An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-04-21

AUTHORS

Jun Chen, Kerry Wright, John M. Davis, Patricio Jeraldo, Eric V. Marietta, Joseph Murray, Heidi Nelson, Eric L. Matteson, Veena Taneja

ABSTRACT

BackgroundThe adaptive immune response in rheumatoid arthritis (RA) is influenced by an interaction between host genetics and environment, particularly the host microbiome. Association of the gut microbiota with various diseases has been reported, though the specific components of the microbiota that affect the host response leading to disease remain unknown. However, there is limited information on the role of gut microbiota in RA. In this study we aimed to define a microbial and metabolite profile that could predict disease status. In addition, we aimed to generate a humanized model of arthritis to confirm the RA-associated microbe.MethodsTo identify an RA biomarker profile, the 16S ribosomal DNA of fecal samples from RA patients, first-degree relatives (to rule out environment/background as confounding factors), and random healthy non-RA controls were sequenced. Analysis of metabolites and their association with specific taxa was performed to investigate a potential mechanistic link. The role of an RA-associated microbe was confirmed using a human epithelial cell line and a humanized mouse model of arthritis.ResultsPatients with RA exhibited decreased gut microbial diversity compared with controls, which correlated with disease duration and autoantibody levels. A taxon-level analysis suggested an expansion of rare taxa, Actinobacteria, with a decrease in abundant taxa in patients with RA compared with controls. Prediction models based on the random forests algorithm suggested that three genera, Collinsella, Eggerthella, and Faecalibacterium, segregated with RA. The abundance of Collinsella correlated strongly with high levels of alpha-aminoadipic acid and asparagine as well as production of the proinflammatory cytokine IL-17A. A role for Collinsella in altering gut permeability and disease severity was confirmed in experimental arthritis.ConclusionsThese observations suggest dysbiosis in RA patients resulting from the abundance of certain rare bacterial lineages. A correlation between the intestinal microbiota and metabolic signatures could determine a predictive profile for disease causation and progression. More... »

PAGES

43

References to SciGraph publications

  • 2008-11-30. A core gut microbiome in obese and lean twins in NATURE
  • 2013-08-25. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences in NATURE BIOTECHNOLOGY
  • 2015-07-27. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment in NATURE MEDICINE
  • 2014-04-16. Dynamics and associations of microbial community types across the human body in NATURE
  • 2012-02-23. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic–anoxic interphases in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2015-03-29. Body mass index and the risk of rheumatoid arthritis: a systematic review and dose-response meta-analysis in ARTHRITIS RESEARCH & THERAPY
  • 2001-10. Random Forests in MACHINE LEARNING
  • 2014-06-10. The multifactorial role of neutrophils in rheumatoid arthritis in NATURE REVIEWS RHEUMATOLOGY
  • 2011-06-24. Metagenomic biomarker discovery and explanation in GENOME BIOLOGY
  • 2012-09-26. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment in GENOME BIOLOGY
  • 2009-12-17. Influence of microbial environment on autoimmunity in NATURE IMMUNOLOGY
  • 2006-08. Mechanisms of Disease: genetic susceptibility and environmental triggers in the development of rheumatoid arthritis in NATURE REVIEWS RHEUMATOLOGY
  • 2011-07-23. Environmental Exposures and Rheumatoid Arthritis Risk in CURRENT RHEUMATOLOGY REPORTS
  • 2011-04-20. Enterotypes of the human gut microbiome in NATURE
  • 2011-07-21. Anti-CXCL5 therapy ameliorates IL-17-induced arthritis by decreasing joint vascularization in ANGIOGENESIS
  • 2013-06-18. Innate immune recognition of the microbiota promotes host-microbial symbiosis in NATURE IMMUNOLOGY
  • 2012-01-29. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis in NATURE GENETICS
  • 2007-10-17. The Human Microbiome Project in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13073-016-0299-7

    DOI

    http://dx.doi.org/10.1186/s13073-016-0299-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009016129

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27102666


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Immunology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Arthritis, Rheumatoid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biodiversity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Case-Control Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Line", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chemokines", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cytokines", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Models, Animal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Feces", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gastrointestinal Microbiome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Intestinal Mucosa", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Permeability", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Ribosomal, 16S", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Severity of Illness Index", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Jun", 
            "id": "sg:person.01023412627.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medicine, Division of Rheumatology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Department of Medicine, Division of Rheumatology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wright", 
            "givenName": "Kerry", 
            "id": "sg:person.01246624655.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246624655.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medicine, Division of Rheumatology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Department of Medicine, Division of Rheumatology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Davis", 
            "givenName": "John M.", 
            "id": "sg:person.01023321662.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023321662.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Surgery, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Department of Surgery, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jeraldo", 
            "givenName": "Patricio", 
            "id": "sg:person.0762067443.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762067443.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Gastroenterology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Department of Gastroenterology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marietta", 
            "givenName": "Eric V.", 
            "id": "sg:person.01323000657.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323000657.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Gastroenterology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Department of Gastroenterology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Murray", 
            "givenName": "Joseph", 
            "id": "sg:person.012411247212.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411247212.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Surgery, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Department of Surgery, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nelson", 
            "givenName": "Heidi", 
            "id": "sg:person.0703056235.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703056235.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medicine, Division of Rheumatology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Department of Medicine, Division of Rheumatology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Matteson", 
            "givenName": "Eric L.", 
            "id": "sg:person.01317155420.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317155420.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Immunology and Division of Rheumatology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Department of Immunology and Division of Rheumatology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taneja", 
            "givenName": "Veena", 
            "id": "sg:person.01025031743.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025031743.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10456-011-9227-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032745758", 
              "https://doi.org/10.1007/s10456-011-9227-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009917183", 
              "https://doi.org/10.1038/nature06244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni.2635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017265756", 
              "https://doi.org/10.1038/ni.2635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2012-13-9-r79", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029450096", 
              "https://doi.org/10.1186/gb-2012-13-9-r79"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13075-015-0601-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034435371", 
              "https://doi.org/10.1186/s13075-015-0601-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni.1801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004558829", 
              "https://doi.org/10.1038/ni.1801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022430209", 
              "https://doi.org/10.1038/nature13178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030170002", 
              "https://doi.org/10.1038/nature07540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.3914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009083133", 
              "https://doi.org/10.1038/nm.3914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-6-r60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000243423", 
              "https://doi.org/10.1186/gb-2011-12-6-r60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034019934", 
              "https://doi.org/10.1038/nbt.2676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.1076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044436764", 
              "https://doi.org/10.1038/ng.1076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051087848", 
              "https://doi.org/10.1038/ismej.2012.5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11926-011-0203-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022343355", 
              "https://doi.org/10.1007/s11926-011-0203-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026204536", 
              "https://doi.org/10.1038/nature09944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncprheum0249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001647682", 
              "https://doi.org/10.1038/ncprheum0249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrrheum.2014.80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052201736", 
              "https://doi.org/10.1038/nrrheum.2014.80"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-04-21", 
        "datePublishedReg": "2016-04-21", 
        "description": "BackgroundThe adaptive immune response in rheumatoid arthritis (RA) is influenced by an interaction between host genetics and environment, particularly the host microbiome. Association of the gut microbiota with various diseases has been reported, though the specific components of the microbiota that affect the host response leading to disease remain unknown. However, there is limited information on the role of gut microbiota in RA. In this study we aimed to define a microbial and metabolite profile that could predict disease status. In addition, we aimed to generate a humanized model of arthritis to confirm the RA-associated microbe.MethodsTo identify an RA biomarker profile, the 16S ribosomal DNA of fecal samples from RA patients, first-degree relatives (to rule out environment/background as confounding factors), and random healthy non-RA controls were sequenced. Analysis of metabolites and their association with specific taxa was performed to investigate a potential mechanistic link. The role of an RA-associated microbe was confirmed using a human epithelial cell line and a humanized mouse model of arthritis.ResultsPatients with RA exhibited decreased gut microbial diversity compared with controls, which correlated with disease duration and autoantibody levels. A taxon-level analysis suggested an expansion of rare taxa, Actinobacteria, with a decrease in abundant taxa in patients with RA compared with controls. Prediction models based on the random forests algorithm suggested that three genera, Collinsella, Eggerthella, and Faecalibacterium, segregated with RA. The abundance of Collinsella correlated strongly with high levels of alpha-aminoadipic acid and asparagine as well as production of the proinflammatory cytokine IL-17A. A role for Collinsella in altering gut permeability and disease severity was confirmed in experimental arthritis.ConclusionsThese observations suggest dysbiosis in RA patients resulting from the abundance of certain rare bacterial lineages. A correlation between the intestinal microbiota and metabolic signatures could determine a predictive profile for disease causation and progression.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13073-016-0299-7", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2462504", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2666844", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2696408", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1040124", 
            "issn": [
              "1756-994X"
            ], 
            "name": "Genome Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "keywords": [
          "rheumatoid arthritis", 
          "RA patients", 
          "gut microbiota", 
          "non-RA controls", 
          "adaptive immune responses", 
          "humanized mouse model", 
          "cytokine IL-17A.", 
          "first-degree relatives", 
          "abundance of Collinsella", 
          "potential mechanistic link", 
          "human epithelial cell lines", 
          "gut microbial diversity", 
          "autoantibody levels", 
          "gut permeability", 
          "disease duration", 
          "IL-17A.", 
          "experimental arthritis", 
          "epithelial cell line", 
          "immune response", 
          "humanized model", 
          "mouse model", 
          "arthritis", 
          "intestinal microbiota", 
          "biomarker profiles", 
          "alpha-aminoadipic acid", 
          "host response", 
          "intestinal microbes", 
          "disease status", 
          "disease severity", 
          "metabolic signatures", 
          "patients", 
          "ConclusionsThese observations", 
          "host genetics", 
          "predictive profiles", 
          "taxon-level analysis", 
          "Collinsella", 
          "fecal samples", 
          "microbiota", 
          "cell lines", 
          "disease causation", 
          "mechanistic link", 
          "host microbiome", 
          "disease", 
          "metabolite profiles", 
          "analysis of metabolites", 
          "association", 
          "limited information", 
          "ResultsPatients", 
          "high levels", 
          "dysbiosis", 
          "Faecalibacterium", 
          "control", 
          "progression", 
          "severity", 
          "response", 
          "specific components", 
          "Eggerthella", 
          "role", 
          "levels", 
          "MethodsTo", 
          "duration", 
          "profile", 
          "microbiome", 
          "status", 
          "metabolites", 
          "causation", 
          "relatives", 
          "decrease", 
          "microbes", 
          "study", 
          "correlation", 
          "analysis", 
          "acid", 
          "genetics", 
          "DNA", 
          "prediction model", 
          "samples", 
          "specific taxa", 
          "addition", 
          "microbial diversity", 
          "lineages", 
          "lines", 
          "permeability", 
          "model", 
          "asparagine", 
          "production", 
          "expansion", 
          "information", 
          "observations", 
          "random forest algorithm", 
          "components", 
          "link", 
          "signatures", 
          "forest algorithm", 
          "bacterial lineages", 
          "interaction", 
          "rare taxa", 
          "ribosomal DNA", 
          "abundance", 
          "abundant taxa", 
          "taxa", 
          "Actinobacteria", 
          "genus", 
          "diversity", 
          "environment", 
          "algorithm"
        ], 
        "name": "An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis", 
        "pagination": "43", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009016129"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13073-016-0299-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27102666"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13073-016-0299-7", 
          "https://app.dimensions.ai/details/publication/pub.1009016129"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_680.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13073-016-0299-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13073-016-0299-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13073-016-0299-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13073-016-0299-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13073-016-0299-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    428 TRIPLES      21 PREDICATES      179 URIs      150 LITERALS      34 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13073-016-0299-7 schema:about N04e19f7980cb41b5877bd2a3bfabf1da
    2 N19334d92d2d440a78e3adf5df8df0f03
    3 N3560a8fc866a480b89c10e39c30d534b
    4 N36608c5d185c42c8aa51fe0e7d1b235c
    5 N3fd73b4e01eb4d8a88554906dce5fb20
    6 N4064044d4fb94f53b01b085934deba79
    7 N484d8c5397d1441ab2425f13178c7648
    8 N4b4dfc614ec14b4b849deb336b267db9
    9 N4f07e257ad884fcd89100db5873af514
    10 N538b4a959a0e4c2b9ed81603e6745703
    11 N5dc53086203b483d84eff24bcf982e74
    12 N651d16fdcd4d46ccb029530e71cb1f81
    13 N6ace7d777cc94c0b8cec3c820d778ad1
    14 N73e1177bae224741a30e496c41124be4
    15 N843aab68c44841bf9b344f4283c0771e
    16 N8c022c05ac8d483b86e6001c63d2212d
    17 N918d3235bb4d4fb8bfc24a6d7e11bef9
    18 Naf8496f9d8784fc9916ff4ba143314ff
    19 Nb65d5130d8fe4e05bfd21df40bb0d0b6
    20 Nbba2f2b8e0a94ef28a2e2d2948a3d5e2
    21 Nbc3999f51861400ebaab651a78042e83
    22 Nc10302c00e254956ba4f8e0c56af7783
    23 Nc614b6e26a2f4de68f3f136b1e1a55ad
    24 Ncd54e51459074fb78306f49bbbbb2ede
    25 Nd218928aaf0542c9aeb85915bbc35f28
    26 Ndedfcb94a2ab4c828f67ab03c5c16d7f
    27 Nf0d13d9f148c4ae5bae9dcc72ac39cbd
    28 anzsrc-for:06
    29 anzsrc-for:0605
    30 anzsrc-for:11
    31 anzsrc-for:1103
    32 anzsrc-for:1107
    33 schema:author Nbe72f11e86eb4b9c938a5dd5702640f1
    34 schema:citation sg:pub.10.1007/s10456-011-9227-z
    35 sg:pub.10.1007/s11926-011-0203-9
    36 sg:pub.10.1023/a:1010933404324
    37 sg:pub.10.1038/ismej.2012.5
    38 sg:pub.10.1038/nature06244
    39 sg:pub.10.1038/nature07540
    40 sg:pub.10.1038/nature09944
    41 sg:pub.10.1038/nature13178
    42 sg:pub.10.1038/nbt.2676
    43 sg:pub.10.1038/ncprheum0249
    44 sg:pub.10.1038/ng.1076
    45 sg:pub.10.1038/ni.1801
    46 sg:pub.10.1038/ni.2635
    47 sg:pub.10.1038/nm.3914
    48 sg:pub.10.1038/nrrheum.2014.80
    49 sg:pub.10.1186/gb-2011-12-6-r60
    50 sg:pub.10.1186/gb-2012-13-9-r79
    51 sg:pub.10.1186/s13075-015-0601-x
    52 schema:datePublished 2016-04-21
    53 schema:datePublishedReg 2016-04-21
    54 schema:description BackgroundThe adaptive immune response in rheumatoid arthritis (RA) is influenced by an interaction between host genetics and environment, particularly the host microbiome. Association of the gut microbiota with various diseases has been reported, though the specific components of the microbiota that affect the host response leading to disease remain unknown. However, there is limited information on the role of gut microbiota in RA. In this study we aimed to define a microbial and metabolite profile that could predict disease status. In addition, we aimed to generate a humanized model of arthritis to confirm the RA-associated microbe.MethodsTo identify an RA biomarker profile, the 16S ribosomal DNA of fecal samples from RA patients, first-degree relatives (to rule out environment/background as confounding factors), and random healthy non-RA controls were sequenced. Analysis of metabolites and their association with specific taxa was performed to investigate a potential mechanistic link. The role of an RA-associated microbe was confirmed using a human epithelial cell line and a humanized mouse model of arthritis.ResultsPatients with RA exhibited decreased gut microbial diversity compared with controls, which correlated with disease duration and autoantibody levels. A taxon-level analysis suggested an expansion of rare taxa, Actinobacteria, with a decrease in abundant taxa in patients with RA compared with controls. Prediction models based on the random forests algorithm suggested that three genera, Collinsella, Eggerthella, and Faecalibacterium, segregated with RA. The abundance of Collinsella correlated strongly with high levels of alpha-aminoadipic acid and asparagine as well as production of the proinflammatory cytokine IL-17A. A role for Collinsella in altering gut permeability and disease severity was confirmed in experimental arthritis.ConclusionsThese observations suggest dysbiosis in RA patients resulting from the abundance of certain rare bacterial lineages. A correlation between the intestinal microbiota and metabolic signatures could determine a predictive profile for disease causation and progression.
    55 schema:genre article
    56 schema:isAccessibleForFree true
    57 schema:isPartOf Nd31029967a5b4347ad39c220a736adf8
    58 Nf1f88b19f3794831be342b741a8c74eb
    59 sg:journal.1040124
    60 schema:keywords Actinobacteria
    61 Collinsella
    62 ConclusionsThese observations
    63 DNA
    64 Eggerthella
    65 Faecalibacterium
    66 IL-17A.
    67 MethodsTo
    68 RA patients
    69 ResultsPatients
    70 abundance
    71 abundance of Collinsella
    72 abundant taxa
    73 acid
    74 adaptive immune responses
    75 addition
    76 algorithm
    77 alpha-aminoadipic acid
    78 analysis
    79 analysis of metabolites
    80 arthritis
    81 asparagine
    82 association
    83 autoantibody levels
    84 bacterial lineages
    85 biomarker profiles
    86 causation
    87 cell lines
    88 components
    89 control
    90 correlation
    91 cytokine IL-17A.
    92 decrease
    93 disease
    94 disease causation
    95 disease duration
    96 disease severity
    97 disease status
    98 diversity
    99 duration
    100 dysbiosis
    101 environment
    102 epithelial cell line
    103 expansion
    104 experimental arthritis
    105 fecal samples
    106 first-degree relatives
    107 forest algorithm
    108 genetics
    109 genus
    110 gut microbial diversity
    111 gut microbiota
    112 gut permeability
    113 high levels
    114 host genetics
    115 host microbiome
    116 host response
    117 human epithelial cell lines
    118 humanized model
    119 humanized mouse model
    120 immune response
    121 information
    122 interaction
    123 intestinal microbes
    124 intestinal microbiota
    125 levels
    126 limited information
    127 lineages
    128 lines
    129 link
    130 mechanistic link
    131 metabolic signatures
    132 metabolite profiles
    133 metabolites
    134 microbes
    135 microbial diversity
    136 microbiome
    137 microbiota
    138 model
    139 mouse model
    140 non-RA controls
    141 observations
    142 patients
    143 permeability
    144 potential mechanistic link
    145 prediction model
    146 predictive profiles
    147 production
    148 profile
    149 progression
    150 random forest algorithm
    151 rare taxa
    152 relatives
    153 response
    154 rheumatoid arthritis
    155 ribosomal DNA
    156 role
    157 samples
    158 severity
    159 signatures
    160 specific components
    161 specific taxa
    162 status
    163 study
    164 taxa
    165 taxon-level analysis
    166 schema:name An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis
    167 schema:pagination 43
    168 schema:productId N0571b0e2ac1245fe980151d885384c8a
    169 N0663beeaeb394e048419a0fb3ca80e7b
    170 Ne27b6adc3f0e464d86d048f305e3e427
    171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009016129
    172 https://doi.org/10.1186/s13073-016-0299-7
    173 schema:sdDatePublished 2022-12-01T06:34
    174 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    175 schema:sdPublisher Nea98099bcfda4f46bb67bd4082f75289
    176 schema:url https://doi.org/10.1186/s13073-016-0299-7
    177 sgo:license sg:explorer/license/
    178 sgo:sdDataset articles
    179 rdf:type schema:ScholarlyArticle
    180 N039934c4420244329722373397ebc3f1 rdf:first sg:person.01323000657.09
    181 rdf:rest Nf43be4c4cb464428a38188ff85093c21
    182 N04e19f7980cb41b5877bd2a3bfabf1da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Cytokines
    184 rdf:type schema:DefinedTerm
    185 N0571b0e2ac1245fe980151d885384c8a schema:name doi
    186 schema:value 10.1186/s13073-016-0299-7
    187 rdf:type schema:PropertyValue
    188 N0663beeaeb394e048419a0fb3ca80e7b schema:name pubmed_id
    189 schema:value 27102666
    190 rdf:type schema:PropertyValue
    191 N19334d92d2d440a78e3adf5df8df0f03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Severity of Illness Index
    193 rdf:type schema:DefinedTerm
    194 N28f95eef6f954cbc834f490a967f0615 rdf:first sg:person.0703056235.52
    195 rdf:rest Na2ff13a3172e4ec8bf1e016d464003c1
    196 N3560a8fc866a480b89c10e39c30d534b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Biodiversity
    198 rdf:type schema:DefinedTerm
    199 N36608c5d185c42c8aa51fe0e7d1b235c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Female
    201 rdf:type schema:DefinedTerm
    202 N3fd73b4e01eb4d8a88554906dce5fb20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name Feces
    204 rdf:type schema:DefinedTerm
    205 N4064044d4fb94f53b01b085934deba79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Gastrointestinal Microbiome
    207 rdf:type schema:DefinedTerm
    208 N42c7fb688f3e465491ef151290e7b80b rdf:first sg:person.01023321662.65
    209 rdf:rest Ne1b920b7363f465184008f18c1e92a18
    210 N4711f7ce0a094a9f9a5090e8571f35b6 rdf:first sg:person.01246624655.47
    211 rdf:rest N42c7fb688f3e465491ef151290e7b80b
    212 N484d8c5397d1441ab2425f13178c7648 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Arthritis, Rheumatoid
    214 rdf:type schema:DefinedTerm
    215 N4b4dfc614ec14b4b849deb336b267db9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    216 schema:name Male
    217 rdf:type schema:DefinedTerm
    218 N4f07e257ad884fcd89100db5873af514 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    219 schema:name Models, Biological
    220 rdf:type schema:DefinedTerm
    221 N538b4a959a0e4c2b9ed81603e6745703 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    222 schema:name Computational Biology
    223 rdf:type schema:DefinedTerm
    224 N5dc53086203b483d84eff24bcf982e74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    225 schema:name Humans
    226 rdf:type schema:DefinedTerm
    227 N651d16fdcd4d46ccb029530e71cb1f81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    228 schema:name Mice
    229 rdf:type schema:DefinedTerm
    230 N6ace7d777cc94c0b8cec3c820d778ad1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    231 schema:name Adult
    232 rdf:type schema:DefinedTerm
    233 N73e1177bae224741a30e496c41124be4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    234 schema:name Case-Control Studies
    235 rdf:type schema:DefinedTerm
    236 N843aab68c44841bf9b344f4283c0771e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    237 schema:name Disease Models, Animal
    238 rdf:type schema:DefinedTerm
    239 N8c022c05ac8d483b86e6001c63d2212d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    240 schema:name Intestinal Mucosa
    241 rdf:type schema:DefinedTerm
    242 N918d3235bb4d4fb8bfc24a6d7e11bef9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    243 schema:name Middle Aged
    244 rdf:type schema:DefinedTerm
    245 N92f6abd9a2064f579a336bd8a13b2120 rdf:first sg:person.01025031743.69
    246 rdf:rest rdf:nil
    247 Na2ff13a3172e4ec8bf1e016d464003c1 rdf:first sg:person.01317155420.51
    248 rdf:rest N92f6abd9a2064f579a336bd8a13b2120
    249 Naf8496f9d8784fc9916ff4ba143314ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    250 schema:name RNA, Ribosomal, 16S
    251 rdf:type schema:DefinedTerm
    252 Nb65d5130d8fe4e05bfd21df40bb0d0b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    253 schema:name Metabolome
    254 rdf:type schema:DefinedTerm
    255 Nbba2f2b8e0a94ef28a2e2d2948a3d5e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    256 schema:name Aged
    257 rdf:type schema:DefinedTerm
    258 Nbc3999f51861400ebaab651a78042e83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    259 schema:name Permeability
    260 rdf:type schema:DefinedTerm
    261 Nbe72f11e86eb4b9c938a5dd5702640f1 rdf:first sg:person.01023412627.52
    262 rdf:rest N4711f7ce0a094a9f9a5090e8571f35b6
    263 Nc10302c00e254956ba4f8e0c56af7783 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    264 schema:name Cell Line
    265 rdf:type schema:DefinedTerm
    266 Nc614b6e26a2f4de68f3f136b1e1a55ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    267 schema:name Metagenomics
    268 rdf:type schema:DefinedTerm
    269 Ncd54e51459074fb78306f49bbbbb2ede schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    270 schema:name Chemokines
    271 rdf:type schema:DefinedTerm
    272 Nd218928aaf0542c9aeb85915bbc35f28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    273 schema:name Metagenome
    274 rdf:type schema:DefinedTerm
    275 Nd31029967a5b4347ad39c220a736adf8 schema:issueNumber 1
    276 rdf:type schema:PublicationIssue
    277 Ndedfcb94a2ab4c828f67ab03c5c16d7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    278 schema:name Animals
    279 rdf:type schema:DefinedTerm
    280 Ne1b920b7363f465184008f18c1e92a18 rdf:first sg:person.0762067443.18
    281 rdf:rest N039934c4420244329722373397ebc3f1
    282 Ne27b6adc3f0e464d86d048f305e3e427 schema:name dimensions_id
    283 schema:value pub.1009016129
    284 rdf:type schema:PropertyValue
    285 Nea98099bcfda4f46bb67bd4082f75289 schema:name Springer Nature - SN SciGraph project
    286 rdf:type schema:Organization
    287 Nf0d13d9f148c4ae5bae9dcc72ac39cbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    288 schema:name Phylogeny
    289 rdf:type schema:DefinedTerm
    290 Nf1f88b19f3794831be342b741a8c74eb schema:volumeNumber 8
    291 rdf:type schema:PublicationVolume
    292 Nf43be4c4cb464428a38188ff85093c21 rdf:first sg:person.012411247212.54
    293 rdf:rest N28f95eef6f954cbc834f490a967f0615
    294 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    295 schema:name Biological Sciences
    296 rdf:type schema:DefinedTerm
    297 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    298 schema:name Microbiology
    299 rdf:type schema:DefinedTerm
    300 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    301 schema:name Medical and Health Sciences
    302 rdf:type schema:DefinedTerm
    303 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    304 schema:name Clinical Sciences
    305 rdf:type schema:DefinedTerm
    306 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
    307 schema:name Immunology
    308 rdf:type schema:DefinedTerm
    309 sg:grant.2462504 http://pending.schema.org/fundedItem sg:pub.10.1186/s13073-016-0299-7
    310 rdf:type schema:MonetaryGrant
    311 sg:grant.2666844 http://pending.schema.org/fundedItem sg:pub.10.1186/s13073-016-0299-7
    312 rdf:type schema:MonetaryGrant
    313 sg:grant.2696408 http://pending.schema.org/fundedItem sg:pub.10.1186/s13073-016-0299-7
    314 rdf:type schema:MonetaryGrant
    315 sg:journal.1040124 schema:issn 1756-994X
    316 schema:name Genome Medicine
    317 schema:publisher Springer Nature
    318 rdf:type schema:Periodical
    319 sg:person.01023321662.65 schema:affiliation grid-institutes:grid.66875.3a
    320 schema:familyName Davis
    321 schema:givenName John M.
    322 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023321662.65
    323 rdf:type schema:Person
    324 sg:person.01023412627.52 schema:affiliation grid-institutes:grid.66875.3a
    325 schema:familyName Chen
    326 schema:givenName Jun
    327 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52
    328 rdf:type schema:Person
    329 sg:person.01025031743.69 schema:affiliation grid-institutes:grid.66875.3a
    330 schema:familyName Taneja
    331 schema:givenName Veena
    332 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025031743.69
    333 rdf:type schema:Person
    334 sg:person.012411247212.54 schema:affiliation grid-institutes:grid.66875.3a
    335 schema:familyName Murray
    336 schema:givenName Joseph
    337 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411247212.54
    338 rdf:type schema:Person
    339 sg:person.01246624655.47 schema:affiliation grid-institutes:grid.66875.3a
    340 schema:familyName Wright
    341 schema:givenName Kerry
    342 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246624655.47
    343 rdf:type schema:Person
    344 sg:person.01317155420.51 schema:affiliation grid-institutes:grid.66875.3a
    345 schema:familyName Matteson
    346 schema:givenName Eric L.
    347 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317155420.51
    348 rdf:type schema:Person
    349 sg:person.01323000657.09 schema:affiliation grid-institutes:grid.66875.3a
    350 schema:familyName Marietta
    351 schema:givenName Eric V.
    352 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323000657.09
    353 rdf:type schema:Person
    354 sg:person.0703056235.52 schema:affiliation grid-institutes:grid.66875.3a
    355 schema:familyName Nelson
    356 schema:givenName Heidi
    357 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703056235.52
    358 rdf:type schema:Person
    359 sg:person.0762067443.18 schema:affiliation grid-institutes:grid.66875.3a
    360 schema:familyName Jeraldo
    361 schema:givenName Patricio
    362 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762067443.18
    363 rdf:type schema:Person
    364 sg:pub.10.1007/s10456-011-9227-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032745758
    365 https://doi.org/10.1007/s10456-011-9227-z
    366 rdf:type schema:CreativeWork
    367 sg:pub.10.1007/s11926-011-0203-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022343355
    368 https://doi.org/10.1007/s11926-011-0203-9
    369 rdf:type schema:CreativeWork
    370 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    371 https://doi.org/10.1023/a:1010933404324
    372 rdf:type schema:CreativeWork
    373 sg:pub.10.1038/ismej.2012.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051087848
    374 https://doi.org/10.1038/ismej.2012.5
    375 rdf:type schema:CreativeWork
    376 sg:pub.10.1038/nature06244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009917183
    377 https://doi.org/10.1038/nature06244
    378 rdf:type schema:CreativeWork
    379 sg:pub.10.1038/nature07540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030170002
    380 https://doi.org/10.1038/nature07540
    381 rdf:type schema:CreativeWork
    382 sg:pub.10.1038/nature09944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026204536
    383 https://doi.org/10.1038/nature09944
    384 rdf:type schema:CreativeWork
    385 sg:pub.10.1038/nature13178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022430209
    386 https://doi.org/10.1038/nature13178
    387 rdf:type schema:CreativeWork
    388 sg:pub.10.1038/nbt.2676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034019934
    389 https://doi.org/10.1038/nbt.2676
    390 rdf:type schema:CreativeWork
    391 sg:pub.10.1038/ncprheum0249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001647682
    392 https://doi.org/10.1038/ncprheum0249
    393 rdf:type schema:CreativeWork
    394 sg:pub.10.1038/ng.1076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044436764
    395 https://doi.org/10.1038/ng.1076
    396 rdf:type schema:CreativeWork
    397 sg:pub.10.1038/ni.1801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004558829
    398 https://doi.org/10.1038/ni.1801
    399 rdf:type schema:CreativeWork
    400 sg:pub.10.1038/ni.2635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017265756
    401 https://doi.org/10.1038/ni.2635
    402 rdf:type schema:CreativeWork
    403 sg:pub.10.1038/nm.3914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009083133
    404 https://doi.org/10.1038/nm.3914
    405 rdf:type schema:CreativeWork
    406 sg:pub.10.1038/nrrheum.2014.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052201736
    407 https://doi.org/10.1038/nrrheum.2014.80
    408 rdf:type schema:CreativeWork
    409 sg:pub.10.1186/gb-2011-12-6-r60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000243423
    410 https://doi.org/10.1186/gb-2011-12-6-r60
    411 rdf:type schema:CreativeWork
    412 sg:pub.10.1186/gb-2012-13-9-r79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029450096
    413 https://doi.org/10.1186/gb-2012-13-9-r79
    414 rdf:type schema:CreativeWork
    415 sg:pub.10.1186/s13075-015-0601-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034435371
    416 https://doi.org/10.1186/s13075-015-0601-x
    417 rdf:type schema:CreativeWork
    418 grid-institutes:grid.66875.3a schema:alternateName Department of Gastroenterology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA
    419 Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA
    420 Department of Immunology and Division of Rheumatology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA
    421 Department of Medicine, Division of Rheumatology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA
    422 Department of Surgery, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA
    423 schema:name Department of Gastroenterology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA
    424 Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA
    425 Department of Immunology and Division of Rheumatology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA
    426 Department of Medicine, Division of Rheumatology, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA
    427 Department of Surgery, Mayo Clinic, 200 First St. S.W., 55905, Rochester, MN, USA
    428 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...