A bioinformatic framework for immune repertoire diversity profiling enables detection of immunological status View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Victor Greiff, Pooja Bhat, Skylar C. Cook, Ulrike Menzel, Wenjing Kang, Sai T. Reddy

ABSTRACT

BACKGROUND: Lymphocyte receptor repertoires are continually shaped throughout the lifetime of an individual in response to environmental and pathogenic exposure. Thus, they may serve as a fingerprint of an individual's ongoing immunological status (e.g., healthy, infected, vaccinated), with far-reaching implications for immunodiagnostics applications. The advent of high-throughput immune repertoire sequencing now enables the interrogation of immune repertoire diversity in an unprecedented and quantitative manner. However, steadily increasing sequencing depth has revealed that immune repertoires vary greatly among individuals in their composition; correspondingly, it has been reported that there are few shared sequences indicative of immunological status ('public clones'). Disconcertingly, this means that the wealth of information gained from repertoire sequencing remains largely unused for determining the current status of immune responses, thereby hampering the implementation of immune-repertoire-based diagnostics. METHODS: Here, we introduce a bioinformatics repertoire-profiling framework that possesses the advantage of capturing the diversity and distribution of entire immune repertoires, as opposed to singular public clones. The framework relies on Hill-based diversity profiles composed of a continuum of single diversity indices, which enable the quantification of the extent of immunological information contained in immune repertoires. RESULTS: We coupled diversity profiles with unsupervised (hierarchical clustering) and supervised (support vector machine and feature selection) machine learning approaches in order to correlate patients' immunological statuses with their B- and T-cell repertoire data. We could predict with high accuracy (greater than or equal to 80 %) a wide range of immunological statuses such as healthy, transplantation recipient, and lymphoid cancer, suggesting as a proof of principle that diversity profiling can recover a large amount of immunodiagnostic fingerprints from immune repertoire data. Our framework is highly scalable as it easily allowed for the analysis of 1000 simulated immune repertoires; this exceeds the size of published immune repertoire datasets by one to two orders of magnitude. CONCLUSIONS: Our framework offers the possibility to advance immune-repertoire-based fingerprinting, which may in the future enable a systems immunogenomics approach for vaccine profiling and the accurate and early detection of disease and infection. More... »

PAGES

49

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13073-015-0169-8

DOI

http://dx.doi.org/10.1186/s13073-015-0169-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021957214

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26140055


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Z\u00fcrich, Department of Biosystems Science and Engineering, 4058, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greiff", 
        "givenName": "Victor", 
        "id": "sg:person.01362542004.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362542004.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Z\u00fcrich, Department of Biosystems Science and Engineering, 4058, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhat", 
        "givenName": "Pooja", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Z\u00fcrich, Department of Biosystems Science and Engineering, 4058, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cook", 
        "givenName": "Skylar C.", 
        "id": "sg:person.01067612704.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067612704.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Z\u00fcrich, Department of Biosystems Science and Engineering, 4058, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Menzel", 
        "givenName": "Ulrike", 
        "id": "sg:person.01314426604.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314426604.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Z\u00fcrich, Department of Biosystems Science and Engineering, 4058, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Wenjing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Z\u00fcrich, Department of Biosystems Science and Engineering, 4058, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reddy", 
        "givenName": "Sai T.", 
        "id": "sg:person.0756016162.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756016162.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.1110064108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000300035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1409155111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001397270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1409155111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001397270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2006.0030-1299.14714.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002094629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2006.0030-1299.14714.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002094629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002540900", 
          "https://doi.org/10.1038/ncomms3333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4049/jimmunol.1300622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002838383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/genes5030748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004185841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1215134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004736055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005329637", 
          "https://doi.org/10.1038/nbt.3000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-013-0700-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005593091", 
          "https://doi.org/10.1007/s00285-013-0700-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1260668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005810491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1409572111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006305092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3236223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006997599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0096727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008014129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0096727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008014129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imlet.2012.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008274439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ajt.12431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008464725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eji.201242999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009961149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.it.2014.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010423772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011676746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/163688a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011831556", 
          "https://doi.org/10.1038/163688a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/163688a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011831556", 
          "https://doi.org/10.1038/163688a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fimmu.2013.00263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011950301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012010219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eji.201242517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012447543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/2153-3539.103013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012458657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013573536", 
          "https://doi.org/10.1038/nbt.2492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/21645515.2015.1008930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014262827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1312146110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014458974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1461-0248.2001.00230.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015653758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2013.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015871032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4049/jimmunol.1301384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015947992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jim.2009.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016049782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016186405", 
          "https://doi.org/10.1038/nmeth.2960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-13-79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016592886", 
          "https://doi.org/10.1186/1471-2164-13-79"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3001442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019173920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3001442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019173920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci71691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019917475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrrheum.2014.220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020245602", 
          "https://doi.org/10.1038/nrrheum.2014.220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1001705107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022332282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2567.2011.03527.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023219253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.068102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023398638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.068102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023398638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026096204727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024775421", 
          "https://doi.org/10.1023/a:1026096204727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024799956", 
          "https://doi.org/10.1038/nbt.2783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jim.2007.01.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025185810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.1.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026397059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.smim.2015.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027080070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027683701", 
          "https://doi.org/10.1038/nbt.2957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chom.2014.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027744445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12865-014-0040-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027771905", 
          "https://doi.org/10.1186/s12865-014-0040-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12865-014-0040-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027771905", 
          "https://doi.org/10.1186/s12865-014-0040-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4049/jimmunol.1401405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028236546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/10-2402.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028864720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0101322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032443093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coi.2013.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032927123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eji.201343917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034466348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eji.201343917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034466348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1074-7613(00)00006-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034641821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2011.1439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034848940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.it.2014.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037038718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/d2020207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038089957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-012-0589-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038865860", 
          "https://doi.org/10.1007/s00285-012-0589-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039284641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040192165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chom.2013.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040244705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041326788", 
          "https://doi.org/10.1038/nbt.2782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044933227", 
          "https://doi.org/10.1186/1471-2105-11-367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.154815.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045880766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4049/jimmunol.1302064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046009553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2006.18.6.1472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046950727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047017534", 
          "https://doi.org/10.1186/1471-2105-13-31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048116136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1421827112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048384076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3003656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051751171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052219633", 
          "https://doi.org/10.1038/nbt.1673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052219633", 
          "https://doi.org/10.1038/nbt.1673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/584091.584093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052927616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.168.3937.1345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062500061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3003647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062687404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1217208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069398467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1934352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069658558"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: Lymphocyte receptor repertoires are continually shaped throughout the lifetime of an individual in response to environmental and pathogenic exposure. Thus, they may serve as a fingerprint of an individual's ongoing immunological status (e.g., healthy, infected, vaccinated), with far-reaching implications for immunodiagnostics applications. The advent of high-throughput immune repertoire sequencing now enables the interrogation of immune repertoire diversity in an unprecedented and quantitative manner. However, steadily increasing sequencing depth has revealed that immune repertoires vary greatly among individuals in their composition; correspondingly, it has been reported that there are few shared sequences indicative of immunological status ('public clones'). Disconcertingly, this means that the wealth of information gained from repertoire sequencing remains largely unused for determining the current status of immune responses, thereby hampering the implementation of immune-repertoire-based diagnostics.\nMETHODS: Here, we introduce a bioinformatics repertoire-profiling framework that possesses the advantage of capturing the diversity and distribution of entire immune repertoires, as opposed to singular public clones. The framework relies on Hill-based diversity profiles composed of a continuum of single diversity indices, which enable the quantification of the extent of immunological information contained in immune repertoires.\nRESULTS: We coupled diversity profiles with unsupervised (hierarchical clustering) and supervised (support vector machine and feature selection) machine learning approaches in order to correlate patients' immunological statuses with their B- and T-cell repertoire data. We could predict with high accuracy (greater than or equal to 80\u00a0%) a wide range of immunological statuses such as healthy, transplantation recipient, and lymphoid cancer, suggesting as a proof of principle that diversity profiling can recover a large amount of immunodiagnostic fingerprints from immune repertoire data. Our framework is highly scalable as it easily allowed for the analysis of 1000 simulated immune repertoires; this exceeds the size of published immune repertoire datasets by one to two orders of magnitude.\nCONCLUSIONS: Our framework offers the possibility to advance immune-repertoire-based fingerprinting, which may in the future enable a systems immunogenomics approach for vaccine profiling and the accurate and early detection of disease and infection.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13073-015-0169-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040124", 
        "issn": [
          "1756-994X"
        ], 
        "name": "Genome Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "A bioinformatic framework for immune repertoire diversity profiling enables detection of immunological status", 
    "pagination": "49", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "689b9c1d5e591ca23f12d0c6e40b4640670e9c668b6df575f649e07aa5ec1858"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26140055"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101475844"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13073-015-0169-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021957214"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13073-015-0169-8", 
      "https://app.dimensions.ai/details/publication/pub.1021957214"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88227_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs13073-015-0169-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13073-015-0169-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13073-015-0169-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13073-015-0169-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13073-015-0169-8'


 

This table displays all metadata directly associated to this object as RDF triples.

340 TRIPLES      21 PREDICATES      103 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13073-015-0169-8 schema:about anzsrc-for:11
2 anzsrc-for:1107
3 schema:author N5736d41ff26b4810bc6e484327fe4fda
4 schema:citation sg:pub.10.1007/s00285-012-0589-7
5 sg:pub.10.1007/s00285-013-0700-8
6 sg:pub.10.1023/a:1026096204727
7 sg:pub.10.1038/163688a0
8 sg:pub.10.1038/nbt.1673
9 sg:pub.10.1038/nbt.2492
10 sg:pub.10.1038/nbt.2782
11 sg:pub.10.1038/nbt.2783
12 sg:pub.10.1038/nbt.2957
13 sg:pub.10.1038/nbt.3000
14 sg:pub.10.1038/ncomms3333
15 sg:pub.10.1038/nmeth.2960
16 sg:pub.10.1038/nrrheum.2014.220
17 sg:pub.10.1186/1471-2105-11-367
18 sg:pub.10.1186/1471-2105-13-31
19 sg:pub.10.1186/1471-2164-13-79
20 sg:pub.10.1186/s12865-014-0040-5
21 https://doi.org/10.1002/eji.201242517
22 https://doi.org/10.1002/eji.201242999
23 https://doi.org/10.1002/eji.201343917
24 https://doi.org/10.1016/j.chom.2013.05.008
25 https://doi.org/10.1016/j.chom.2014.05.013
26 https://doi.org/10.1016/j.coi.2013.09.017
27 https://doi.org/10.1016/j.febslet.2013.11.005
28 https://doi.org/10.1016/j.imlet.2012.08.002
29 https://doi.org/10.1016/j.it.2014.04.005
30 https://doi.org/10.1016/j.it.2014.09.004
31 https://doi.org/10.1016/j.jim.2007.01.019
32 https://doi.org/10.1016/j.jim.2009.11.009
33 https://doi.org/10.1016/j.smim.2015.03.002
34 https://doi.org/10.1016/s1074-7613(00)00006-6
35 https://doi.org/10.1046/j.1461-0248.2001.00230.x
36 https://doi.org/10.1056/nejmoa1215134
37 https://doi.org/10.1073/pnas.1001705107
38 https://doi.org/10.1073/pnas.1110064108
39 https://doi.org/10.1073/pnas.1312146110
40 https://doi.org/10.1073/pnas.1409155111
41 https://doi.org/10.1073/pnas.1409572111
42 https://doi.org/10.1073/pnas.1421827112
43 https://doi.org/10.1080/21645515.2015.1008930
44 https://doi.org/10.1093/bioinformatics/btp450
45 https://doi.org/10.1093/nar/27.1.209
46 https://doi.org/10.1093/nar/gkh412
47 https://doi.org/10.1093/nar/gku1341
48 https://doi.org/10.1093/nar/gku607
49 https://doi.org/10.1098/rspb.2011.1439
50 https://doi.org/10.1101/gr.154815.113
51 https://doi.org/10.1103/physrevlett.113.068102
52 https://doi.org/10.1111/ajt.12431
53 https://doi.org/10.1111/j.1365-2567.2011.03527.x
54 https://doi.org/10.1111/j.2006.0030-1299.14714.x
55 https://doi.org/10.1126/science.1260668
56 https://doi.org/10.1126/science.168.3937.1345
57 https://doi.org/10.1126/scitranslmed.3001442
58 https://doi.org/10.1126/scitranslmed.3003647
59 https://doi.org/10.1126/scitranslmed.3003656
60 https://doi.org/10.1145/584091.584093
61 https://doi.org/10.1162/neco.2006.18.6.1472
62 https://doi.org/10.1172/jci71691
63 https://doi.org/10.1371/journal.pcbi.1003646
64 https://doi.org/10.1371/journal.pone.0096727
65 https://doi.org/10.1371/journal.pone.0101322
66 https://doi.org/10.1890/10-2402.1
67 https://doi.org/10.2307/1217208
68 https://doi.org/10.2307/1934352
69 https://doi.org/10.2307/3236223
70 https://doi.org/10.3389/fimmu.2013.00263
71 https://doi.org/10.3390/d2020207
72 https://doi.org/10.3390/genes5030748
73 https://doi.org/10.4049/jimmunol.1300622
74 https://doi.org/10.4049/jimmunol.1301384
75 https://doi.org/10.4049/jimmunol.1302064
76 https://doi.org/10.4049/jimmunol.1401405
77 https://doi.org/10.4103/2153-3539.103013
78 schema:datePublished 2015-12
79 schema:datePublishedReg 2015-12-01
80 schema:description BACKGROUND: Lymphocyte receptor repertoires are continually shaped throughout the lifetime of an individual in response to environmental and pathogenic exposure. Thus, they may serve as a fingerprint of an individual's ongoing immunological status (e.g., healthy, infected, vaccinated), with far-reaching implications for immunodiagnostics applications. The advent of high-throughput immune repertoire sequencing now enables the interrogation of immune repertoire diversity in an unprecedented and quantitative manner. However, steadily increasing sequencing depth has revealed that immune repertoires vary greatly among individuals in their composition; correspondingly, it has been reported that there are few shared sequences indicative of immunological status ('public clones'). Disconcertingly, this means that the wealth of information gained from repertoire sequencing remains largely unused for determining the current status of immune responses, thereby hampering the implementation of immune-repertoire-based diagnostics. METHODS: Here, we introduce a bioinformatics repertoire-profiling framework that possesses the advantage of capturing the diversity and distribution of entire immune repertoires, as opposed to singular public clones. The framework relies on Hill-based diversity profiles composed of a continuum of single diversity indices, which enable the quantification of the extent of immunological information contained in immune repertoires. RESULTS: We coupled diversity profiles with unsupervised (hierarchical clustering) and supervised (support vector machine and feature selection) machine learning approaches in order to correlate patients' immunological statuses with their B- and T-cell repertoire data. We could predict with high accuracy (greater than or equal to 80 %) a wide range of immunological statuses such as healthy, transplantation recipient, and lymphoid cancer, suggesting as a proof of principle that diversity profiling can recover a large amount of immunodiagnostic fingerprints from immune repertoire data. Our framework is highly scalable as it easily allowed for the analysis of 1000 simulated immune repertoires; this exceeds the size of published immune repertoire datasets by one to two orders of magnitude. CONCLUSIONS: Our framework offers the possibility to advance immune-repertoire-based fingerprinting, which may in the future enable a systems immunogenomics approach for vaccine profiling and the accurate and early detection of disease and infection.
81 schema:genre research_article
82 schema:inLanguage en
83 schema:isAccessibleForFree true
84 schema:isPartOf N35c88b70ad67478da1b9f9f1689ac0fc
85 Nd7070106802b4ffab7fb469358df5543
86 sg:journal.1040124
87 schema:name A bioinformatic framework for immune repertoire diversity profiling enables detection of immunological status
88 schema:pagination 49
89 schema:productId N6b997e31199644e7843759c0d1c49cb6
90 N7295a25af885495585ab56e78956a1e7
91 N7f9ad17b55d44c72ae7e83eec9dc33a7
92 Nf05b73bc92f3461dbe5c5695350096b9
93 Nfabd34f4ad4e49d68937cb5f523d0cfb
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021957214
95 https://doi.org/10.1186/s13073-015-0169-8
96 schema:sdDatePublished 2019-04-11T13:08
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher Nd803a438e8c640f6a193742aa74b23b9
99 schema:url http://link.springer.com/10.1186%2Fs13073-015-0169-8
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N1ccc3da0f4f341c99a73215d243aaef9 rdf:first Na4e871125bf24e2a9536375c1b2980a8
104 rdf:rest N36629f7484ad4c2c8c6156b42df0abe2
105 N35c88b70ad67478da1b9f9f1689ac0fc schema:volumeNumber 7
106 rdf:type schema:PublicationVolume
107 N36629f7484ad4c2c8c6156b42df0abe2 rdf:first sg:person.01067612704.41
108 rdf:rest Nb61a77658fdd413586aa4ea897d10839
109 N5736d41ff26b4810bc6e484327fe4fda rdf:first sg:person.01362542004.11
110 rdf:rest N1ccc3da0f4f341c99a73215d243aaef9
111 N6b997e31199644e7843759c0d1c49cb6 schema:name nlm_unique_id
112 schema:value 101475844
113 rdf:type schema:PropertyValue
114 N7295a25af885495585ab56e78956a1e7 schema:name pubmed_id
115 schema:value 26140055
116 rdf:type schema:PropertyValue
117 N7f9ad17b55d44c72ae7e83eec9dc33a7 schema:name doi
118 schema:value 10.1186/s13073-015-0169-8
119 rdf:type schema:PropertyValue
120 N991be5e35df840c5be09bb4b25d50acc rdf:first Nb711728fe79b433aa3a0df050e88bb62
121 rdf:rest N9f67b5195792403aad9ec72d8f159b8b
122 N9f67b5195792403aad9ec72d8f159b8b rdf:first sg:person.0756016162.20
123 rdf:rest rdf:nil
124 Na4e871125bf24e2a9536375c1b2980a8 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
125 schema:familyName Bhat
126 schema:givenName Pooja
127 rdf:type schema:Person
128 Nb61a77658fdd413586aa4ea897d10839 rdf:first sg:person.01314426604.55
129 rdf:rest N991be5e35df840c5be09bb4b25d50acc
130 Nb711728fe79b433aa3a0df050e88bb62 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
131 schema:familyName Kang
132 schema:givenName Wenjing
133 rdf:type schema:Person
134 Nd7070106802b4ffab7fb469358df5543 schema:issueNumber 1
135 rdf:type schema:PublicationIssue
136 Nd803a438e8c640f6a193742aa74b23b9 schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 Nf05b73bc92f3461dbe5c5695350096b9 schema:name readcube_id
139 schema:value 689b9c1d5e591ca23f12d0c6e40b4640670e9c668b6df575f649e07aa5ec1858
140 rdf:type schema:PropertyValue
141 Nfabd34f4ad4e49d68937cb5f523d0cfb schema:name dimensions_id
142 schema:value pub.1021957214
143 rdf:type schema:PropertyValue
144 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
145 schema:name Medical and Health Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
148 schema:name Immunology
149 rdf:type schema:DefinedTerm
150 sg:journal.1040124 schema:issn 1756-994X
151 schema:name Genome Medicine
152 rdf:type schema:Periodical
153 sg:person.01067612704.41 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
154 schema:familyName Cook
155 schema:givenName Skylar C.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067612704.41
157 rdf:type schema:Person
158 sg:person.01314426604.55 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
159 schema:familyName Menzel
160 schema:givenName Ulrike
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314426604.55
162 rdf:type schema:Person
163 sg:person.01362542004.11 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
164 schema:familyName Greiff
165 schema:givenName Victor
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362542004.11
167 rdf:type schema:Person
168 sg:person.0756016162.20 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
169 schema:familyName Reddy
170 schema:givenName Sai T.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756016162.20
172 rdf:type schema:Person
173 sg:pub.10.1007/s00285-012-0589-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038865860
174 https://doi.org/10.1007/s00285-012-0589-7
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s00285-013-0700-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005593091
177 https://doi.org/10.1007/s00285-013-0700-8
178 rdf:type schema:CreativeWork
179 sg:pub.10.1023/a:1026096204727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024775421
180 https://doi.org/10.1023/a:1026096204727
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/163688a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011831556
183 https://doi.org/10.1038/163688a0
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nbt.1673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052219633
186 https://doi.org/10.1038/nbt.1673
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nbt.2492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013573536
189 https://doi.org/10.1038/nbt.2492
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nbt.2782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041326788
192 https://doi.org/10.1038/nbt.2782
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nbt.2783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024799956
195 https://doi.org/10.1038/nbt.2783
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nbt.2957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027683701
198 https://doi.org/10.1038/nbt.2957
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nbt.3000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005329637
201 https://doi.org/10.1038/nbt.3000
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/ncomms3333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002540900
204 https://doi.org/10.1038/ncomms3333
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nmeth.2960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016186405
207 https://doi.org/10.1038/nmeth.2960
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nrrheum.2014.220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020245602
210 https://doi.org/10.1038/nrrheum.2014.220
211 rdf:type schema:CreativeWork
212 sg:pub.10.1186/1471-2105-11-367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044933227
213 https://doi.org/10.1186/1471-2105-11-367
214 rdf:type schema:CreativeWork
215 sg:pub.10.1186/1471-2105-13-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047017534
216 https://doi.org/10.1186/1471-2105-13-31
217 rdf:type schema:CreativeWork
218 sg:pub.10.1186/1471-2164-13-79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016592886
219 https://doi.org/10.1186/1471-2164-13-79
220 rdf:type schema:CreativeWork
221 sg:pub.10.1186/s12865-014-0040-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027771905
222 https://doi.org/10.1186/s12865-014-0040-5
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1002/eji.201242517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012447543
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1002/eji.201242999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009961149
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1002/eji.201343917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034466348
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.chom.2013.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040244705
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.chom.2014.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027744445
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.coi.2013.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032927123
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.febslet.2013.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015871032
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.imlet.2012.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008274439
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.it.2014.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037038718
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.it.2014.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010423772
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.jim.2007.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025185810
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.jim.2009.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016049782
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.smim.2015.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027080070
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/s1074-7613(00)00006-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034641821
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1046/j.1461-0248.2001.00230.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015653758
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1056/nejmoa1215134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004736055
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1073/pnas.1001705107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022332282
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1073/pnas.1110064108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000300035
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1073/pnas.1312146110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014458974
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1073/pnas.1409155111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001397270
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1073/pnas.1409572111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006305092
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1073/pnas.1421827112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048384076
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1080/21645515.2015.1008930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014262827
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1093/bioinformatics/btp450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039284641
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1093/nar/27.1.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026397059
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1093/nar/gkh412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011676746
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1093/nar/gku1341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040192165
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1093/nar/gku607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012010219
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1098/rspb.2011.1439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034848940
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1101/gr.154815.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045880766
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1103/physrevlett.113.068102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023398638
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1111/ajt.12431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008464725
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1111/j.1365-2567.2011.03527.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023219253
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1111/j.2006.0030-1299.14714.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002094629
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1126/science.1260668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005810491
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1126/science.168.3937.1345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062500061
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1126/scitranslmed.3001442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019173920
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1126/scitranslmed.3003647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062687404
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1126/scitranslmed.3003656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051751171
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1145/584091.584093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052927616
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1162/neco.2006.18.6.1472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046950727
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1172/jci71691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019917475
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1371/journal.pcbi.1003646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048116136
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1371/journal.pone.0096727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008014129
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1371/journal.pone.0101322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032443093
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1890/10-2402.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028864720
315 rdf:type schema:CreativeWork
316 https://doi.org/10.2307/1217208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069398467
317 rdf:type schema:CreativeWork
318 https://doi.org/10.2307/1934352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069658558
319 rdf:type schema:CreativeWork
320 https://doi.org/10.2307/3236223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006997599
321 rdf:type schema:CreativeWork
322 https://doi.org/10.3389/fimmu.2013.00263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011950301
323 rdf:type schema:CreativeWork
324 https://doi.org/10.3390/d2020207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038089957
325 rdf:type schema:CreativeWork
326 https://doi.org/10.3390/genes5030748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004185841
327 rdf:type schema:CreativeWork
328 https://doi.org/10.4049/jimmunol.1300622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002838383
329 rdf:type schema:CreativeWork
330 https://doi.org/10.4049/jimmunol.1301384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015947992
331 rdf:type schema:CreativeWork
332 https://doi.org/10.4049/jimmunol.1302064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046009553
333 rdf:type schema:CreativeWork
334 https://doi.org/10.4049/jimmunol.1401405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028236546
335 rdf:type schema:CreativeWork
336 https://doi.org/10.4103/2153-3539.103013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012458657
337 rdf:type schema:CreativeWork
338 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
339 schema:name ETH Zürich, Department of Biosystems Science and Engineering, 4058, Basel, Switzerland
340 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...