Potential contribution of the uterine microbiome in the development of endometrial cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-11-25

AUTHORS

Marina R. S. Walther-António, Jun Chen, Francesco Multinu, Alexis Hokenstad, Tammy J. Distad, E. Heidi Cheek, Gary L. Keeney, Douglas J. Creedon, Heidi Nelson, Andrea Mariani, Nicholas Chia

ABSTRACT

BackgroundEndometrial cancer studies have led to a number of well-defined but mechanistically unconnected genetic and environmental risk factors. One of the emerging modulators between environmental triggers and genetic expression is the microbiome. We set out to inquire about the composition of the uterine microbiome and its putative role in endometrial cancer.MethodsWe undertook a study of the microbiome in samples taken from different locations along the female reproductive tract in patients with endometrial cancer (n = 17), patients with endometrial hyperplasia (endometrial cancer precursor, n = 4), and patients afflicted with benign uterine conditions (n = 10). Vaginal, cervical, Fallopian, ovarian, peritoneal, and urine samples were collected aseptically both in the operating room and the pathology laboratory. DNA extraction was followed by amplification and high-throughput next generation sequencing (MiSeq) of the 16S rDNA V3-V5 region to identify the microbiota present. Microbiota data were summarized using both α-diversity to reflect species richness and evenness within bacterial populations and β-diversity to reflect the shared diversity between bacterial populations. Statistical significance was determined through the use of multiple testing, including the generalized mixed-effects model.ResultsThe microbiome sequencing (16S rDNA V3-V5 region) revealed that the microbiomes of all organs (vagina, cervix, Fallopian tubes, and ovaries) are significantly correlated (p < 0.001) and that there is a structural microbiome shift in the cancer and hyperplasia cases, distinguishable from the benign cases (p = 0.01). Several taxa were found to be significantly enriched in samples belonging to the endometrial cancer cohort: Firmicutes (Anaerostipes, ph2, Dialister, Peptoniphilus, 1–68, Ruminococcus, and Anaerotruncus), Spirochaetes (Treponema), Actinobacteria (Atopobium), Bacteroidetes (Bacteroides and Porphyromonas), and Proteobacteria (Arthrospira). Of particular relevance, the simultaneous presence of Atopobium vaginae and an uncultured representative of the Porphyromonas sp. (99 % match to P. somerae) were found to be associated with disease status, especially if combined with a high vaginal pH (>4.5).ConclusionsOur results suggest that the detection of A. vaginae and the identified Porphyromonas sp. in the gynecologic tract combined with a high vaginal pH is statistically associated with the presence of endometrial cancer. Given the documented association of the identified microorganisms with other pathologies, these findings raise the possibility of a microbiome role in the manifestation, etiology, or progression of endometrial cancer that should be further investigated. More... »

PAGES

122

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13073-016-0368-y

DOI

http://dx.doi.org/10.1186/s13073-016-0368-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047439451

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27884207


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Ribosomal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endometrial Hyperplasia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endometrial Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fallopian Tubes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ovary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Urine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uterus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vagina", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Mayo Clinic, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Surgery, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walther-Ant\u00f3nio", 
        "givenName": "Marina R. S.", 
        "id": "sg:person.01064173222.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064173222.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jun", 
        "id": "sg:person.01023412627.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Obstetrics and Gynecology, Mayo Clinic, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Obstetrics and Gynecology, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Multinu", 
        "givenName": "Francesco", 
        "id": "sg:person.01154554311.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154554311.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Obstetrics and Gynecology, Mayo Clinic, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Obstetrics and Gynecology, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hokenstad", 
        "givenName": "Alexis", 
        "id": "sg:person.010250316243.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010250316243.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Laboratory Medicine and Pathology, Mayo Clinic, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Laboratory Medicine and Pathology, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Distad", 
        "givenName": "Tammy J.", 
        "id": "sg:person.01054143277.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054143277.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Laboratory Medicine and Pathology, Mayo Clinic, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Laboratory Medicine and Pathology, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheek", 
        "givenName": "E. Heidi", 
        "id": "sg:person.015271443771.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271443771.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Laboratory Medicine and Pathology, Mayo Clinic, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Laboratory Medicine and Pathology, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keeney", 
        "givenName": "Gary L.", 
        "id": "sg:person.012243354177.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012243354177.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Present Address: North Memorial Medical Center, 55442, Robbinsdale, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.416455.7", 
          "name": [
            "Department of Obstetrics and Gynecology, Mayo Clinic, 55905, Rochester, MN, USA", 
            "Present Address: North Memorial Medical Center, 55442, Robbinsdale, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Creedon", 
        "givenName": "Douglas J.", 
        "id": "sg:person.01241736722.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241736722.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Individualized Medicine, Mayo Clinic, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Surgery, Mayo Clinic, 55905, Rochester, MN, USA", 
            "Center for Individualized Medicine, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nelson", 
        "givenName": "Heidi", 
        "id": "sg:person.0703056235.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703056235.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Obstetrics and Gynecology, Mayo Clinic, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Obstetrics and Gynecology, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mariani", 
        "givenName": "Andrea", 
        "id": "sg:person.0710604636.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710604636.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Individualized Medicine, Mayo Clinic, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Surgery, Mayo Clinic, 55905, Rochester, MN, USA", 
            "Department of Laboratory Medicine and Pathology, Mayo Clinic, 55905, Rochester, MN, USA", 
            "Center for Individualized Medicine, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chia", 
        "givenName": "Nicholas", 
        "id": "sg:person.01212544443.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212544443.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/sj.onc.1209594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052126542", 
          "https://doi.org/10.1038/sj.onc.1209594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00404-005-0079-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041417505", 
          "https://doi.org/10.1007/s00404-005-0079-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-007-0681-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044266851", 
          "https://doi.org/10.1007/s00125-007-0681-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11-25", 
    "datePublishedReg": "2016-11-25", 
    "description": "BackgroundEndometrial cancer studies have led to a number of well-defined but mechanistically unconnected genetic and environmental risk factors. One of the emerging modulators between environmental triggers and genetic expression is the microbiome. We set out to inquire about the composition of the uterine microbiome and its putative role in endometrial cancer.MethodsWe undertook a study of the microbiome in samples taken from different locations along the female reproductive tract in patients with endometrial cancer (n\u2009=\u200917), patients with endometrial hyperplasia (endometrial cancer precursor, n\u2009=\u20094), and patients afflicted with benign uterine conditions (n\u2009=\u200910). Vaginal, cervical, Fallopian, ovarian, peritoneal, and urine samples were collected aseptically both in the operating room and the pathology laboratory. DNA extraction was followed by amplification and high-throughput next generation sequencing (MiSeq) of the 16S rDNA V3-V5 region to identify the microbiota present. Microbiota data were summarized using both \u03b1-diversity to reflect species richness and evenness within bacterial populations and \u03b2-diversity to reflect the shared diversity between bacterial populations. Statistical significance was determined through the use of multiple testing, including the generalized mixed-effects model.ResultsThe microbiome sequencing (16S rDNA V3-V5 region) revealed that the microbiomes of all organs (vagina, cervix, Fallopian tubes, and ovaries) are significantly correlated (p\u2009<\u20090.001) and that there is a structural microbiome shift in the cancer and hyperplasia cases, distinguishable from the benign cases (p\u2009=\u20090.01). Several taxa were found to be significantly enriched in samples belonging to the endometrial cancer cohort: Firmicutes (Anaerostipes, ph2, Dialister, Peptoniphilus, 1\u201368, Ruminococcus, and Anaerotruncus), Spirochaetes (Treponema), Actinobacteria (Atopobium), Bacteroidetes (Bacteroides and Porphyromonas), and Proteobacteria (Arthrospira). Of particular relevance, the simultaneous presence of Atopobium vaginae and an uncultured representative of the Porphyromonas sp. (99\u00a0% match to P. somerae) were found to be associated with disease status, especially if combined with a high vaginal pH (>4.5).ConclusionsOur results suggest that the detection of A. vaginae and the identified Porphyromonas sp. in the gynecologic tract combined with a high vaginal pH is statistically associated with the presence of endometrial cancer. Given the documented association of the identified microorganisms with other pathologies, these findings raise the possibility of a microbiome role in the manifestation, etiology, or progression of endometrial cancer that should be further investigated.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13073-016-0368-y", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2440233", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1040124", 
        "issn": [
          "1756-994X"
        ], 
        "name": "Genome Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "high vaginal pH", 
      "endometrial cancer", 
      "vaginal pH", 
      "uterine microbiome", 
      "Porphyromonas sp", 
      "endometrial cancer cohort", 
      "benign uterine conditions", 
      "environmental risk factors", 
      "female reproductive tract", 
      "gynecologic tract", 
      "endometrial hyperplasia", 
      "V3-V5 region", 
      "risk factors", 
      "uterine conditions", 
      "hyperplasia cases", 
      "cancer cohort", 
      "microbiome's role", 
      "Atopobium vaginae", 
      "disease status", 
      "cancer", 
      "benign cases", 
      "patients", 
      "reproductive tract", 
      "A. vaginae", 
      "operating room", 
      "pathology laboratory", 
      "environmental triggers", 
      "urine samples", 
      "mixed effects models", 
      "cancer studies", 
      "statistical significance", 
      "next-generation sequencing", 
      "ConclusionsOur results", 
      "vagina", 
      "putative role", 
      "multiple testing", 
      "tract", 
      "microbiota data", 
      "microbiome", 
      "microbiome shifts", 
      "high-throughput next-generation sequencing", 
      "generation sequencing", 
      "microbiome sequencing", 
      "genetic expression", 
      "fallopian", 
      "hyperplasia", 
      "peritoneal", 
      "population", 
      "cohort", 
      "etiology", 
      "MethodsWe", 
      "microbiota present", 
      "pathology", 
      "progression", 
      "manifestations", 
      "DNA extraction", 
      "potential contribution", 
      "sequencing", 
      "organs", 
      "cases", 
      "study", 
      "simultaneous presence", 
      "association", 
      "role", 
      "bacterial populations", 
      "\u03b1-diversity", 
      "status", 
      "particular relevance", 
      "presence", 
      "expression", 
      "samples", 
      "findings", 
      "modulator", 
      "triggers", 
      "factors", 
      "testing", 
      "significance", 
      "spirochaetes", 
      "relevance", 
      "room", 
      "amplification", 
      "use", 
      "Firmicutes", 
      "laboratory", 
      "data", 
      "Bacteroidetes", 
      "development", 
      "detection", 
      "number", 
      "\u03b2-diversity", 
      "present", 
      "results", 
      "microorganisms", 
      "possibility", 
      "pH", 
      "location", 
      "region", 
      "conditions", 
      "different locations", 
      "sp", 
      "model", 
      "Proteobacteria", 
      "extraction", 
      "representatives", 
      "contribution", 
      "shift", 
      "Actinobacteria", 
      "composition", 
      "diversity", 
      "uncultured representatives", 
      "species richness", 
      "evenness", 
      "taxa", 
      "richness"
    ], 
    "name": "Potential contribution of the uterine microbiome in the development of endometrial cancer", 
    "pagination": "122", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047439451"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13073-016-0368-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27884207"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13073-016-0368-y", 
      "https://app.dimensions.ai/details/publication/pub.1047439451"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_716.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13073-016-0368-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13073-016-0368-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13073-016-0368-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13073-016-0368-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13073-016-0368-y'


 

This table displays all metadata directly associated to this object as RDF triples.

350 TRIPLES      21 PREDICATES      162 URIs      150 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13073-016-0368-y schema:about N14613aa86c2544c3aa44416049027358
2 N1a65f5d7a80f40f6a6663ed8b5dd80e0
3 N1c7e59d3a0d84f078870b654e04f6234
4 N2752fa56f91d4214a7808e1fa231cb43
5 N38df3fa3862349fd9ad07dc02bc5e5af
6 N3f00d846772a406c816ae7c37f333383
7 N4173377c5c8a4ea38c28898e9d6113ac
8 N4a023623919044bdaaae1f0b91b7a411
9 N7725b555b4494d74945014eeef4ac0eb
10 N786adaf0824f4f1799903b0c06d7dae4
11 N853edb47cb314c04ae6155168b711659
12 Na544441743b54c569b6b6e40ae608f66
13 Nbc4eb48a41ba4bbe8c1eebf8b2e97200
14 Nca4aecc4cbfb444896b7cbd64a8ed4ad
15 Ndfb53a5336a14ad3a11f8541beb05b60
16 Ne4d773d309d549bda2525cc2826d9bb7
17 Ne8d9647151a34bf6a04ef5546252ac67
18 Nef228067360344b59e0565a8bdb405e9
19 Nf0dffc1fa52e44a1841e09d4c8bcdbed
20 anzsrc-for:06
21 anzsrc-for:0604
22 schema:author N4e12cbd7c54d4d4eb4ea98ce63f49ee4
23 schema:citation sg:pub.10.1007/s00125-007-0681-5
24 sg:pub.10.1007/s00404-005-0079-x
25 sg:pub.10.1038/nmeth.f.303
26 sg:pub.10.1038/sj.onc.1209594
27 schema:datePublished 2016-11-25
28 schema:datePublishedReg 2016-11-25
29 schema:description BackgroundEndometrial cancer studies have led to a number of well-defined but mechanistically unconnected genetic and environmental risk factors. One of the emerging modulators between environmental triggers and genetic expression is the microbiome. We set out to inquire about the composition of the uterine microbiome and its putative role in endometrial cancer.MethodsWe undertook a study of the microbiome in samples taken from different locations along the female reproductive tract in patients with endometrial cancer (n = 17), patients with endometrial hyperplasia (endometrial cancer precursor, n = 4), and patients afflicted with benign uterine conditions (n = 10). Vaginal, cervical, Fallopian, ovarian, peritoneal, and urine samples were collected aseptically both in the operating room and the pathology laboratory. DNA extraction was followed by amplification and high-throughput next generation sequencing (MiSeq) of the 16S rDNA V3-V5 region to identify the microbiota present. Microbiota data were summarized using both α-diversity to reflect species richness and evenness within bacterial populations and β-diversity to reflect the shared diversity between bacterial populations. Statistical significance was determined through the use of multiple testing, including the generalized mixed-effects model.ResultsThe microbiome sequencing (16S rDNA V3-V5 region) revealed that the microbiomes of all organs (vagina, cervix, Fallopian tubes, and ovaries) are significantly correlated (p < 0.001) and that there is a structural microbiome shift in the cancer and hyperplasia cases, distinguishable from the benign cases (p = 0.01). Several taxa were found to be significantly enriched in samples belonging to the endometrial cancer cohort: Firmicutes (Anaerostipes, ph2, Dialister, Peptoniphilus, 1–68, Ruminococcus, and Anaerotruncus), Spirochaetes (Treponema), Actinobacteria (Atopobium), Bacteroidetes (Bacteroides and Porphyromonas), and Proteobacteria (Arthrospira). Of particular relevance, the simultaneous presence of Atopobium vaginae and an uncultured representative of the Porphyromonas sp. (99 % match to P. somerae) were found to be associated with disease status, especially if combined with a high vaginal pH (>4.5).ConclusionsOur results suggest that the detection of A. vaginae and the identified Porphyromonas sp. in the gynecologic tract combined with a high vaginal pH is statistically associated with the presence of endometrial cancer. Given the documented association of the identified microorganisms with other pathologies, these findings raise the possibility of a microbiome role in the manifestation, etiology, or progression of endometrial cancer that should be further investigated.
30 schema:genre article
31 schema:isAccessibleForFree true
32 schema:isPartOf N4dfa2978880743f08fdae793da37e284
33 Nbfac359ccc694ccfb3cacd6a74e1358c
34 sg:journal.1040124
35 schema:keywords A. vaginae
36 Actinobacteria
37 Atopobium vaginae
38 Bacteroidetes
39 ConclusionsOur results
40 DNA extraction
41 Firmicutes
42 MethodsWe
43 Porphyromonas sp
44 Proteobacteria
45 V3-V5 region
46 amplification
47 association
48 bacterial populations
49 benign cases
50 benign uterine conditions
51 cancer
52 cancer cohort
53 cancer studies
54 cases
55 cohort
56 composition
57 conditions
58 contribution
59 data
60 detection
61 development
62 different locations
63 disease status
64 diversity
65 endometrial cancer
66 endometrial cancer cohort
67 endometrial hyperplasia
68 environmental risk factors
69 environmental triggers
70 etiology
71 evenness
72 expression
73 extraction
74 factors
75 fallopian
76 female reproductive tract
77 findings
78 generation sequencing
79 genetic expression
80 gynecologic tract
81 high vaginal pH
82 high-throughput next-generation sequencing
83 hyperplasia
84 hyperplasia cases
85 laboratory
86 location
87 manifestations
88 microbiome
89 microbiome sequencing
90 microbiome shifts
91 microbiome's role
92 microbiota data
93 microbiota present
94 microorganisms
95 mixed effects models
96 model
97 modulator
98 multiple testing
99 next-generation sequencing
100 number
101 operating room
102 organs
103 pH
104 particular relevance
105 pathology
106 pathology laboratory
107 patients
108 peritoneal
109 population
110 possibility
111 potential contribution
112 presence
113 present
114 progression
115 putative role
116 region
117 relevance
118 representatives
119 reproductive tract
120 results
121 richness
122 risk factors
123 role
124 room
125 samples
126 sequencing
127 shift
128 significance
129 simultaneous presence
130 sp
131 species richness
132 spirochaetes
133 statistical significance
134 status
135 study
136 taxa
137 testing
138 tract
139 triggers
140 uncultured representatives
141 urine samples
142 use
143 uterine conditions
144 uterine microbiome
145 vagina
146 vaginal pH
147 α-diversity
148 β-diversity
149 schema:name Potential contribution of the uterine microbiome in the development of endometrial cancer
150 schema:pagination 122
151 schema:productId N14557ec475dc4e4eb38983b572bb8dee
152 N5d679fbc47f84f6eb675ed04315578e8
153 Ne65cc99dfb064071875d6e0f3487272f
154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047439451
155 https://doi.org/10.1186/s13073-016-0368-y
156 schema:sdDatePublished 2022-09-02T16:00
157 schema:sdLicense https://scigraph.springernature.com/explorer/license/
158 schema:sdPublisher Nd2e3859051434cda89cac24924df312f
159 schema:url https://doi.org/10.1186/s13073-016-0368-y
160 sgo:license sg:explorer/license/
161 sgo:sdDataset articles
162 rdf:type schema:ScholarlyArticle
163 N027728de2e4545fb8f2c3033d17864dd rdf:first sg:person.010250316243.88
164 rdf:rest Nd28a2a58f608426aa985f9031f0f76d1
165 N14557ec475dc4e4eb38983b572bb8dee schema:name dimensions_id
166 schema:value pub.1047439451
167 rdf:type schema:PropertyValue
168 N14613aa86c2544c3aa44416049027358 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Vagina
170 rdf:type schema:DefinedTerm
171 N1a65f5d7a80f40f6a6663ed8b5dd80e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Aged
173 rdf:type schema:DefinedTerm
174 N1c7e59d3a0d84f078870b654e04f6234 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Adult
176 rdf:type schema:DefinedTerm
177 N2752fa56f91d4214a7808e1fa231cb43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Ovary
179 rdf:type schema:DefinedTerm
180 N2a2c37c177044f6b9ce92a8e9b998dd3 rdf:first sg:person.015271443771.16
181 rdf:rest N7226a69fa09b4697b384ec196550ca29
182 N2b66a1fab3c5481ab50dfba32e887d9f rdf:first sg:person.01023412627.52
183 rdf:rest N96a5fd3531ac4dae974ea1d9dd47c1e7
184 N38df3fa3862349fd9ad07dc02bc5e5af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Sequence Analysis, DNA
186 rdf:type schema:DefinedTerm
187 N3f00d846772a406c816ae7c37f333383 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Endometrial Neoplasms
189 rdf:type schema:DefinedTerm
190 N4173377c5c8a4ea38c28898e9d6113ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name DNA, Ribosomal
192 rdf:type schema:DefinedTerm
193 N4a023623919044bdaaae1f0b91b7a411 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Urine
195 rdf:type schema:DefinedTerm
196 N4cd8f652f0b14162a40a4023ebca38aa rdf:first sg:person.01241736722.68
197 rdf:rest Nf196c073cdc44a0382a624c36227bbbf
198 N4dfa2978880743f08fdae793da37e284 schema:issueNumber 1
199 rdf:type schema:PublicationIssue
200 N4e12cbd7c54d4d4eb4ea98ce63f49ee4 rdf:first sg:person.01064173222.00
201 rdf:rest N2b66a1fab3c5481ab50dfba32e887d9f
202 N5d679fbc47f84f6eb675ed04315578e8 schema:name pubmed_id
203 schema:value 27884207
204 rdf:type schema:PropertyValue
205 N7226a69fa09b4697b384ec196550ca29 rdf:first sg:person.012243354177.52
206 rdf:rest N4cd8f652f0b14162a40a4023ebca38aa
207 N7725b555b4494d74945014eeef4ac0eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Middle Aged
209 rdf:type schema:DefinedTerm
210 N786adaf0824f4f1799903b0c06d7dae4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Uterus
212 rdf:type schema:DefinedTerm
213 N81d2b7fd05e246d0a66fc213396a1b71 rdf:first sg:person.0710604636.30
214 rdf:rest Na374d2f5e4b0440bbd2f19d416596925
215 N853edb47cb314c04ae6155168b711659 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name RNA, Ribosomal, 16S
217 rdf:type schema:DefinedTerm
218 N96a5fd3531ac4dae974ea1d9dd47c1e7 rdf:first sg:person.01154554311.62
219 rdf:rest N027728de2e4545fb8f2c3033d17864dd
220 Na374d2f5e4b0440bbd2f19d416596925 rdf:first sg:person.01212544443.79
221 rdf:rest rdf:nil
222 Na544441743b54c569b6b6e40ae608f66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
223 schema:name Bacteria
224 rdf:type schema:DefinedTerm
225 Nbc4eb48a41ba4bbe8c1eebf8b2e97200 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
226 schema:name Risk Factors
227 rdf:type schema:DefinedTerm
228 Nbfac359ccc694ccfb3cacd6a74e1358c schema:volumeNumber 8
229 rdf:type schema:PublicationVolume
230 Nca4aecc4cbfb444896b7cbd64a8ed4ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
231 schema:name Fallopian Tubes
232 rdf:type schema:DefinedTerm
233 Nd28a2a58f608426aa985f9031f0f76d1 rdf:first sg:person.01054143277.79
234 rdf:rest N2a2c37c177044f6b9ce92a8e9b998dd3
235 Nd2e3859051434cda89cac24924df312f schema:name Springer Nature - SN SciGraph project
236 rdf:type schema:Organization
237 Ndfb53a5336a14ad3a11f8541beb05b60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
238 schema:name Humans
239 rdf:type schema:DefinedTerm
240 Ne4d773d309d549bda2525cc2826d9bb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
241 schema:name Endometrial Hyperplasia
242 rdf:type schema:DefinedTerm
243 Ne65cc99dfb064071875d6e0f3487272f schema:name doi
244 schema:value 10.1186/s13073-016-0368-y
245 rdf:type schema:PropertyValue
246 Ne8d9647151a34bf6a04ef5546252ac67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
247 schema:name Phylogeny
248 rdf:type schema:DefinedTerm
249 Nef228067360344b59e0565a8bdb405e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
250 schema:name DNA, Bacterial
251 rdf:type schema:DefinedTerm
252 Nf0dffc1fa52e44a1841e09d4c8bcdbed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
253 schema:name Female
254 rdf:type schema:DefinedTerm
255 Nf196c073cdc44a0382a624c36227bbbf rdf:first sg:person.0703056235.52
256 rdf:rest N81d2b7fd05e246d0a66fc213396a1b71
257 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
258 schema:name Biological Sciences
259 rdf:type schema:DefinedTerm
260 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
261 schema:name Genetics
262 rdf:type schema:DefinedTerm
263 sg:grant.2440233 http://pending.schema.org/fundedItem sg:pub.10.1186/s13073-016-0368-y
264 rdf:type schema:MonetaryGrant
265 sg:journal.1040124 schema:issn 1756-994X
266 schema:name Genome Medicine
267 schema:publisher Springer Nature
268 rdf:type schema:Periodical
269 sg:person.01023412627.52 schema:affiliation grid-institutes:grid.66875.3a
270 schema:familyName Chen
271 schema:givenName Jun
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52
273 rdf:type schema:Person
274 sg:person.010250316243.88 schema:affiliation grid-institutes:grid.66875.3a
275 schema:familyName Hokenstad
276 schema:givenName Alexis
277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010250316243.88
278 rdf:type schema:Person
279 sg:person.01054143277.79 schema:affiliation grid-institutes:grid.66875.3a
280 schema:familyName Distad
281 schema:givenName Tammy J.
282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054143277.79
283 rdf:type schema:Person
284 sg:person.01064173222.00 schema:affiliation grid-institutes:grid.66875.3a
285 schema:familyName Walther-António
286 schema:givenName Marina R. S.
287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064173222.00
288 rdf:type schema:Person
289 sg:person.01154554311.62 schema:affiliation grid-institutes:grid.66875.3a
290 schema:familyName Multinu
291 schema:givenName Francesco
292 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154554311.62
293 rdf:type schema:Person
294 sg:person.01212544443.79 schema:affiliation grid-institutes:grid.66875.3a
295 schema:familyName Chia
296 schema:givenName Nicholas
297 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212544443.79
298 rdf:type schema:Person
299 sg:person.012243354177.52 schema:affiliation grid-institutes:grid.66875.3a
300 schema:familyName Keeney
301 schema:givenName Gary L.
302 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012243354177.52
303 rdf:type schema:Person
304 sg:person.01241736722.68 schema:affiliation grid-institutes:grid.416455.7
305 schema:familyName Creedon
306 schema:givenName Douglas J.
307 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241736722.68
308 rdf:type schema:Person
309 sg:person.015271443771.16 schema:affiliation grid-institutes:grid.66875.3a
310 schema:familyName Cheek
311 schema:givenName E. Heidi
312 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271443771.16
313 rdf:type schema:Person
314 sg:person.0703056235.52 schema:affiliation grid-institutes:grid.66875.3a
315 schema:familyName Nelson
316 schema:givenName Heidi
317 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703056235.52
318 rdf:type schema:Person
319 sg:person.0710604636.30 schema:affiliation grid-institutes:grid.66875.3a
320 schema:familyName Mariani
321 schema:givenName Andrea
322 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710604636.30
323 rdf:type schema:Person
324 sg:pub.10.1007/s00125-007-0681-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044266851
325 https://doi.org/10.1007/s00125-007-0681-5
326 rdf:type schema:CreativeWork
327 sg:pub.10.1007/s00404-005-0079-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041417505
328 https://doi.org/10.1007/s00404-005-0079-x
329 rdf:type schema:CreativeWork
330 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
331 https://doi.org/10.1038/nmeth.f.303
332 rdf:type schema:CreativeWork
333 sg:pub.10.1038/sj.onc.1209594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052126542
334 https://doi.org/10.1038/sj.onc.1209594
335 rdf:type schema:CreativeWork
336 grid-institutes:grid.416455.7 schema:alternateName Present Address: North Memorial Medical Center, 55442, Robbinsdale, MN, USA
337 schema:name Department of Obstetrics and Gynecology, Mayo Clinic, 55905, Rochester, MN, USA
338 Present Address: North Memorial Medical Center, 55442, Robbinsdale, MN, USA
339 rdf:type schema:Organization
340 grid-institutes:grid.66875.3a schema:alternateName Center for Individualized Medicine, Mayo Clinic, 55905, Rochester, MN, USA
341 Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA
342 Department of Laboratory Medicine and Pathology, Mayo Clinic, 55905, Rochester, MN, USA
343 Department of Obstetrics and Gynecology, Mayo Clinic, 55905, Rochester, MN, USA
344 Department of Surgery, Mayo Clinic, 55905, Rochester, MN, USA
345 schema:name Center for Individualized Medicine, Mayo Clinic, 55905, Rochester, MN, USA
346 Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA
347 Department of Laboratory Medicine and Pathology, Mayo Clinic, 55905, Rochester, MN, USA
348 Department of Obstetrics and Gynecology, Mayo Clinic, 55905, Rochester, MN, USA
349 Department of Surgery, Mayo Clinic, 55905, Rochester, MN, USA
350 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...