Pretreatment gut microbiome predicts chemotherapy-related bloodstream infection View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-04-28

AUTHORS

Emmanuel Montassier, Gabriel A. Al-Ghalith, Tonya Ward, Stephane Corvec, Thomas Gastinne, Gilles Potel, Phillipe Moreau, Marie France de la Cochetiere, Eric Batard, Dan Knights

ABSTRACT

BACKGROUND: Bacteremia, or bloodstream infection (BSI), is a leading cause of death among patients with certain types of cancer. A previous study reported that intestinal domination, defined as occupation of at least 30 % of the microbiota by a single bacterial taxon, is associated with BSI in patients undergoing allo-HSCT. However, the impact of the intestinal microbiome before treatment initiation on the risk of subsequent BSI remains unclear. Our objective was to characterize the fecal microbiome collected before treatment to identify microbes that predict the risk of BSI. METHODS: We sampled 28 patients with non-Hodgkin lymphoma undergoing allogeneic hematopoietic stem cell transplantation (HSCT) prior to administration of chemotherapy and characterized 16S ribosomal RNA genes using high-throughput DNA sequencing. We quantified bacterial taxa and used techniques from machine learning to identify microbial biomarkers that predicted subsequent BSI. RESULTS: We found that patients who developed subsequent BSI exhibited decreased overall diversity and decreased abundance of taxa including Barnesiellaceae, Coriobacteriaceae, Faecalibacterium, Christensenella, Dehalobacterium, Desulfovibrio, and Sutterella. Using machine-learning methods, we developed a BSI risk index capable of predicting BSI incidence with a sensitivity of 90 % at a specificity of 90 % based only on the pretreatment fecal microbiome. CONCLUSIONS: These results suggest that the gut microbiota can identify high-risk patients before HSCT and that manipulation of the gut microbiota for prevention of BSI in high-risk patients may be a useful direction for future research. This approach may inspire the development of similar microbiome-based diagnostic and prognostic models in other diseases. More... »

PAGES

49

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13073-016-0301-4

DOI

http://dx.doi.org/10.1186/s13073-016-0301-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012949666

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27121964


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antineoplastic Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteremia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feces", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gastrointestinal Microbiome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hematopoietic Stem Cell Transplantation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphoma, Non-Hodgkin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, RNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Universit\u00e9 de Nantes, EA 3826 Th\u00e9rapeutiques cliniques et exp\u00e9rimentales des infections. Facult\u00e9 de m\u00e9decine, 1 Rue G Veil, Nantes, 44000 France", 
            "Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Montassier", 
        "givenName": "Emmanuel", 
        "id": "sg:person.0577233753.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577233753.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455 USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA", 
            "Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Al-Ghalith", 
        "givenName": "Gabriel A.", 
        "id": "sg:person.01331641010.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331641010.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biotechnology Institute, University of Minnesota, St. Paul, MN 55108 USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Biotechnology Institute, University of Minnesota, St. Paul, MN 55108 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ward", 
        "givenName": "Tonya", 
        "id": "sg:person.0602226221.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602226221.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nantes University Hospital, Microbiology Laboratory, Nantes, France", 
          "id": "http://www.grid.ac/institutes/grid.277151.7", 
          "name": [
            "Universit\u00e9 de Nantes, EA 3826 Th\u00e9rapeutiques cliniques et exp\u00e9rimentales des infections. Facult\u00e9 de m\u00e9decine, 1 Rue G Veil, Nantes, 44000 France", 
            "Nantes University Hospital, Microbiology Laboratory, Nantes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corvec", 
        "givenName": "Stephane", 
        "id": "sg:person.0602663763.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602663763.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hematology Department, Nantes University Hospital, Nantes, France", 
          "id": "http://www.grid.ac/institutes/grid.277151.7", 
          "name": [
            "Hematology Department, Nantes University Hospital, Nantes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gastinne", 
        "givenName": "Thomas", 
        "id": "sg:person.01334747705.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334747705.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Nantes, EA 3826 Th\u00e9rapeutiques cliniques et exp\u00e9rimentales des infections. Facult\u00e9 de m\u00e9decine, 1 Rue G Veil, Nantes, 44000 France", 
          "id": "http://www.grid.ac/institutes/grid.4817.a", 
          "name": [
            "Universit\u00e9 de Nantes, EA 3826 Th\u00e9rapeutiques cliniques et exp\u00e9rimentales des infections. Facult\u00e9 de m\u00e9decine, 1 Rue G Veil, Nantes, 44000 France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Potel", 
        "givenName": "Gilles", 
        "id": "sg:person.01137234721.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137234721.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hematology Department, Nantes University Hospital, Nantes, France", 
          "id": "http://www.grid.ac/institutes/grid.277151.7", 
          "name": [
            "Hematology Department, Nantes University Hospital, Nantes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moreau", 
        "givenName": "Phillipe", 
        "id": "sg:person.0732370777.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732370777.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Nantes, EA 3826 Th\u00e9rapeutiques cliniques et exp\u00e9rimentales des infections. Facult\u00e9 de m\u00e9decine, 1 Rue G Veil, Nantes, 44000 France", 
          "id": "http://www.grid.ac/institutes/grid.4817.a", 
          "name": [
            "Universit\u00e9 de Nantes, EA 3826 Th\u00e9rapeutiques cliniques et exp\u00e9rimentales des infections. Facult\u00e9 de m\u00e9decine, 1 Rue G Veil, Nantes, 44000 France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de la Cochetiere", 
        "givenName": "Marie France", 
        "id": "sg:person.01015224115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015224115.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Nantes, EA 3826 Th\u00e9rapeutiques cliniques et exp\u00e9rimentales des infections. Facult\u00e9 de m\u00e9decine, 1 Rue G Veil, Nantes, 44000 France", 
          "id": "http://www.grid.ac/institutes/grid.4817.a", 
          "name": [
            "Universit\u00e9 de Nantes, EA 3826 Th\u00e9rapeutiques cliniques et exp\u00e9rimentales des infections. Facult\u00e9 de m\u00e9decine, 1 Rue G Veil, Nantes, 44000 France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Batard", 
        "givenName": "Eric", 
        "id": "sg:person.0765255077.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765255077.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biotechnology Institute, University of Minnesota, St. Paul, MN 55108 USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA", 
            "Biotechnology Institute, University of Minnesota, St. Paul, MN 55108 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knights", 
        "givenName": "Dan", 
        "id": "sg:person.01054701157.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054701157.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11910-014-0492-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022761094", 
          "https://doi.org/10.1007/s11910-014-0492-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2011-12-6-r60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000243423", 
          "https://doi.org/10.1186/gb-2011-12-6-r60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-5-210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042123396", 
          "https://doi.org/10.1186/gb-2010-11-5-210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007740093", 
          "https://doi.org/10.1038/nature11234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bmt.1705690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004454674", 
          "https://doi.org/10.1038/sj.bmt.1705690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-4143-1_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002778129", 
          "https://doi.org/10.1007/978-1-4615-4143-1_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10096-013-1819-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050263449", 
          "https://doi.org/10.1007/s10096-013-1819-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026773283", 
          "https://doi.org/10.1038/nrc1318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034019934", 
          "https://doi.org/10.1038/nbt.2676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/mi.2013.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036949660", 
          "https://doi.org/10.1038/mi.2013.117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40168-015-0081-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029757572", 
          "https://doi.org/10.1186/s40168-015-0081-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04-28", 
    "datePublishedReg": "2016-04-28", 
    "description": "BACKGROUND: Bacteremia, or bloodstream infection (BSI), is a leading cause of death among patients with certain types of cancer. A previous study reported that intestinal domination, defined as occupation of at least 30 % of the microbiota by a single bacterial taxon, is associated with BSI in patients undergoing allo-HSCT. However, the impact of the intestinal microbiome before treatment initiation on the risk of subsequent BSI remains unclear. Our objective was to characterize the fecal microbiome collected before treatment to identify microbes that predict the risk of BSI.\nMETHODS: We sampled 28 patients with non-Hodgkin lymphoma undergoing allogeneic hematopoietic stem cell transplantation (HSCT) prior to administration of chemotherapy and characterized 16S ribosomal RNA genes using high-throughput DNA sequencing. We quantified bacterial taxa and used techniques from machine learning to identify microbial biomarkers that predicted subsequent BSI.\nRESULTS: We found that patients who developed subsequent BSI exhibited decreased overall diversity and decreased abundance of taxa including Barnesiellaceae, Coriobacteriaceae, Faecalibacterium, Christensenella, Dehalobacterium, Desulfovibrio, and Sutterella. Using machine-learning methods, we developed a BSI risk index capable of predicting BSI incidence with a sensitivity of 90 % at a specificity of 90 % based only on the pretreatment fecal microbiome.\nCONCLUSIONS: These results suggest that the gut microbiota can identify high-risk patients before HSCT and that manipulation of the gut microbiota for prevention of BSI in high-risk patients may be a useful direction for future research. This approach may inspire the development of similar microbiome-based diagnostic and prognostic models in other diseases.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13073-016-0301-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2705213", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1040124", 
        "issn": [
          "1756-994X"
        ], 
        "name": "Genome Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "hematopoietic stem cell transplantation", 
      "subsequent bloodstream infection", 
      "high-risk patients", 
      "bloodstream infections", 
      "gut microbiota", 
      "allogeneic hematopoietic stem cell transplantation", 
      "risk of BSI", 
      "prevention of BSI", 
      "fecal microbiome", 
      "administration of chemotherapy", 
      "stem cell transplantation", 
      "bacterial taxa", 
      "high-throughput DNA sequencing", 
      "ribosomal RNA genes", 
      "intestinal domination", 
      "BSI incidence", 
      "allo-HSCT", 
      "treatment initiation", 
      "cell transplantation", 
      "leading cause", 
      "abundance of taxa", 
      "intestinal microbiome", 
      "single bacterial taxon", 
      "patients", 
      "prognostic model", 
      "gut microbiome", 
      "RNA genes", 
      "overall diversity", 
      "taxa", 
      "microbial biomarkers", 
      "infection", 
      "microbiota", 
      "DNA sequencing", 
      "microbiome", 
      "risk", 
      "risk index", 
      "Barnesiellaceae", 
      "previous studies", 
      "bacteremia", 
      "chemotherapy", 
      "transplantation", 
      "cancer", 
      "incidence", 
      "disease", 
      "administration", 
      "Faecalibacterium", 
      "Sutterella", 
      "biomarkers", 
      "Hodgkin", 
      "prevention", 
      "death", 
      "treatment", 
      "genes", 
      "microbes", 
      "cause", 
      "Coriobacteriaceae", 
      "sequencing", 
      "Christensenella", 
      "diversity", 
      "Dehalobacterium", 
      "abundance", 
      "future research", 
      "Desulfovibrio", 
      "initiation", 
      "specificity", 
      "certain types", 
      "index", 
      "study", 
      "sensitivity", 
      "machine-learning methods", 
      "objective", 
      "manipulation", 
      "occupation", 
      "development", 
      "useful directions", 
      "types", 
      "impact", 
      "results", 
      "research", 
      "technique", 
      "method", 
      "model", 
      "approach", 
      "direction", 
      "domination", 
      "machine", 
      "BSI risk index", 
      "pretreatment fecal microbiome", 
      "Pretreatment gut microbiome", 
      "chemotherapy-related bloodstream infection"
    ], 
    "name": "Pretreatment gut microbiome predicts chemotherapy-related bloodstream infection", 
    "pagination": "49", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012949666"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13073-016-0301-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27121964"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13073-016-0301-4", 
      "https://app.dimensions.ai/details/publication/pub.1012949666"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_704.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13073-016-0301-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13073-016-0301-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13073-016-0301-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13073-016-0301-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13073-016-0301-4'


 

This table displays all metadata directly associated to this object as RDF triples.

354 TRIPLES      22 PREDICATES      147 URIs      126 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13073-016-0301-4 schema:about N012802e33d954a139c2a5944b678e298
2 N06ba4c566fdc4e9782a0ca15e4c8ade4
3 N369a522ce0ac43d1aba43b0706d5d917
4 N3d0fafbe465141898c38610ca106d351
5 N45ccb36b57c14831bddac51c7735d427
6 N460c46322e3c47f99b9cd6c4aa4778cc
7 N56e604db394447458d889f197a241411
8 N83d2f74860374904be411920626b528a
9 N86eea82f36ac4e7fa98ddb8ae707e32a
10 N8ca938ea3ed94cedaaf7cd6b090f6f4d
11 Nb42d749be7a143bb9e331312cdbecf59
12 Nb7605b365e3741e89334ac60a23c5148
13 Nc209c3f6cc0f4572bd510a6954ece9d7
14 Nc87ac70dcfbe4e1a957072054955566a
15 Ncd395bcc935c4a139224b407cdec5ff0
16 Nec47e7dbbc234bfbb77f37927c84b1fc
17 Nf7ff79d6ee1f4a0383c7c88e609e0e7a
18 Nf9763a7822ad480f85d50b7b694ebdc9
19 anzsrc-for:11
20 anzsrc-for:1112
21 schema:author Nb50fbae48df1408c85e8bd8e6a017427
22 schema:citation sg:pub.10.1007/978-1-4615-4143-1_2
23 sg:pub.10.1007/s10096-013-1819-7
24 sg:pub.10.1007/s11910-014-0492-2
25 sg:pub.10.1023/a:1010933404324
26 sg:pub.10.1038/mi.2013.117
27 sg:pub.10.1038/nature11234
28 sg:pub.10.1038/nbt.2676
29 sg:pub.10.1038/nmeth.f.303
30 sg:pub.10.1038/nrc1318
31 sg:pub.10.1038/sj.bmt.1705690
32 sg:pub.10.1186/gb-2010-11-5-210
33 sg:pub.10.1186/gb-2011-12-6-r60
34 sg:pub.10.1186/s40168-015-0081-x
35 schema:datePublished 2016-04-28
36 schema:datePublishedReg 2016-04-28
37 schema:description BACKGROUND: Bacteremia, or bloodstream infection (BSI), is a leading cause of death among patients with certain types of cancer. A previous study reported that intestinal domination, defined as occupation of at least 30 % of the microbiota by a single bacterial taxon, is associated with BSI in patients undergoing allo-HSCT. However, the impact of the intestinal microbiome before treatment initiation on the risk of subsequent BSI remains unclear. Our objective was to characterize the fecal microbiome collected before treatment to identify microbes that predict the risk of BSI. METHODS: We sampled 28 patients with non-Hodgkin lymphoma undergoing allogeneic hematopoietic stem cell transplantation (HSCT) prior to administration of chemotherapy and characterized 16S ribosomal RNA genes using high-throughput DNA sequencing. We quantified bacterial taxa and used techniques from machine learning to identify microbial biomarkers that predicted subsequent BSI. RESULTS: We found that patients who developed subsequent BSI exhibited decreased overall diversity and decreased abundance of taxa including Barnesiellaceae, Coriobacteriaceae, Faecalibacterium, Christensenella, Dehalobacterium, Desulfovibrio, and Sutterella. Using machine-learning methods, we developed a BSI risk index capable of predicting BSI incidence with a sensitivity of 90 % at a specificity of 90 % based only on the pretreatment fecal microbiome. CONCLUSIONS: These results suggest that the gut microbiota can identify high-risk patients before HSCT and that manipulation of the gut microbiota for prevention of BSI in high-risk patients may be a useful direction for future research. This approach may inspire the development of similar microbiome-based diagnostic and prognostic models in other diseases.
38 schema:genre article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N5e606b8ae84d4ea7a2e1aa0519bdac64
42 Nf37906a6db5b449fb9279ec62ffb9dd0
43 sg:journal.1040124
44 schema:keywords BSI incidence
45 BSI risk index
46 Barnesiellaceae
47 Christensenella
48 Coriobacteriaceae
49 DNA sequencing
50 Dehalobacterium
51 Desulfovibrio
52 Faecalibacterium
53 Hodgkin
54 Pretreatment gut microbiome
55 RNA genes
56 Sutterella
57 abundance
58 abundance of taxa
59 administration
60 administration of chemotherapy
61 allo-HSCT
62 allogeneic hematopoietic stem cell transplantation
63 approach
64 bacteremia
65 bacterial taxa
66 biomarkers
67 bloodstream infections
68 cancer
69 cause
70 cell transplantation
71 certain types
72 chemotherapy
73 chemotherapy-related bloodstream infection
74 death
75 development
76 direction
77 disease
78 diversity
79 domination
80 fecal microbiome
81 future research
82 genes
83 gut microbiome
84 gut microbiota
85 hematopoietic stem cell transplantation
86 high-risk patients
87 high-throughput DNA sequencing
88 impact
89 incidence
90 index
91 infection
92 initiation
93 intestinal domination
94 intestinal microbiome
95 leading cause
96 machine
97 machine-learning methods
98 manipulation
99 method
100 microbes
101 microbial biomarkers
102 microbiome
103 microbiota
104 model
105 objective
106 occupation
107 overall diversity
108 patients
109 pretreatment fecal microbiome
110 prevention
111 prevention of BSI
112 previous studies
113 prognostic model
114 research
115 results
116 ribosomal RNA genes
117 risk
118 risk index
119 risk of BSI
120 sensitivity
121 sequencing
122 single bacterial taxon
123 specificity
124 stem cell transplantation
125 study
126 subsequent bloodstream infection
127 taxa
128 technique
129 transplantation
130 treatment
131 treatment initiation
132 types
133 useful directions
134 schema:name Pretreatment gut microbiome predicts chemotherapy-related bloodstream infection
135 schema:pagination 49
136 schema:productId N8b28f393a5dd4443ac9488e359a8b03d
137 N8d95d3691aaf42858ea3a93fed487d3f
138 Nb14a20ea4d564ef1bfb203887eafeae1
139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012949666
140 https://doi.org/10.1186/s13073-016-0301-4
141 schema:sdDatePublished 2021-12-01T19:37
142 schema:sdLicense https://scigraph.springernature.com/explorer/license/
143 schema:sdPublisher N2892877f6d734789977efaa8c47402bd
144 schema:url https://doi.org/10.1186/s13073-016-0301-4
145 sgo:license sg:explorer/license/
146 sgo:sdDataset articles
147 rdf:type schema:ScholarlyArticle
148 N012802e33d954a139c2a5944b678e298 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Middle Aged
150 rdf:type schema:DefinedTerm
151 N06ba4c566fdc4e9782a0ca15e4c8ade4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Machine Learning
153 rdf:type schema:DefinedTerm
154 N09a9211509e6401c8950c88d049878b6 rdf:first sg:person.0732370777.35
155 rdf:rest Nf446a6519e864e6fad969c23fca318c2
156 N2892877f6d734789977efaa8c47402bd schema:name Springer Nature - SN SciGraph project
157 rdf:type schema:Organization
158 N3059befe9481493c90557fa9d3c90f30 rdf:first sg:person.01334747705.42
159 rdf:rest Nf208c151c98b46518f626c2c177f223c
160 N313dedd514004759a5123bf81603fe95 rdf:first sg:person.0602663763.35
161 rdf:rest N3059befe9481493c90557fa9d3c90f30
162 N369a522ce0ac43d1aba43b0706d5d917 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name RNA, Ribosomal, 16S
164 rdf:type schema:DefinedTerm
165 N3d0fafbe465141898c38610ca106d351 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Sequence Analysis, RNA
167 rdf:type schema:DefinedTerm
168 N45ccb36b57c14831bddac51c7735d427 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Female
170 rdf:type schema:DefinedTerm
171 N460c46322e3c47f99b9cd6c4aa4778cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Antineoplastic Agents
173 rdf:type schema:DefinedTerm
174 N56e604db394447458d889f197a241411 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Incidence
176 rdf:type schema:DefinedTerm
177 N5e606b8ae84d4ea7a2e1aa0519bdac64 schema:issueNumber 1
178 rdf:type schema:PublicationIssue
179 N7a665e31ba6b448490c24415624c91bd rdf:first sg:person.01331641010.22
180 rdf:rest Nd84745a4fcfa489c968a946ae5b3df8c
181 N83d2f74860374904be411920626b528a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Feces
183 rdf:type schema:DefinedTerm
184 N86eea82f36ac4e7fa98ddb8ae707e32a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Lymphoma, Non-Hodgkin
186 rdf:type schema:DefinedTerm
187 N8b28f393a5dd4443ac9488e359a8b03d schema:name dimensions_id
188 schema:value pub.1012949666
189 rdf:type schema:PropertyValue
190 N8ca938ea3ed94cedaaf7cd6b090f6f4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Hematopoietic Stem Cell Transplantation
192 rdf:type schema:DefinedTerm
193 N8d95d3691aaf42858ea3a93fed487d3f schema:name pubmed_id
194 schema:value 27121964
195 rdf:type schema:PropertyValue
196 Nb14a20ea4d564ef1bfb203887eafeae1 schema:name doi
197 schema:value 10.1186/s13073-016-0301-4
198 rdf:type schema:PropertyValue
199 Nb42d749be7a143bb9e331312cdbecf59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Humans
201 rdf:type schema:DefinedTerm
202 Nb50fbae48df1408c85e8bd8e6a017427 rdf:first sg:person.0577233753.78
203 rdf:rest N7a665e31ba6b448490c24415624c91bd
204 Nb7605b365e3741e89334ac60a23c5148 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Risk Factors
206 rdf:type schema:DefinedTerm
207 Nc209c3f6cc0f4572bd510a6954ece9d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Retrospective Studies
209 rdf:type schema:DefinedTerm
210 Nc87ac70dcfbe4e1a957072054955566a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Bacteria
212 rdf:type schema:DefinedTerm
213 Ncd395bcc935c4a139224b407cdec5ff0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
214 schema:name Male
215 rdf:type schema:DefinedTerm
216 Nd4d67591e9da4beba0443005894dfe36 rdf:first sg:person.01054701157.41
217 rdf:rest rdf:nil
218 Nd84745a4fcfa489c968a946ae5b3df8c rdf:first sg:person.0602226221.92
219 rdf:rest N313dedd514004759a5123bf81603fe95
220 Nec47e7dbbc234bfbb77f37927c84b1fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
221 schema:name Bacteremia
222 rdf:type schema:DefinedTerm
223 Nf208c151c98b46518f626c2c177f223c rdf:first sg:person.01137234721.33
224 rdf:rest N09a9211509e6401c8950c88d049878b6
225 Nf37906a6db5b449fb9279ec62ffb9dd0 schema:volumeNumber 8
226 rdf:type schema:PublicationVolume
227 Nf446a6519e864e6fad969c23fca318c2 rdf:first sg:person.01015224115.68
228 rdf:rest Nfeb4796a473f4649b044c047942bac12
229 Nf7ff79d6ee1f4a0383c7c88e609e0e7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
230 schema:name Genetic Variation
231 rdf:type schema:DefinedTerm
232 Nf9763a7822ad480f85d50b7b694ebdc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
233 schema:name Gastrointestinal Microbiome
234 rdf:type schema:DefinedTerm
235 Nfeb4796a473f4649b044c047942bac12 rdf:first sg:person.0765255077.98
236 rdf:rest Nd4d67591e9da4beba0443005894dfe36
237 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
238 schema:name Medical and Health Sciences
239 rdf:type schema:DefinedTerm
240 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
241 schema:name Oncology and Carcinogenesis
242 rdf:type schema:DefinedTerm
243 sg:grant.2705213 http://pending.schema.org/fundedItem sg:pub.10.1186/s13073-016-0301-4
244 rdf:type schema:MonetaryGrant
245 sg:journal.1040124 schema:issn 1756-994X
246 schema:name Genome Medicine
247 schema:publisher Springer Nature
248 rdf:type schema:Periodical
249 sg:person.01015224115.68 schema:affiliation grid-institutes:grid.4817.a
250 schema:familyName de la Cochetiere
251 schema:givenName Marie France
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015224115.68
253 rdf:type schema:Person
254 sg:person.01054701157.41 schema:affiliation grid-institutes:grid.17635.36
255 schema:familyName Knights
256 schema:givenName Dan
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054701157.41
258 rdf:type schema:Person
259 sg:person.01137234721.33 schema:affiliation grid-institutes:grid.4817.a
260 schema:familyName Potel
261 schema:givenName Gilles
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137234721.33
263 rdf:type schema:Person
264 sg:person.01331641010.22 schema:affiliation grid-institutes:grid.17635.36
265 schema:familyName Al-Ghalith
266 schema:givenName Gabriel A.
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331641010.22
268 rdf:type schema:Person
269 sg:person.01334747705.42 schema:affiliation grid-institutes:grid.277151.7
270 schema:familyName Gastinne
271 schema:givenName Thomas
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334747705.42
273 rdf:type schema:Person
274 sg:person.0577233753.78 schema:affiliation grid-institutes:grid.17635.36
275 schema:familyName Montassier
276 schema:givenName Emmanuel
277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577233753.78
278 rdf:type schema:Person
279 sg:person.0602226221.92 schema:affiliation grid-institutes:grid.17635.36
280 schema:familyName Ward
281 schema:givenName Tonya
282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602226221.92
283 rdf:type schema:Person
284 sg:person.0602663763.35 schema:affiliation grid-institutes:grid.277151.7
285 schema:familyName Corvec
286 schema:givenName Stephane
287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602663763.35
288 rdf:type schema:Person
289 sg:person.0732370777.35 schema:affiliation grid-institutes:grid.277151.7
290 schema:familyName Moreau
291 schema:givenName Phillipe
292 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732370777.35
293 rdf:type schema:Person
294 sg:person.0765255077.98 schema:affiliation grid-institutes:grid.4817.a
295 schema:familyName Batard
296 schema:givenName Eric
297 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765255077.98
298 rdf:type schema:Person
299 sg:pub.10.1007/978-1-4615-4143-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002778129
300 https://doi.org/10.1007/978-1-4615-4143-1_2
301 rdf:type schema:CreativeWork
302 sg:pub.10.1007/s10096-013-1819-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050263449
303 https://doi.org/10.1007/s10096-013-1819-7
304 rdf:type schema:CreativeWork
305 sg:pub.10.1007/s11910-014-0492-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022761094
306 https://doi.org/10.1007/s11910-014-0492-2
307 rdf:type schema:CreativeWork
308 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
309 https://doi.org/10.1023/a:1010933404324
310 rdf:type schema:CreativeWork
311 sg:pub.10.1038/mi.2013.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036949660
312 https://doi.org/10.1038/mi.2013.117
313 rdf:type schema:CreativeWork
314 sg:pub.10.1038/nature11234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007740093
315 https://doi.org/10.1038/nature11234
316 rdf:type schema:CreativeWork
317 sg:pub.10.1038/nbt.2676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034019934
318 https://doi.org/10.1038/nbt.2676
319 rdf:type schema:CreativeWork
320 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
321 https://doi.org/10.1038/nmeth.f.303
322 rdf:type schema:CreativeWork
323 sg:pub.10.1038/nrc1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026773283
324 https://doi.org/10.1038/nrc1318
325 rdf:type schema:CreativeWork
326 sg:pub.10.1038/sj.bmt.1705690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004454674
327 https://doi.org/10.1038/sj.bmt.1705690
328 rdf:type schema:CreativeWork
329 sg:pub.10.1186/gb-2010-11-5-210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042123396
330 https://doi.org/10.1186/gb-2010-11-5-210
331 rdf:type schema:CreativeWork
332 sg:pub.10.1186/gb-2011-12-6-r60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000243423
333 https://doi.org/10.1186/gb-2011-12-6-r60
334 rdf:type schema:CreativeWork
335 sg:pub.10.1186/s40168-015-0081-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029757572
336 https://doi.org/10.1186/s40168-015-0081-x
337 rdf:type schema:CreativeWork
338 grid-institutes:grid.17635.36 schema:alternateName Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455 USA
339 Biotechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
340 Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
341 schema:name Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455 USA
342 Biotechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
343 Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
344 Université de Nantes, EA 3826 Thérapeutiques cliniques et expérimentales des infections. Faculté de médecine, 1 Rue G Veil, Nantes, 44000 France
345 rdf:type schema:Organization
346 grid-institutes:grid.277151.7 schema:alternateName Hematology Department, Nantes University Hospital, Nantes, France
347 Nantes University Hospital, Microbiology Laboratory, Nantes, France
348 schema:name Hematology Department, Nantes University Hospital, Nantes, France
349 Nantes University Hospital, Microbiology Laboratory, Nantes, France
350 Université de Nantes, EA 3826 Thérapeutiques cliniques et expérimentales des infections. Faculté de médecine, 1 Rue G Veil, Nantes, 44000 France
351 rdf:type schema:Organization
352 grid-institutes:grid.4817.a schema:alternateName Université de Nantes, EA 3826 Thérapeutiques cliniques et expérimentales des infections. Faculté de médecine, 1 Rue G Veil, Nantes, 44000 France
353 schema:name Université de Nantes, EA 3826 Thérapeutiques cliniques et expérimentales des infections. Faculté de médecine, 1 Rue G Veil, Nantes, 44000 France
354 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...