Seed-effect modeling improves the consistency of genome-wide loss-of-function screens and identifies synthetic lethal vulnerabilities in cancer cells View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Alok Jaiswal, Gopal Peddinti, Yevhen Akimov, Krister Wennerberg, Sergey Kuznetsov, Jing Tang, Tero Aittokallio

ABSTRACT

BACKGROUND: Genome-wide loss-of-function profiling is widely used for systematic identification of genetic dependencies in cancer cells; however, the poor reproducibility of RNA interference (RNAi) screens has been a major concern due to frequent off-target effects. Currently, a detailed understanding of the key factors contributing to the sub-optimal consistency is still a lacking, especially on how to improve the reliability of future RNAi screens by controlling for factors that determine their off-target propensity. METHODS: We performed a systematic, quantitative analysis of the consistency between two genome-wide shRNA screens conducted on a compendium of cancer cell lines, and also compared several gene summarization methods for inferring gene essentiality from shRNA level data. We then devised novel concepts of seed essentiality and shRNA family, based on seed region sequences of shRNAs, to study in-depth the contribution of seed-mediated off-target effects to the consistency of the two screens. We further investigated two seed-sequence properties, seed pairing stability, and target abundance in terms of their capability to minimize the off-target effects in post-screening data analysis. Finally, we applied this novel methodology to identify genetic interactions and synthetic lethal partners of cancer drivers, and confirmed differential essentiality phenotypes by detailed CRISPR/Cas9 experiments. RESULTS: Using the novel concepts of seed essentiality and shRNA family, we demonstrate how genome-wide loss-of-function profiling of a common set of cancer cell lines can be actually made fairly reproducible when considering seed-mediated off-target effects. Importantly, by excluding shRNAs having higher propensity for off-target effects, based on their seed-sequence properties, one can remove noise from the genome-wide shRNA datasets. As a translational application case, we demonstrate enhanced reproducibility of genetic interaction partners of common cancer drivers, as well as identify novel synthetic lethal partners of a major oncogenic driver, PIK3CA, supported by a complementary CRISPR/Cas9 experiment. CONCLUSIONS: We provide practical guidelines for improved design and analysis of genome-wide loss-of-function profiling and demonstrate how this novel strategy can be applied towards improved mapping of genetic dependencies of cancer cells to aid development of targeted anticancer treatments. More... »

PAGES

51

References to SciGraph publications

  • 2012-04. A bioinformatics method identifies prominent off-targeted transcripts in RNAi screens in NATURE METHODS
  • 2014-09-30. Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies in SCIENTIFIC DATA
  • 2015-12. Erratum to: gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens in GENOME BIOLOGY
  • 2011-10. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2004-02. Identification of the gene for vitamin K epoxide reductase in NATURE
  • 2016-12. Ancient DNA and the rewriting of human history: be sparing with Occam’s razor in GENOME BIOLOGY
  • 2014-12. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens in GENOME BIOLOGY
  • 2016-12. Consistency in drug response profiling in NATURE
  • 2013-10. Mutational landscape and significance across 12 major cancer types in NATURE
  • 2016-05. Reproducible pharmacogenomic profiling of cancer cell line panels in NATURE
  • 2014-12. Evaluation of de novo transcriptome assemblies from RNA-Seq data in GENOME BIOLOGY
  • 2014-09. RNAi screening comes of age: improved techniques and complementary approaches in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2003-06. Expression profiling reveals off-target gene regulation by RNAi in NATURE BIOTECHNOLOGY
  • 2016-05. PKN3 is the major regulator of angiogenesis and tumor metastasis in mice in SCIENTIFIC REPORTS
  • 2016-06. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes in NATURE BIOTECHNOLOGY
  • 2006-10. Minimizing the risk of reporting false positives in large-scale RNAi screens in NATURE METHODS
  • 2012-12. siRNA off-target effects in genome-wide screens identify signaling pathway members in SCIENTIFIC REPORTS
  • 2006-05. GenePattern 2.0 in NATURE GENETICS
  • 2006-03. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets in NATURE METHODS
  • 2013-12. Exploration of miRNA families for hypotheses generation in SCIENTIFIC REPORTS
  • 2009-08. Statistical methods for analysis of high-throughput RNA interference screens in NATURE METHODS
  • 2014-08. Improved vectors and genome-wide libraries for CRISPR screening in NATURE METHODS
  • 2008-09. PI3K pathway alterations in cancer: variations on a theme in ONCOGENE
  • 2005-09. The Concept of Synthetic Lethality in the Context of Anticancer Therapy in NATURE REVIEWS CANCER
  • 2010-12. Systematic analysis of off-target effects in an RNAi screen reveals microRNAs affecting sensitivity to TRAIL-induced apoptosis in BMC GENOMICS
  • 2012-03. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity in NATURE
  • 2013-12. Inconsistency in large pharmacogenomic studies in NATURE
  • 2015-11-16. Pharmacogenomic agreement between two cancer cell line data sets in NATURE
  • 2015-05. High-throughput functional genomics using CRISPR–Cas9 in NATURE REVIEWS GENETICS
  • 2013-09. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells in NATURE BIOTECHNOLOGY
  • 2015-12. De novo assembly of bacterial transcriptomes from RNA-seq data in GENOME BIOLOGY
  • 2006-09. Prevalence of off-target effects in Drosophila RNA interference screens in NATURE
  • 2014-12. Online GESS: prediction of miRNA-like off-target effects in large-scale RNAi screen data by seed region analysis in BMC BIOINFORMATICS
  • 2016-12. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13073-017-0440-2

    DOI

    http://dx.doi.org/10.1186/s13073-017-0440-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085705100

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28569207


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Class I Phosphatidylinositol 3-Kinases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Guidelines as Topic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phosphatidylinositol 3-Kinases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA Interference", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Helsinki", 
              "id": "https://www.grid.ac/institutes/grid.7737.4", 
              "name": [
                "Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jaiswal", 
            "givenName": "Alok", 
            "id": "sg:person.0756111355.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756111355.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Helsinki", 
              "id": "https://www.grid.ac/institutes/grid.7737.4", 
              "name": [
                "Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peddinti", 
            "givenName": "Gopal", 
            "id": "sg:person.014430665777.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014430665777.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Helsinki", 
              "id": "https://www.grid.ac/institutes/grid.7737.4", 
              "name": [
                "Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akimov", 
            "givenName": "Yevhen", 
            "id": "sg:person.011013406171.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011013406171.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Helsinki", 
              "id": "https://www.grid.ac/institutes/grid.7737.4", 
              "name": [
                "Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wennerberg", 
            "givenName": "Krister", 
            "id": "sg:person.01121403124.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121403124.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Helsinki", 
              "id": "https://www.grid.ac/institutes/grid.7737.4", 
              "name": [
                "Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kuznetsov", 
            "givenName": "Sergey", 
            "id": "sg:person.0727572600.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727572600.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turku", 
              "id": "https://www.grid.ac/institutes/grid.1374.1", 
              "name": [
                "Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland", 
                "Department of Mathematics and Statistics, University of Turku, Turku, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Jing", 
            "id": "sg:person.01364107431.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364107431.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turku", 
              "id": "https://www.grid.ac/institutes/grid.1374.1", 
              "name": [
                "Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland", 
                "Department of Mathematics and Statistics, University of Turku, Turku, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aittokallio", 
            "givenName": "Tero", 
            "id": "sg:person.0641404520.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641404520.99"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/srep18979", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000235420", 
              "https://doi.org/10.1038/srep18979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2009.03.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000792431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12634", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001644479", 
              "https://doi.org/10.1038/nature12634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2010.24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002102587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2010.24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002102587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0807-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003163624", 
              "https://doi.org/10.1186/s13059-015-0807-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003406485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/2159-8290.cd-16-0178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003657945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003995336", 
              "https://doi.org/10.1038/nmeth.3047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-11-0778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004191226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.143586.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004544199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-15-192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004647081", 
              "https://doi.org/10.1186/1471-2105-15-192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005821114", 
              "https://doi.org/10.1038/nbt.3567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7554/elife.12677", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006228897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1247005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007966801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1247005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007966801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gde.2010.10.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008790585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep00428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009143928", 
              "https://doi.org/10.1038/srep00428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009511624", 
              "https://doi.org/10.1038/nbt.2623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth854", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009898184", 
              "https://doi.org/10.1038/nmeth854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth854", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009898184", 
              "https://doi.org/10.1038/nmeth854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1244669", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012159022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1109363108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012211256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2015.11.062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013462087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013619504", 
              "https://doi.org/10.1038/nrg3899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0554-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014314357", 
              "https://doi.org/10.1186/s13059-014-0554-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0554-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014314357", 
              "https://doi.org/10.1186/s13059-014-0554-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1898", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015009843", 
              "https://doi.org/10.1038/nmeth.1898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17987", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016017505", 
              "https://doi.org/10.1038/nature17987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15252/msb.20145216", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020288703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0572-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020717956", 
              "https://doi.org/10.1186/s13059-014-0572-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0572-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020717956", 
              "https://doi.org/10.1186/s13059-014-0572-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt831", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021890587", 
              "https://doi.org/10.1038/nbt831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt831", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021890587", 
              "https://doi.org/10.1038/nbt831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv1108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022214112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/2159-8290.cd-16-0154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022690314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.2115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022997022", 
              "https://doi.org/10.1038/nsmb.2115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024530158", 
              "https://doi.org/10.1038/nature02254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024530158", 
              "https://doi.org/10.1038/nature02254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0553-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027805047", 
              "https://doi.org/10.1186/s13059-014-0553-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0553-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027805047", 
              "https://doi.org/10.1186/s13059-014-0553-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/mt.2015.113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028825279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature20171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031007230", 
              "https://doi.org/10.1038/nature20171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031821300", 
              "https://doi.org/10.1186/1471-2164-11-175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/2159-8290.cd-11-0224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031878222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0506-500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033189636", 
              "https://doi.org/10.1038/ng0506-500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0506-500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033189636", 
              "https://doi.org/10.1038/ng0506-500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ccr.2007.08.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034133737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12831", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034683846", 
              "https://doi.org/10.1038/nature12831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036060000", 
              "https://doi.org/10.1038/nature11003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2008.245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038283584", 
              "https://doi.org/10.1038/onc.2008.245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2012.09.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039516940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2012.09.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039516940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep02940", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039947755", 
              "https://doi.org/10.1038/srep02940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1120589109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040371325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm3860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041566369", 
              "https://doi.org/10.1038/nrm3860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2015.11.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042798310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2015.11.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042798310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0866-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042902494", 
              "https://doi.org/10.1186/s13059-015-0866-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1006-777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043298132", 
              "https://doi.org/10.1038/nmeth1006-777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1006-777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043298132", 
              "https://doi.org/10.1038/nmeth1006-777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1246981", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043810806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1246981", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043810806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/2159-8290.cd-11-0107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043851812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.173039.114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044470659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ccr.2012.11.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044570534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sdata.2014.35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045156246", 
              "https://doi.org/10.1038/sdata.2014.35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.079558.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045837493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1402353111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046374233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.celrep.2016.02.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046446734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046739948", 
              "https://doi.org/10.1038/nmeth.1351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046739948", 
              "https://doi.org/10.1038/nmeth.1351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2011.03.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047581868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/sj.emboj.7600345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047786485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkn902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047931026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049010220", 
              "https://doi.org/10.1038/nature05179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049010220", 
              "https://doi.org/10.1038/nature05179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049010220", 
              "https://doi.org/10.1038/nature05179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gku306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049768748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1012-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050642468", 
              "https://doi.org/10.1186/s13059-016-1012-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1012-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050642468", 
              "https://doi.org/10.1186/s13059-016-1012-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051682627", 
              "https://doi.org/10.1038/nature15736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc1691", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052792626", 
              "https://doi.org/10.1038/nrc1691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc1691", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052792626", 
              "https://doi.org/10.1038/nrc1691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/1386207317666140117101852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069175052"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "BACKGROUND: Genome-wide loss-of-function profiling is widely used for systematic identification of genetic dependencies in cancer cells; however, the poor reproducibility of RNA interference (RNAi) screens has been a major concern due to frequent off-target effects. Currently, a detailed understanding of the key factors contributing to the sub-optimal consistency is still a lacking, especially on how to improve the reliability of future RNAi screens by controlling for factors that determine their off-target propensity.\nMETHODS: We performed a systematic, quantitative analysis of the consistency between two genome-wide shRNA screens conducted on a compendium of cancer cell lines, and also compared several gene summarization methods for inferring gene essentiality from shRNA level data. We then devised novel concepts of seed essentiality and shRNA family, based on seed region sequences of shRNAs, to study in-depth the contribution of seed-mediated off-target effects to the consistency of the two screens. We further investigated two seed-sequence properties, seed pairing stability, and target abundance in terms of their capability to minimize the off-target effects in post-screening data analysis. Finally, we applied this novel methodology to identify genetic interactions and synthetic lethal partners of cancer drivers, and confirmed differential essentiality phenotypes by detailed CRISPR/Cas9 experiments.\nRESULTS: Using the novel concepts of seed essentiality and shRNA family, we demonstrate how genome-wide loss-of-function profiling of a common set of cancer cell lines can be actually made fairly reproducible when considering seed-mediated off-target effects. Importantly, by excluding shRNAs having higher propensity for off-target effects, based on their seed-sequence properties, one can remove noise from the genome-wide shRNA datasets. As a translational application case, we demonstrate enhanced reproducibility of genetic interaction partners of common cancer drivers, as well as identify novel synthetic lethal partners of a major oncogenic driver, PIK3CA, supported by a complementary CRISPR/Cas9 experiment.\nCONCLUSIONS: We provide practical guidelines for improved design and analysis of genome-wide loss-of-function profiling and demonstrate how this novel strategy can be applied towards improved mapping of genetic dependencies of cancer cells to aid development of targeted anticancer treatments.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13073-017-0440-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4245825", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4246099", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4249004", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1040124", 
            "issn": [
              "1756-994X"
            ], 
            "name": "Genome Medicine", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Seed-effect modeling improves the consistency of genome-wide loss-of-function screens and identifies synthetic lethal vulnerabilities in cancer cells", 
        "pagination": "51", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "efb04f2481704accf314155f3fafbe5c57c9af67b2058fb618ed2d9840d76900"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28569207"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101475844"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13073-017-0440-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085705100"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13073-017-0440-2", 
          "https://app.dimensions.ai/details/publication/pub.1085705100"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113658_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13073-017-0440-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13073-017-0440-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13073-017-0440-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13073-017-0440-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13073-017-0440-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    391 TRIPLES      21 PREDICATES      105 URIs      30 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13073-017-0440-2 schema:about N0058299e6da24abe88dbbd7b581cf1f6
    2 N0d3db199a2034bf7a2020a0ff03008a8
    3 N3bec720f24134e7dbc734192715faa15
    4 N576952d393cc4d5f855706004e362db1
    5 N883dc7e182474813bb20fd95ee6353f0
    6 Nbb7e76efbee44ba9a7d597c1fd40407b
    7 Nc27ee2fa40014e6889d1c6c866081fe7
    8 Ne2c28bb9684c4d4189de06a40658fd50
    9 Nef8528ac0e8446d19b49e4242d593c5c
    10 anzsrc-for:11
    11 anzsrc-for:1112
    12 schema:author N2a3384324e384e1c83a184a0ddb2a267
    13 schema:citation sg:pub.10.1038/nature02254
    14 sg:pub.10.1038/nature05179
    15 sg:pub.10.1038/nature11003
    16 sg:pub.10.1038/nature12634
    17 sg:pub.10.1038/nature12831
    18 sg:pub.10.1038/nature15736
    19 sg:pub.10.1038/nature17987
    20 sg:pub.10.1038/nature20171
    21 sg:pub.10.1038/nbt.2623
    22 sg:pub.10.1038/nbt.3567
    23 sg:pub.10.1038/nbt831
    24 sg:pub.10.1038/ng0506-500
    25 sg:pub.10.1038/nmeth.1351
    26 sg:pub.10.1038/nmeth.1898
    27 sg:pub.10.1038/nmeth.3047
    28 sg:pub.10.1038/nmeth1006-777
    29 sg:pub.10.1038/nmeth854
    30 sg:pub.10.1038/nrc1691
    31 sg:pub.10.1038/nrg3899
    32 sg:pub.10.1038/nrm3860
    33 sg:pub.10.1038/nsmb.2115
    34 sg:pub.10.1038/onc.2008.245
    35 sg:pub.10.1038/sdata.2014.35
    36 sg:pub.10.1038/srep00428
    37 sg:pub.10.1038/srep02940
    38 sg:pub.10.1038/srep18979
    39 sg:pub.10.1186/1471-2105-15-192
    40 sg:pub.10.1186/1471-2164-11-175
    41 sg:pub.10.1186/s13059-014-0553-5
    42 sg:pub.10.1186/s13059-014-0554-4
    43 sg:pub.10.1186/s13059-014-0572-2
    44 sg:pub.10.1186/s13059-015-0807-x
    45 sg:pub.10.1186/s13059-015-0866-z
    46 sg:pub.10.1186/s13059-016-1012-2
    47 https://doi.org/10.1016/j.ccr.2007.08.030
    48 https://doi.org/10.1016/j.ccr.2012.11.007
    49 https://doi.org/10.1016/j.cell.2009.03.017
    50 https://doi.org/10.1016/j.cell.2011.03.020
    51 https://doi.org/10.1016/j.cell.2012.09.042
    52 https://doi.org/10.1016/j.cell.2015.11.015
    53 https://doi.org/10.1016/j.cell.2015.11.062
    54 https://doi.org/10.1016/j.celrep.2016.02.023
    55 https://doi.org/10.1016/j.gde.2010.10.009
    56 https://doi.org/10.1038/msb.2010.24
    57 https://doi.org/10.1038/mt.2015.113
    58 https://doi.org/10.1038/sj.emboj.7600345
    59 https://doi.org/10.1073/pnas.1109363108
    60 https://doi.org/10.1073/pnas.1120589109
    61 https://doi.org/10.1073/pnas.1402353111
    62 https://doi.org/10.1093/nar/gkn902
    63 https://doi.org/10.1093/nar/gku306
    64 https://doi.org/10.1093/nar/gkv1108
    65 https://doi.org/10.1093/nar/gkv575
    66 https://doi.org/10.1101/gr.079558.108
    67 https://doi.org/10.1101/gr.143586.112
    68 https://doi.org/10.1101/gr.173039.114
    69 https://doi.org/10.1126/science.1244669
    70 https://doi.org/10.1126/science.1246981
    71 https://doi.org/10.1126/science.1247005
    72 https://doi.org/10.1158/0008-5472.can-11-0778
    73 https://doi.org/10.1158/2159-8290.cd-11-0107
    74 https://doi.org/10.1158/2159-8290.cd-11-0224
    75 https://doi.org/10.1158/2159-8290.cd-16-0154
    76 https://doi.org/10.1158/2159-8290.cd-16-0178
    77 https://doi.org/10.15252/msb.20145216
    78 https://doi.org/10.2174/1386207317666140117101852
    79 https://doi.org/10.7554/elife.12677
    80 schema:datePublished 2017-12
    81 schema:datePublishedReg 2017-12-01
    82 schema:description BACKGROUND: Genome-wide loss-of-function profiling is widely used for systematic identification of genetic dependencies in cancer cells; however, the poor reproducibility of RNA interference (RNAi) screens has been a major concern due to frequent off-target effects. Currently, a detailed understanding of the key factors contributing to the sub-optimal consistency is still a lacking, especially on how to improve the reliability of future RNAi screens by controlling for factors that determine their off-target propensity. METHODS: We performed a systematic, quantitative analysis of the consistency between two genome-wide shRNA screens conducted on a compendium of cancer cell lines, and also compared several gene summarization methods for inferring gene essentiality from shRNA level data. We then devised novel concepts of seed essentiality and shRNA family, based on seed region sequences of shRNAs, to study in-depth the contribution of seed-mediated off-target effects to the consistency of the two screens. We further investigated two seed-sequence properties, seed pairing stability, and target abundance in terms of their capability to minimize the off-target effects in post-screening data analysis. Finally, we applied this novel methodology to identify genetic interactions and synthetic lethal partners of cancer drivers, and confirmed differential essentiality phenotypes by detailed CRISPR/Cas9 experiments. RESULTS: Using the novel concepts of seed essentiality and shRNA family, we demonstrate how genome-wide loss-of-function profiling of a common set of cancer cell lines can be actually made fairly reproducible when considering seed-mediated off-target effects. Importantly, by excluding shRNAs having higher propensity for off-target effects, based on their seed-sequence properties, one can remove noise from the genome-wide shRNA datasets. As a translational application case, we demonstrate enhanced reproducibility of genetic interaction partners of common cancer drivers, as well as identify novel synthetic lethal partners of a major oncogenic driver, PIK3CA, supported by a complementary CRISPR/Cas9 experiment. CONCLUSIONS: We provide practical guidelines for improved design and analysis of genome-wide loss-of-function profiling and demonstrate how this novel strategy can be applied towards improved mapping of genetic dependencies of cancer cells to aid development of targeted anticancer treatments.
    83 schema:genre research_article
    84 schema:inLanguage en
    85 schema:isAccessibleForFree true
    86 schema:isPartOf N173950117d13466393ed2d4e1b4f5b65
    87 N4da1dd35f89d4e939d097d4d21497087
    88 sg:journal.1040124
    89 schema:name Seed-effect modeling improves the consistency of genome-wide loss-of-function screens and identifies synthetic lethal vulnerabilities in cancer cells
    90 schema:pagination 51
    91 schema:productId N2def091eb4b541dc98e0b7a584d062a0
    92 N9cd8e64bd0584ea794453b0099f9a6d6
    93 Nb0ae49d9b5054eaca021eec1d2a3cc83
    94 Nb13e115fd20541308bf21d32d26fad9f
    95 Nfc96f22c90f746068f7ee366242f4197
    96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085705100
    97 https://doi.org/10.1186/s13073-017-0440-2
    98 schema:sdDatePublished 2019-04-11T10:33
    99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    100 schema:sdPublisher N66c82624d0814fdfaebc9e637f89771a
    101 schema:url https://link.springer.com/10.1186%2Fs13073-017-0440-2
    102 sgo:license sg:explorer/license/
    103 sgo:sdDataset articles
    104 rdf:type schema:ScholarlyArticle
    105 N0058299e6da24abe88dbbd7b581cf1f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Humans
    107 rdf:type schema:DefinedTerm
    108 N0d3db199a2034bf7a2020a0ff03008a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Guidelines as Topic
    110 rdf:type schema:DefinedTerm
    111 N143337d8a5294397847e3c19ea722991 rdf:first sg:person.0727572600.16
    112 rdf:rest N8f45291079354774a544bf59f32f71a4
    113 N173950117d13466393ed2d4e1b4f5b65 schema:issueNumber 1
    114 rdf:type schema:PublicationIssue
    115 N2a3384324e384e1c83a184a0ddb2a267 rdf:first sg:person.0756111355.96
    116 rdf:rest N5c4734eb4fbd4aa1b44203db772cff95
    117 N2def091eb4b541dc98e0b7a584d062a0 schema:name pubmed_id
    118 schema:value 28569207
    119 rdf:type schema:PropertyValue
    120 N3bec720f24134e7dbc734192715faa15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Genomics
    122 rdf:type schema:DefinedTerm
    123 N4da1dd35f89d4e939d097d4d21497087 schema:volumeNumber 9
    124 rdf:type schema:PublicationVolume
    125 N576952d393cc4d5f855706004e362db1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Models, Genetic
    127 rdf:type schema:DefinedTerm
    128 N5c4734eb4fbd4aa1b44203db772cff95 rdf:first sg:person.014430665777.92
    129 rdf:rest N74e804181d42490b9b6c9f03d9e638cf
    130 N66c82624d0814fdfaebc9e637f89771a schema:name Springer Nature - SN SciGraph project
    131 rdf:type schema:Organization
    132 N74e804181d42490b9b6c9f03d9e638cf rdf:first sg:person.011013406171.94
    133 rdf:rest N958e8cbeef60466387bf781988cb1f2f
    134 N883dc7e182474813bb20fd95ee6353f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name RNA Interference
    136 rdf:type schema:DefinedTerm
    137 N8f45291079354774a544bf59f32f71a4 rdf:first sg:person.01364107431.03
    138 rdf:rest Nce68651e34ab4611b86a5a6aad6c4ae0
    139 N958e8cbeef60466387bf781988cb1f2f rdf:first sg:person.01121403124.53
    140 rdf:rest N143337d8a5294397847e3c19ea722991
    141 N9cd8e64bd0584ea794453b0099f9a6d6 schema:name dimensions_id
    142 schema:value pub.1085705100
    143 rdf:type schema:PropertyValue
    144 Nb0ae49d9b5054eaca021eec1d2a3cc83 schema:name doi
    145 schema:value 10.1186/s13073-017-0440-2
    146 rdf:type schema:PropertyValue
    147 Nb13e115fd20541308bf21d32d26fad9f schema:name nlm_unique_id
    148 schema:value 101475844
    149 rdf:type schema:PropertyValue
    150 Nbb7e76efbee44ba9a7d597c1fd40407b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Class I Phosphatidylinositol 3-Kinases
    152 rdf:type schema:DefinedTerm
    153 Nc27ee2fa40014e6889d1c6c866081fe7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Phosphatidylinositol 3-Kinases
    155 rdf:type schema:DefinedTerm
    156 Nce68651e34ab4611b86a5a6aad6c4ae0 rdf:first sg:person.0641404520.99
    157 rdf:rest rdf:nil
    158 Ne2c28bb9684c4d4189de06a40658fd50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Neoplasms
    160 rdf:type schema:DefinedTerm
    161 Nef8528ac0e8446d19b49e4242d593c5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Reproducibility of Results
    163 rdf:type schema:DefinedTerm
    164 Nfc96f22c90f746068f7ee366242f4197 schema:name readcube_id
    165 schema:value efb04f2481704accf314155f3fafbe5c57c9af67b2058fb618ed2d9840d76900
    166 rdf:type schema:PropertyValue
    167 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    168 schema:name Medical and Health Sciences
    169 rdf:type schema:DefinedTerm
    170 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Oncology and Carcinogenesis
    172 rdf:type schema:DefinedTerm
    173 sg:grant.4245825 http://pending.schema.org/fundedItem sg:pub.10.1186/s13073-017-0440-2
    174 rdf:type schema:MonetaryGrant
    175 sg:grant.4246099 http://pending.schema.org/fundedItem sg:pub.10.1186/s13073-017-0440-2
    176 rdf:type schema:MonetaryGrant
    177 sg:grant.4249004 http://pending.schema.org/fundedItem sg:pub.10.1186/s13073-017-0440-2
    178 rdf:type schema:MonetaryGrant
    179 sg:journal.1040124 schema:issn 1756-994X
    180 schema:name Genome Medicine
    181 rdf:type schema:Periodical
    182 sg:person.011013406171.94 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
    183 schema:familyName Akimov
    184 schema:givenName Yevhen
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011013406171.94
    186 rdf:type schema:Person
    187 sg:person.01121403124.53 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
    188 schema:familyName Wennerberg
    189 schema:givenName Krister
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121403124.53
    191 rdf:type schema:Person
    192 sg:person.01364107431.03 schema:affiliation https://www.grid.ac/institutes/grid.1374.1
    193 schema:familyName Tang
    194 schema:givenName Jing
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364107431.03
    196 rdf:type schema:Person
    197 sg:person.014430665777.92 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
    198 schema:familyName Peddinti
    199 schema:givenName Gopal
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014430665777.92
    201 rdf:type schema:Person
    202 sg:person.0641404520.99 schema:affiliation https://www.grid.ac/institutes/grid.1374.1
    203 schema:familyName Aittokallio
    204 schema:givenName Tero
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641404520.99
    206 rdf:type schema:Person
    207 sg:person.0727572600.16 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
    208 schema:familyName Kuznetsov
    209 schema:givenName Sergey
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727572600.16
    211 rdf:type schema:Person
    212 sg:person.0756111355.96 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
    213 schema:familyName Jaiswal
    214 schema:givenName Alok
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756111355.96
    216 rdf:type schema:Person
    217 sg:pub.10.1038/nature02254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024530158
    218 https://doi.org/10.1038/nature02254
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nature05179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049010220
    221 https://doi.org/10.1038/nature05179
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nature11003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036060000
    224 https://doi.org/10.1038/nature11003
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nature12634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001644479
    227 https://doi.org/10.1038/nature12634
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nature12831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034683846
    230 https://doi.org/10.1038/nature12831
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nature15736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051682627
    233 https://doi.org/10.1038/nature15736
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nature17987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016017505
    236 https://doi.org/10.1038/nature17987
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nature20171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031007230
    239 https://doi.org/10.1038/nature20171
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nbt.2623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009511624
    242 https://doi.org/10.1038/nbt.2623
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nbt.3567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005821114
    245 https://doi.org/10.1038/nbt.3567
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nbt831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021890587
    248 https://doi.org/10.1038/nbt831
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/ng0506-500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033189636
    251 https://doi.org/10.1038/ng0506-500
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nmeth.1351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046739948
    254 https://doi.org/10.1038/nmeth.1351
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nmeth.1898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015009843
    257 https://doi.org/10.1038/nmeth.1898
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nmeth.3047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003995336
    260 https://doi.org/10.1038/nmeth.3047
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nmeth1006-777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043298132
    263 https://doi.org/10.1038/nmeth1006-777
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nmeth854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009898184
    266 https://doi.org/10.1038/nmeth854
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nrc1691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052792626
    269 https://doi.org/10.1038/nrc1691
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nrg3899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013619504
    272 https://doi.org/10.1038/nrg3899
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nrm3860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041566369
    275 https://doi.org/10.1038/nrm3860
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/nsmb.2115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022997022
    278 https://doi.org/10.1038/nsmb.2115
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/onc.2008.245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038283584
    281 https://doi.org/10.1038/onc.2008.245
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/sdata.2014.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045156246
    284 https://doi.org/10.1038/sdata.2014.35
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/srep00428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009143928
    287 https://doi.org/10.1038/srep00428
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/srep02940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039947755
    290 https://doi.org/10.1038/srep02940
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/srep18979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000235420
    293 https://doi.org/10.1038/srep18979
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1186/1471-2105-15-192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004647081
    296 https://doi.org/10.1186/1471-2105-15-192
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1186/1471-2164-11-175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031821300
    299 https://doi.org/10.1186/1471-2164-11-175
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1186/s13059-014-0553-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027805047
    302 https://doi.org/10.1186/s13059-014-0553-5
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1186/s13059-014-0554-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014314357
    305 https://doi.org/10.1186/s13059-014-0554-4
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1186/s13059-014-0572-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020717956
    308 https://doi.org/10.1186/s13059-014-0572-2
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1186/s13059-015-0807-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003163624
    311 https://doi.org/10.1186/s13059-015-0807-x
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1186/s13059-015-0866-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042902494
    314 https://doi.org/10.1186/s13059-015-0866-z
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1186/s13059-016-1012-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050642468
    317 https://doi.org/10.1186/s13059-016-1012-2
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1016/j.ccr.2007.08.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034133737
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1016/j.ccr.2012.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044570534
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1016/j.cell.2009.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000792431
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1016/j.cell.2011.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047581868
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1016/j.cell.2012.09.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039516940
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1016/j.cell.2015.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042798310
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1016/j.cell.2015.11.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013462087
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1016/j.celrep.2016.02.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046446734
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1016/j.gde.2010.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008790585
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1038/msb.2010.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002102587
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.1038/mt.2015.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028825279
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.1038/sj.emboj.7600345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047786485
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.1073/pnas.1109363108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012211256
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.1073/pnas.1120589109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040371325
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.1073/pnas.1402353111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046374233
    348 rdf:type schema:CreativeWork
    349 https://doi.org/10.1093/nar/gkn902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047931026
    350 rdf:type schema:CreativeWork
    351 https://doi.org/10.1093/nar/gku306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049768748
    352 rdf:type schema:CreativeWork
    353 https://doi.org/10.1093/nar/gkv1108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022214112
    354 rdf:type schema:CreativeWork
    355 https://doi.org/10.1093/nar/gkv575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003406485
    356 rdf:type schema:CreativeWork
    357 https://doi.org/10.1101/gr.079558.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045837493
    358 rdf:type schema:CreativeWork
    359 https://doi.org/10.1101/gr.143586.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004544199
    360 rdf:type schema:CreativeWork
    361 https://doi.org/10.1101/gr.173039.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044470659
    362 rdf:type schema:CreativeWork
    363 https://doi.org/10.1126/science.1244669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012159022
    364 rdf:type schema:CreativeWork
    365 https://doi.org/10.1126/science.1246981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043810806
    366 rdf:type schema:CreativeWork
    367 https://doi.org/10.1126/science.1247005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007966801
    368 rdf:type schema:CreativeWork
    369 https://doi.org/10.1158/0008-5472.can-11-0778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004191226
    370 rdf:type schema:CreativeWork
    371 https://doi.org/10.1158/2159-8290.cd-11-0107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043851812
    372 rdf:type schema:CreativeWork
    373 https://doi.org/10.1158/2159-8290.cd-11-0224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031878222
    374 rdf:type schema:CreativeWork
    375 https://doi.org/10.1158/2159-8290.cd-16-0154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022690314
    376 rdf:type schema:CreativeWork
    377 https://doi.org/10.1158/2159-8290.cd-16-0178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003657945
    378 rdf:type schema:CreativeWork
    379 https://doi.org/10.15252/msb.20145216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020288703
    380 rdf:type schema:CreativeWork
    381 https://doi.org/10.2174/1386207317666140117101852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069175052
    382 rdf:type schema:CreativeWork
    383 https://doi.org/10.7554/elife.12677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006228897
    384 rdf:type schema:CreativeWork
    385 https://www.grid.ac/institutes/grid.1374.1 schema:alternateName University of Turku
    386 schema:name Department of Mathematics and Statistics, University of Turku, Turku, Finland
    387 Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
    388 rdf:type schema:Organization
    389 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
    390 schema:name Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
    391 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...