early detection strategies. Emerging evidence suggests that mutational processes and complex clonal dynamics are active even in normal development and aging. This will make discriminating developing malignant neoplasms from normal aging cell lineages a challenge. Furthermore, insight into signatures of mutational processes that are active early in tumor evolution may allow the development of cancer-prevention approaches. Research and clinical studies that incorporate an appreciation of the complex evolutionary patterns in tumors will not only produce more meaningful genomic data, but also better exploit the vulnerabilities of cancer, resulting in improved treatment outcomes.
    82 schema:genre article
    83 schema:inLanguage en
    84 schema:isAccessibleForFree true
    85 schema:isPartOf N8781d934341d40dda248a6a4a249521f
    86 Ncdc391def84741329ffd1b35f3ea9d97
    87 sg:journal.1040124
    88 schema:keywords DNA
    89 advances
    90 aging
    91 appreciation
    92 approach
    93 avenues
    94 cancer
    95 cancer therapy
    96 cancer-prevention approaches
    97 catalogue
    98 cell lineage
    99 cells
    100 challenges
    101 clinical impact
    102 clinical medicine
    103 clinical practice
    104 clinical studies
    105 clonal dynamics
    106 combination
    107 complex clonal dynamics
    108 complex evolutionary patterns
    109 computational approach
    110 context
    111 data
    112 detection
    113 detection strategy
    114 development
    115 driver events
    116 driver mutations
    117 dynamics
    118 early detection
    119 early detection strategies
    120 early driver mutations
    121 efficacy
    122 efficacy of therapy
    123 emergence
    124 events
    125 evidence
    126 evolution
    127 evolutionary history
    128 evolutionary patterns
    129 future early detection strategies
    130 genetic evolution
    131 genomic data
    132 genomic profiling
    133 heterogeneity
    134 heterogeneity of cancer
    135 history
    136 impact
    137 improved treatment outcomes
    138 insights
    139 late-stage cancer
    140 lesions
    141 lineages
    142 malignant neoplasms
    143 meaningful context
    144 meaningful genomic data
    145 medicine
    146 method
    147 modest impact
    148 monitoring
    149 mutational catalogs
    150 mutational processes
    151 mutations
    152 neoplasms
    153 normal development
    154 outcomes
    155 parallel sequencing
    156 patterns
    157 potential
    158 practice
    159 precursor lesions
    160 prevention
    161 process
    162 profiling
    163 promise
    164 promising avenue
    165 recurrent early driver mutations
    166 research
    167 resistant subclones
    168 risk stratification
    169 sequencing
    170 signatures
    171 strategies
    172 stratification
    173 study
    174 subclonal mutations
    175 subclones
    176 technological advances
    177 therapy
    178 timing
    179 treatment outcomes
    180 tumor DNA
    181 tumor cells
    182 tumor evolution
    183 tumors
    184 understanding
    185 vast catalogue
    186 vulnerabilities of cancer
    187 vulnerability
    188 widespread genomic profiling
    189 schema:name Translating insights into tumor evolution to clinical practice: promises and challenges
    190 schema:pagination 20
    191 schema:productId N16752a43f4974404ba5556f7fb79192c
    192 N2d970c0e583e433ebe6f05d89bb091a0
    193 N7eadf93e5d394e9c912b0e7562c23ccf
    194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113093345
    195 https://doi.org/10.1186/s13073-019-0632-z
    196 schema:sdDatePublished 2021-11-01T18:35
    197 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    198 schema:sdPublisher Nd1c67b6c476d4ee489125b2846e9e64d
    199 schema:url https://doi.org/10.1186/s13073-019-0632-z
    200 sgo:license sg:explorer/license/
    201 sgo:sdDataset articles
    202 rdf:type schema:ScholarlyArticle
    203 N16752a43f4974404ba5556f7fb79192c schema:name pubmed_id
    204 schema:value 30925887
    205 rdf:type schema:PropertyValue
    206 N22eb69fa0a8a4011b0d0d33ca64e4f91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    207 schema:name Circulating Tumor DNA
    208 rdf:type schema:DefinedTerm
    209 N2d970c0e583e433ebe6f05d89bb091a0 schema:name doi
    210 schema:value 10.1186/s13073-019-0632-z
    211 rdf:type schema:PropertyValue
    212 N44ceee0d6c6746cf80a5665d7b1fe3d1 rdf:first sg:person.01052707374.19
    213 rdf:rest Ndedd7b60302a458db38417f0b9665663
    214 N679ac4e535154e00b619a09c3d941deb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    215 schema:name Biomarkers, Tumor
    216 rdf:type schema:DefinedTerm
    217 N7eadf93e5d394e9c912b0e7562c23ccf schema:name dimensions_id
    218 schema:value pub.1113093345
    219 rdf:type schema:PropertyValue
    220 N8781d934341d40dda248a6a4a249521f schema:volumeNumber 11
    221 rdf:type schema:PublicationVolume
    222 Nac987777844b47e3bac6422b52ec6356 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    223 schema:name Genetic Heterogeneity
    224 rdf:type schema:DefinedTerm
    225 Nb70aba30db4243ac84fe33f36890d216 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    226 schema:name Humans
    227 rdf:type schema:DefinedTerm
    228 Ncdc391def84741329ffd1b35f3ea9d97 schema:issueNumber 1
    229 rdf:type schema:PublicationIssue
    230 Nd1c67b6c476d4ee489125b2846e9e64d schema:name Springer Nature - SN SciGraph project
    231 rdf:type schema:Organization
    232 Ndedd7b60302a458db38417f0b9665663 rdf:first sg:person.01017630143.46
    233 rdf:rest rdf:nil
    234 Ne3ebeba2642040838b0936d11f096116 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    235 schema:name Animals
    236 rdf:type schema:DefinedTerm
    237 Nefbc23ecd32e46bf9182a7561fa196b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    238 schema:name Neoplasms
    239 rdf:type schema:DefinedTerm
    240 Nf576fe313704486c9a5780f936725322 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    241 schema:name Clonal Evolution
    242 rdf:type schema:DefinedTerm
    243 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    244 schema:name Biological Sciences
    245 rdf:type schema:DefinedTerm
    246 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    247 schema:name Genetics
    248 rdf:type schema:DefinedTerm
    249 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    250 schema:name Medical and Health Sciences
    251 rdf:type schema:DefinedTerm
    252 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    253 schema:name Oncology and Carcinogenesis
    254 rdf:type schema:DefinedTerm
    255 sg:grant.6798148 http://pending.schema.org/fundedItem sg:pub.10.1186/s13073-019-0632-z
    256 rdf:type schema:MonetaryGrant
    257 sg:grant.7751189 http://pending.schema.org/fundedItem sg:pub.10.1186/s13073-019-0632-z
    258 rdf:type schema:MonetaryGrant
    259 sg:grant.9694518 http://pending.schema.org/fundedItem sg:pub.10.1186/s13073-019-0632-z
    260 rdf:type schema:MonetaryGrant
    261 sg:journal.1040124 schema:issn 1756-994X
    262 schema:name Genome Medicine
    263 schema:publisher Springer Nature
    264 rdf:type schema:Periodical
    265 sg:person.01017630143.46 schema:affiliation grid-institutes:grid.5596.f
    266 schema:familyName Van Loo
    267 schema:givenName Peter
    268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017630143.46
    269 rdf:type schema:Person
    270 sg:person.01052707374.19 schema:affiliation grid-institutes:grid.10306.34
    271 schema:familyName Fittall
    272 schema:givenName Matthew W.
    273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052707374.19
    274 rdf:type schema:Person
    275 sg:pub.10.1007/s12105-015-0617-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002439258
    276 https://doi.org/10.1007/s12105-015-0617-1
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/298189a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043955217
    279 https://doi.org/10.1038/298189a0
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/nature06916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015356616
    282 https://doi.org/10.1038/nature06916
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/nature09460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022310913
    285 https://doi.org/10.1038/nature09460
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/nature09626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035733152
    288 https://doi.org/10.1038/nature09626
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/nature09627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005907434
    291 https://doi.org/10.1038/nature09627
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/nature10738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003206661
    294 https://doi.org/10.1038/nature10738
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/nature11331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043842244
    297 https://doi.org/10.1038/nature11331
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/nature12477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050004918
    300 https://doi.org/10.1038/nature12477
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/nature14347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029125143
    303 https://doi.org/10.1038/nature14347
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/nature14410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051129444
    306 https://doi.org/10.1038/nature14410
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/nature17676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925987
    309 https://doi.org/10.1038/nature17676
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1038/nature21702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128593
    312 https://doi.org/10.1038/nature21702
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1038/nature22364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085068314
    315 https://doi.org/10.1038/nature22364
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1038/nbt.3129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048283555
    318 https://doi.org/10.1038/nbt.3129
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1038/ncomms14049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019155899
    321 https://doi.org/10.1038/ncomms14049
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1038/ncomms7921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033792053
    324 https://doi.org/10.1038/ncomms7921
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1038/ncomms9760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031101673
    327 https://doi.org/10.1038/ncomms9760
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1038/ncomms9839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041825720
    330 https://doi.org/10.1038/ncomms9839
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1038/ng.3214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008423455
    333 https://doi.org/10.1038/ng.3214
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1038/ng.3221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024712684
    336 https://doi.org/10.1038/ng.3221
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1038/ng.3441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011007538
    339 https://doi.org/10.1038/ng.3441
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1038/ng.3641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036124041
    342 https://doi.org/10.1038/ng.3641
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1038/ng.3687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006835463
    345 https://doi.org/10.1038/ng.3687
    346 rdf:type schema:CreativeWork
    347 sg:pub.10.1038/nm.3519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051843226
    348 https://doi.org/10.1038/nm.3519
    349 rdf:type schema:CreativeWork
    350 sg:pub.10.1038/nm.3733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012926250
    351 https://doi.org/10.1038/nm.3733
    352 rdf:type schema:CreativeWork
    353 sg:pub.10.1038/nm.3886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046110380
    354 https://doi.org/10.1038/nm.3886
    355 rdf:type schema:CreativeWork
    356 sg:pub.10.1038/nm.3984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704521
    357 https://doi.org/10.1038/nm.3984
    358 rdf:type schema:CreativeWork
    359 sg:pub.10.1038/nm.4125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031008312
    360 https://doi.org/10.1038/nm.4125
    361 rdf:type schema:CreativeWork
    362 sg:pub.10.1038/nm.4239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010953132
    363 https://doi.org/10.1038/nm.4239
    364 rdf:type schema:CreativeWork
    365 sg:pub.10.1038/nm.4273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074246775
    366 https://doi.org/10.1038/nm.4273
    367 rdf:type schema:CreativeWork
    368 sg:pub.10.1038/nmeth.3370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051280816
    369 https://doi.org/10.1038/nmeth.3370
    370 rdf:type schema:CreativeWork
    371 sg:pub.10.1038/nmeth.4140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051230535
    372 https://doi.org/10.1038/nmeth.4140
    373 rdf:type schema:CreativeWork
    374 sg:pub.10.1038/nrc.2015.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028210160
    375 https://doi.org/10.1038/nrc.2015.21
    376 rdf:type schema:CreativeWork
    377 sg:pub.10.1038/nrc.2017.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091328434
    378 https://doi.org/10.1038/nrc.2017.58
    379 rdf:type schema:CreativeWork
    380 sg:pub.10.1038/nrc.2017.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091779103
    381 https://doi.org/10.1038/nrc.2017.69
    382 rdf:type schema:CreativeWork
    383 sg:pub.10.1038/nrc3820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004193947
    384 https://doi.org/10.1038/nrc3820
    385 rdf:type schema:CreativeWork
    386 sg:pub.10.1038/nrc4016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046543135
    387 https://doi.org/10.1038/nrc4016
    388 rdf:type schema:CreativeWork
    389 sg:pub.10.1038/nrclinonc.2013.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025958755
    390 https://doi.org/10.1038/nrclinonc.2013.253
    391 rdf:type schema:CreativeWork
    392 sg:pub.10.1038/nrclinonc.2014.225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036694853
    393 https://doi.org/10.1038/nrclinonc.2014.225
    394 rdf:type schema:CreativeWork
    395 sg:pub.10.1038/nrclinonc.2015.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002958014
    396 https://doi.org/10.1038/nrclinonc.2015.117
    397 rdf:type schema:CreativeWork
    398 sg:pub.10.1038/nrg1748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006797620
    399 https://doi.org/10.1038/nrg1748
    400 rdf:type schema:CreativeWork
    401 sg:pub.10.1038/nrg2841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017741162
    402 https://doi.org/10.1038/nrg2841
    403 rdf:type schema:CreativeWork
    404 sg:pub.10.1038/nrg3317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013331797
    405 https://doi.org/10.1038/nrg3317
    406 rdf:type schema:CreativeWork
    407 sg:pub.10.1038/nrmicro1838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026288009
    408 https://doi.org/10.1038/nrmicro1838
    409 rdf:type schema:CreativeWork
    410 sg:pub.10.1038/onc.2010.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014304136
    411 https://doi.org/10.1038/onc.2010.154
    412 rdf:type schema:CreativeWork
    413 sg:pub.10.1038/s41467-017-01968-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092917896
    414 https://doi.org/10.1038/s41467-017-01968-5
    415 rdf:type schema:CreativeWork
    416 sg:pub.10.1038/s41467-018-03215-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101201637
    417 https://doi.org/10.1038/s41467-018-03215-x
    418 rdf:type schema:CreativeWork
    419 sg:pub.10.1038/s41467-018-07261-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109974688
    420 https://doi.org/10.1038/s41467-018-07261-3
    421 rdf:type schema:CreativeWork
    422 sg:pub.10.1038/s41586-018-0811-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110890638
    423 https://doi.org/10.1038/s41586-018-0811-x
    424 rdf:type schema:CreativeWork
    425 sg:pub.10.1038/s41586-019-0882-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111629340
    426 https://doi.org/10.1038/s41586-019-0882-3
    427 rdf:type schema:CreativeWork
    428 sg:pub.10.1038/s41588-018-0086-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103271224
    429 https://doi.org/10.1038/s41588-018-0086-z
    430 rdf:type schema:CreativeWork
    431 sg:pub.10.1038/s41588-018-0131-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1104356869
    432 https://doi.org/10.1038/s41588-018-0131-y
    433 rdf:type schema:CreativeWork
    434 sg:pub.10.1038/s41591-018-0086-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105236505
    435 https://doi.org/10.1038/s41591-018-0086-7
    436 rdf:type schema:CreativeWork
    437 sg:pub.10.1038/s41591-018-0243-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1109946036
    438 https://doi.org/10.1038/s41591-018-0243-z
    439 rdf:type schema:CreativeWork
    440 sg:pub.10.1038/s41591-018-0264-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110134194
    441 https://doi.org/10.1038/s41591-018-0264-7
    442 rdf:type schema:CreativeWork
    443 sg:pub.10.1038/s41591-018-0323-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111348293
    444 https://doi.org/10.1038/s41591-018-0323-0
    445 rdf:type schema:CreativeWork
    446 sg:pub.10.1038/s41592-018-0108-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1106295063
    447 https://doi.org/10.1038/s41592-018-0108-x
    448 rdf:type schema:CreativeWork
    449 sg:pub.10.1038/s41598-018-35621-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1110042780
    450 https://doi.org/10.1038/s41598-018-35621-y
    451 rdf:type schema:CreativeWork
    452 sg:pub.10.1038/sj.leu.2403664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018255880
    453 https://doi.org/10.1038/sj.leu.2403664
    454 rdf:type schema:CreativeWork
    455 sg:pub.10.1186/gm247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010593159
    456 https://doi.org/10.1186/gm247
    457 rdf:type schema:CreativeWork
    458 sg:pub.10.1186/gm555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036873206
    459 https://doi.org/10.1186/gm555
    460 rdf:type schema:CreativeWork
    461 sg:pub.10.1186/s13059-014-0452-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002218703
    462 https://doi.org/10.1186/s13059-014-0452-9
    463 rdf:type schema:CreativeWork
    464 sg:pub.10.1186/s13059-016-0963-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041856689
    465 https://doi.org/10.1186/s13059-016-0963-7
    466 rdf:type schema:CreativeWork
    467 sg:pub.10.1186/s13059-016-1109-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012948179
    468 https://doi.org/10.1186/s13059-016-1109-7
    469 rdf:type schema:CreativeWork
    470 sg:pub.10.1186/s13059-018-1476-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105809031
    471 https://doi.org/10.1186/s13059-018-1476-3
    472 rdf:type schema:CreativeWork
    473 grid-institutes:grid.10306.34 schema:alternateName Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
    474 schema:name The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
    475 University College London Cancer Institute, 72 Huntley Street, WC1E 6DD, London, UK
    476 Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
    477 rdf:type schema:Organization
    478 grid-institutes:grid.5596.f schema:alternateName University of Leuven, Herestraat 49, B-3000, Leuven, Belgium
    479 schema:name The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
    480 University of Leuven, Herestraat 49, B-3000, Leuven, Belgium
    481 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...