Calling genotypes from public RNA-sequencing data enables identification of genetic variants that affect gene-expression levels View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-03-27

AUTHORS

Patrick Deelen, Daria V Zhernakova, Mark de Haan, Marijke van der Sijde, Marc Jan Bonder, Juha Karjalainen, K Joeri van der Velde, Kristin M Abbott, Jingyuan Fu, Cisca Wijmenga, Richard J Sinke, Morris A Swertz, Lude Franke

ABSTRACT

BackgroundRNA-sequencing (RNA-seq) is a powerful technique for the identification of genetic variants that affect gene-expression levels, either through expression quantitative trait locus (eQTL) mapping or through allele-specific expression (ASE) analysis. Given increasing numbers of RNA-seq samples in the public domain, we here studied to what extent eQTLs and ASE effects can be identified when using public RNA-seq data while deriving the genotypes from the RNA-sequencing reads themselves.MethodsWe downloaded the raw reads for all available human RNA-seq datasets. Using these reads we performed gene expression quantification. All samples were jointly normalized and subjected to a strict quality control. We also derived genotypes using the RNA-seq reads and used imputation to infer non-coding variants. This allowed us to perform eQTL mapping and ASE analyses jointly on all samples that passed quality control. Our results were validated using samples for which DNA-seq genotypes were available.Results4,978 public human RNA-seq runs, representing many different tissues and cell-types, passed quality control. Even though these data originated from many different laboratories, samples reflecting the same cell type clustered together, suggesting that technical biases due to different sequencing protocols are limited. In a joint analysis on the 1,262 samples with high quality genotypes, we identified cis-eQTLs effects for 8,034 unique genes (at a false discovery rate ≤0.05). eQTL mapping on individual tissues revealed that a limited number of samples already suffice to identify tissue-specific eQTLs for known disease-associated genetic variants. Additionally, we observed strong ASE effects for 34 rare pathogenic variants, corroborating previously observed effects on the corresponding protein levels.ConclusionsBy deriving and imputing genotypes from RNA-seq data, it is possible to identify both eQTLs and ASE effects. Given the exponential growth of the number of publicly available RNA-seq samples, we expect this approach will become especially relevant for studying the effects of tissue-specific and rare pathogenic genetic variants to aid clinical interpretation of exome and genome sequencing. More... »

PAGES

30

References to SciGraph publications

  • 2010-03-02. A scaling normalization method for differential expression analysis of RNA-seq data in GENOME BIOLOGY
  • 2013-09-15. Transcriptome and genome sequencing uncovers functional variation in humans in NATURE
  • 2011-04-10. A framework for variation discovery and genotyping using next-generation DNA sequencing data in NATURE GENETICS
  • 2008-05-18. Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer in NATURE GENETICS
  • 2010-12-21. The MOLGENIS toolkit: rapid prototyping of biosoftware at the push of a button in BMC BIOINFORMATICS
  • 2012-05-20. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies in NATURE GENETICS
  • 2013-09-08. Systematic identification of trans eQTLs as putative drivers of known disease associations in NATURE GENETICS
  • 2014-06-29. Whole-genome sequence variation, population structure and demographic history of the Dutch population in NATURE GENETICS
  • 2010-06-22. Genome-wide allele-specific analysis: insights into regulatory variation in NATURE REVIEWS GENETICS
  • 2009-08-02. Genetic variation in the prostate stem cell antigen gene PSCA confers susceptibility to urinary bladder cancer in NATURE GENETICS
  • 2010-03-10. Understanding mechanisms underlying human gene expression variation with RNA sequencing in NATURE
  • 2013-05-29. The Genotype-Tissue Expression (GTEx) project in NATURE GENETICS
  • 2010-02-28. Multiple common variants for celiac disease influencing immune gene expression in NATURE GENETICS
  • 2014-04-23. Guidelines for investigating causality of sequence variants in human disease in NATURE
  • 2010-03-10. Transcriptome genetics using second generation sequencing in a Caucasian population in NATURE
  • 2014-04-13. Heritability and genomics of gene expression in peripheral blood in NATURE GENETICS
  • 2014-08-24. target project in DICTIONARY GEOTECHNICAL ENGINEERING/WÖRTERBUCH GEOTECHNIK
  • 2014-06-04. Improved imputation quality of low-frequency and rare variants in European samples using the ‘Genome of The Netherlands’ in EUROPEAN JOURNAL OF HUMAN GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13073-015-0152-4

    DOI

    http://dx.doi.org/10.1186/s13073-015-0152-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025127642

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25954321


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 RB, Groningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4494.d", 
              "name": [
                "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands", 
                "University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 RB, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Deelen", 
            "givenName": "Patrick", 
            "id": "sg:person.0703026332.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703026332.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4494.d", 
              "name": [
                "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhernakova", 
            "givenName": "Daria V", 
            "id": "sg:person.0763077514.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763077514.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 RB, Groningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4494.d", 
              "name": [
                "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands", 
                "University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 RB, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Haan", 
            "givenName": "Mark", 
            "id": "sg:person.01237173011.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237173011.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4494.d", 
              "name": [
                "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van der Sijde", 
            "givenName": "Marijke", 
            "id": "sg:person.01224670232.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224670232.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4494.d", 
              "name": [
                "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bonder", 
            "givenName": "Marc Jan", 
            "id": "sg:person.01033253466.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033253466.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4494.d", 
              "name": [
                "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karjalainen", 
            "givenName": "Juha", 
            "id": "sg:person.0646651114.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646651114.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 RB, Groningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4494.d", 
              "name": [
                "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands", 
                "University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 RB, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van der Velde", 
            "givenName": "K Joeri", 
            "id": "sg:person.01246365537.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246365537.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4494.d", 
              "name": [
                "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abbott", 
            "givenName": "Kristin M", 
            "id": "sg:person.0744243711.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744243711.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4494.d", 
              "name": [
                "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fu", 
            "givenName": "Jingyuan", 
            "id": "sg:person.01316140701.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316140701.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4494.d", 
              "name": [
                "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wijmenga", 
            "givenName": "Cisca", 
            "id": "sg:person.01372510466.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372510466.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4494.d", 
              "name": [
                "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sinke", 
            "givenName": "Richard J", 
            "id": "sg:person.0674542670.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674542670.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 RB, Groningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4494.d", 
              "name": [
                "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands", 
                "University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 RB, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Swertz", 
            "givenName": "Morris A", 
            "id": "sg:person.0727107235.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727107235.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4494.d", 
              "name": [
                "University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Franke", 
            "givenName": "Lude", 
            "id": "sg:person.01344404521.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344404521.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature08903", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001350952", 
              "https://doi.org/10.1038/nature08903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044630803", 
              "https://doi.org/10.1038/nature08872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2951", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028118113", 
              "https://doi.org/10.1038/ng.2951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-41714-6_200234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018717102", 
              "https://doi.org/10.1007/978-3-642-41714-6_200234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022124777", 
              "https://doi.org/10.1038/nrg2815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2283", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020345108", 
              "https://doi.org/10.1038/ng.2283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010244476", 
              "https://doi.org/10.1038/ng.806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-3-r25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050509557", 
              "https://doi.org/10.1186/gb-2010-11-3-r25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043556936", 
              "https://doi.org/10.1038/ng.152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052616209", 
              "https://doi.org/10.1038/nature12531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2653", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032444369", 
              "https://doi.org/10.1038/ng.2653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050960747", 
              "https://doi.org/10.1038/ng.543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002821806", 
              "https://doi.org/10.1038/nature13127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005840846", 
              "https://doi.org/10.1038/ng.421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejhg.2014.19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036460474", 
              "https://doi.org/10.1038/ejhg.2014.19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030784697", 
              "https://doi.org/10.1038/ng.3021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-s12-s12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013964510", 
              "https://doi.org/10.1186/1471-2105-11-s12-s12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014945864", 
              "https://doi.org/10.1038/ng.2756"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-03-27", 
        "datePublishedReg": "2015-03-27", 
        "description": "BackgroundRNA-sequencing (RNA-seq) is a powerful technique for the identification of genetic variants that affect gene-expression levels, either through expression quantitative trait locus (eQTL) mapping or through allele-specific expression (ASE) analysis. Given increasing numbers of RNA-seq samples in the public domain, we here studied to what extent eQTLs and ASE effects can be identified when using public RNA-seq data while deriving the genotypes from the RNA-sequencing reads themselves.MethodsWe downloaded the raw reads for all available human RNA-seq datasets. Using these reads we performed gene expression quantification. All samples were jointly normalized and subjected to a strict quality control. We also derived genotypes using the RNA-seq reads and used imputation to infer non-coding variants. This allowed us to perform eQTL mapping and ASE analyses jointly on all samples that passed quality control. Our results were validated using samples for which DNA-seq genotypes were available.Results4,978 public human RNA-seq runs, representing many different tissues and cell-types, passed quality control. Even though these data originated from many different laboratories, samples reflecting the same cell type clustered together, suggesting that technical biases due to different sequencing protocols are limited. In a joint analysis on the 1,262 samples with high quality genotypes, we identified cis-eQTLs effects for 8,034 unique genes (at a false discovery rate \u22640.05). eQTL mapping on individual tissues revealed that a limited number of samples already suffice to identify tissue-specific eQTLs for known disease-associated genetic variants. Additionally, we observed strong ASE effects for 34 rare pathogenic variants, corroborating previously observed effects on the corresponding protein levels.ConclusionsBy deriving and imputing genotypes from RNA-seq data, it is possible to identify both eQTLs and ASE effects. Given the exponential growth of the number of publicly available RNA-seq samples, we expect this approach will become especially relevant for studying the effects of tissue-specific and rare pathogenic genetic variants to aid clinical interpretation of exome and genome sequencing.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13073-015-0152-4", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3784490", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1040124", 
            "issn": [
              "1756-994X"
            ], 
            "name": "Genome Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "RNA-seq data", 
          "RNA-seq samples", 
          "gene expression levels", 
          "eQTL mapping", 
          "RNA-seq", 
          "genetic variants", 
          "expression quantitative trait locus (eQTL) mapping", 
          "quantitative trait locus (QTL) mapping", 
          "public RNA-seq data", 
          "allele-specific expression analysis", 
          "strong ASE effects", 
          "public RNA-sequencing data", 
          "disease-associated genetic variants", 
          "available RNA-seq samples", 
          "human RNA-seq datasets", 
          "RNA-sequencing data", 
          "high-quality genotypes", 
          "non-coding variants", 
          "RNA-seq datasets", 
          "human RNA-seq", 
          "corresponding protein levels", 
          "cis-eQTL effects", 
          "gene expression quantification", 
          "same cell type", 
          "unique genes", 
          "locus mapping", 
          "raw reads", 
          "ASE analysis", 
          "RNA sequencing", 
          "different sequencing protocols", 
          "expression analysis", 
          "genome sequencing", 
          "rare pathogenic variants", 
          "sequencing protocol", 
          "expression quantification", 
          "cell types", 
          "pathogenic genetic variants", 
          "different tissues", 
          "eQTLs", 
          "technical biases", 
          "protein levels", 
          "individual tissues", 
          "ASE effects", 
          "genotypes", 
          "reads", 
          "pathogenic variants", 
          "quality control", 
          "variants", 
          "eQTL", 
          "genes", 
          "exome", 
          "sequencing", 
          "identification", 
          "tissue", 
          "exponential growth", 
          "joint analysis", 
          "mapping", 
          "powerful technique", 
          "limited number", 
          "domain", 
          "growth", 
          "levels", 
          "strict quality control", 
          "different laboratories", 
          "analysis", 
          "number", 
          "public domain", 
          "control", 
          "effect", 
          "data", 
          "samples", 
          "quantification", 
          "types", 
          "imputation", 
          "laboratory", 
          "dataset", 
          "results", 
          "protocol", 
          "clinical interpretation", 
          "biases", 
          "deriving", 
          "approach", 
          "MethodsWe", 
          "interpretation", 
          "technique"
        ], 
        "name": "Calling genotypes from public RNA-sequencing data enables identification of genetic variants that affect gene-expression levels", 
        "pagination": "30", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025127642"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13073-015-0152-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25954321"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13073-015-0152-4", 
          "https://app.dimensions.ai/details/publication/pub.1025127642"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_678.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13073-015-0152-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13073-015-0152-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13073-015-0152-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13073-015-0152-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13073-015-0152-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    305 TRIPLES      21 PREDICATES      128 URIs      102 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13073-015-0152-4 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Nbea8134228d94ac9a63eb0ca60d0512b
    4 schema:citation sg:pub.10.1007/978-3-642-41714-6_200234
    5 sg:pub.10.1038/ejhg.2014.19
    6 sg:pub.10.1038/nature08872
    7 sg:pub.10.1038/nature08903
    8 sg:pub.10.1038/nature12531
    9 sg:pub.10.1038/nature13127
    10 sg:pub.10.1038/ng.152
    11 sg:pub.10.1038/ng.2283
    12 sg:pub.10.1038/ng.2653
    13 sg:pub.10.1038/ng.2756
    14 sg:pub.10.1038/ng.2951
    15 sg:pub.10.1038/ng.3021
    16 sg:pub.10.1038/ng.421
    17 sg:pub.10.1038/ng.543
    18 sg:pub.10.1038/ng.806
    19 sg:pub.10.1038/nrg2815
    20 sg:pub.10.1186/1471-2105-11-s12-s12
    21 sg:pub.10.1186/gb-2010-11-3-r25
    22 schema:datePublished 2015-03-27
    23 schema:datePublishedReg 2015-03-27
    24 schema:description BackgroundRNA-sequencing (RNA-seq) is a powerful technique for the identification of genetic variants that affect gene-expression levels, either through expression quantitative trait locus (eQTL) mapping or through allele-specific expression (ASE) analysis. Given increasing numbers of RNA-seq samples in the public domain, we here studied to what extent eQTLs and ASE effects can be identified when using public RNA-seq data while deriving the genotypes from the RNA-sequencing reads themselves.MethodsWe downloaded the raw reads for all available human RNA-seq datasets. Using these reads we performed gene expression quantification. All samples were jointly normalized and subjected to a strict quality control. We also derived genotypes using the RNA-seq reads and used imputation to infer non-coding variants. This allowed us to perform eQTL mapping and ASE analyses jointly on all samples that passed quality control. Our results were validated using samples for which DNA-seq genotypes were available.Results4,978 public human RNA-seq runs, representing many different tissues and cell-types, passed quality control. Even though these data originated from many different laboratories, samples reflecting the same cell type clustered together, suggesting that technical biases due to different sequencing protocols are limited. In a joint analysis on the 1,262 samples with high quality genotypes, we identified cis-eQTLs effects for 8,034 unique genes (at a false discovery rate ≤0.05). eQTL mapping on individual tissues revealed that a limited number of samples already suffice to identify tissue-specific eQTLs for known disease-associated genetic variants. Additionally, we observed strong ASE effects for 34 rare pathogenic variants, corroborating previously observed effects on the corresponding protein levels.ConclusionsBy deriving and imputing genotypes from RNA-seq data, it is possible to identify both eQTLs and ASE effects. Given the exponential growth of the number of publicly available RNA-seq samples, we expect this approach will become especially relevant for studying the effects of tissue-specific and rare pathogenic genetic variants to aid clinical interpretation of exome and genome sequencing.
    25 schema:genre article
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N8c829b0719e34b2588fda11941ccc1de
    28 Ndfeaf06b7387408597273b378ca9ef48
    29 sg:journal.1040124
    30 schema:keywords ASE analysis
    31 ASE effects
    32 MethodsWe
    33 RNA sequencing
    34 RNA-seq
    35 RNA-seq data
    36 RNA-seq datasets
    37 RNA-seq samples
    38 RNA-sequencing data
    39 allele-specific expression analysis
    40 analysis
    41 approach
    42 available RNA-seq samples
    43 biases
    44 cell types
    45 cis-eQTL effects
    46 clinical interpretation
    47 control
    48 corresponding protein levels
    49 data
    50 dataset
    51 deriving
    52 different laboratories
    53 different sequencing protocols
    54 different tissues
    55 disease-associated genetic variants
    56 domain
    57 eQTL
    58 eQTL mapping
    59 eQTLs
    60 effect
    61 exome
    62 exponential growth
    63 expression analysis
    64 expression quantification
    65 expression quantitative trait locus (eQTL) mapping
    66 gene expression levels
    67 gene expression quantification
    68 genes
    69 genetic variants
    70 genome sequencing
    71 genotypes
    72 growth
    73 high-quality genotypes
    74 human RNA-seq
    75 human RNA-seq datasets
    76 identification
    77 imputation
    78 individual tissues
    79 interpretation
    80 joint analysis
    81 laboratory
    82 levels
    83 limited number
    84 locus mapping
    85 mapping
    86 non-coding variants
    87 number
    88 pathogenic genetic variants
    89 pathogenic variants
    90 powerful technique
    91 protein levels
    92 protocol
    93 public RNA-seq data
    94 public RNA-sequencing data
    95 public domain
    96 quality control
    97 quantification
    98 quantitative trait locus (QTL) mapping
    99 rare pathogenic variants
    100 raw reads
    101 reads
    102 results
    103 same cell type
    104 samples
    105 sequencing
    106 sequencing protocol
    107 strict quality control
    108 strong ASE effects
    109 technical biases
    110 technique
    111 tissue
    112 types
    113 unique genes
    114 variants
    115 schema:name Calling genotypes from public RNA-sequencing data enables identification of genetic variants that affect gene-expression levels
    116 schema:pagination 30
    117 schema:productId N3dcd34d331a74b65a1add691a8610f20
    118 N413cda15cc8940a9b92fd9c38b5e0535
    119 Ndc0efc373a5840a3bab2b8f233bf70c4
    120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025127642
    121 https://doi.org/10.1186/s13073-015-0152-4
    122 schema:sdDatePublished 2022-11-24T20:59
    123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    124 schema:sdPublisher N78aabef0e9984a43ad753a9ef2487178
    125 schema:url https://doi.org/10.1186/s13073-015-0152-4
    126 sgo:license sg:explorer/license/
    127 sgo:sdDataset articles
    128 rdf:type schema:ScholarlyArticle
    129 N0dbd7cc431fc4a858f44457ae8582108 rdf:first sg:person.0744243711.06
    130 rdf:rest Nc1fa7b01f89743f79e2b37da86883cad
    131 N1b281716bf5b415e9d9e42aa3bd81322 rdf:first sg:person.01372510466.28
    132 rdf:rest N53d4947db3ae4ff98432a7880f4e0178
    133 N2a04fa1fa7bf4cdda3fcb244b45149e7 rdf:first sg:person.0646651114.37
    134 rdf:rest Nb104b14965fa4b11948d6a7087ddc0cd
    135 N38a9396f5ae7409c8a1b2033537fd1db rdf:first sg:person.01344404521.43
    136 rdf:rest rdf:nil
    137 N3dcd34d331a74b65a1add691a8610f20 schema:name doi
    138 schema:value 10.1186/s13073-015-0152-4
    139 rdf:type schema:PropertyValue
    140 N413cda15cc8940a9b92fd9c38b5e0535 schema:name pubmed_id
    141 schema:value 25954321
    142 rdf:type schema:PropertyValue
    143 N53d4947db3ae4ff98432a7880f4e0178 rdf:first sg:person.0674542670.59
    144 rdf:rest Na7182854309149a0b629538c49289292
    145 N78aabef0e9984a43ad753a9ef2487178 schema:name Springer Nature - SN SciGraph project
    146 rdf:type schema:Organization
    147 N8c829b0719e34b2588fda11941ccc1de schema:volumeNumber 7
    148 rdf:type schema:PublicationVolume
    149 Na7182854309149a0b629538c49289292 rdf:first sg:person.0727107235.84
    150 rdf:rest N38a9396f5ae7409c8a1b2033537fd1db
    151 Nb104b14965fa4b11948d6a7087ddc0cd rdf:first sg:person.01246365537.28
    152 rdf:rest N0dbd7cc431fc4a858f44457ae8582108
    153 Nbea8134228d94ac9a63eb0ca60d0512b rdf:first sg:person.0703026332.87
    154 rdf:rest Nee7c2b79348341f7a1b5d957831b20c8
    155 Nc1fa7b01f89743f79e2b37da86883cad rdf:first sg:person.01316140701.98
    156 rdf:rest N1b281716bf5b415e9d9e42aa3bd81322
    157 Nd7b3e0798287427d9e7a4ec58148e473 rdf:first sg:person.01224670232.28
    158 rdf:rest Ne43eaae155a146fbbeea9d62dbcf70e0
    159 Ndc0efc373a5840a3bab2b8f233bf70c4 schema:name dimensions_id
    160 schema:value pub.1025127642
    161 rdf:type schema:PropertyValue
    162 Ndfeaf06b7387408597273b378ca9ef48 schema:issueNumber 1
    163 rdf:type schema:PublicationIssue
    164 Ne37f15c6fe2a4a87b6651d53738a3c24 rdf:first sg:person.01237173011.82
    165 rdf:rest Nd7b3e0798287427d9e7a4ec58148e473
    166 Ne43eaae155a146fbbeea9d62dbcf70e0 rdf:first sg:person.01033253466.59
    167 rdf:rest N2a04fa1fa7bf4cdda3fcb244b45149e7
    168 Nee7c2b79348341f7a1b5d957831b20c8 rdf:first sg:person.0763077514.08
    169 rdf:rest Ne37f15c6fe2a4a87b6651d53738a3c24
    170 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Biological Sciences
    172 rdf:type schema:DefinedTerm
    173 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Genetics
    175 rdf:type schema:DefinedTerm
    176 sg:grant.3784490 http://pending.schema.org/fundedItem sg:pub.10.1186/s13073-015-0152-4
    177 rdf:type schema:MonetaryGrant
    178 sg:journal.1040124 schema:issn 1756-994X
    179 schema:name Genome Medicine
    180 schema:publisher Springer Nature
    181 rdf:type schema:Periodical
    182 sg:person.01033253466.59 schema:affiliation grid-institutes:grid.4494.d
    183 schema:familyName Bonder
    184 schema:givenName Marc Jan
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033253466.59
    186 rdf:type schema:Person
    187 sg:person.01224670232.28 schema:affiliation grid-institutes:grid.4494.d
    188 schema:familyName van der Sijde
    189 schema:givenName Marijke
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224670232.28
    191 rdf:type schema:Person
    192 sg:person.01237173011.82 schema:affiliation grid-institutes:grid.4494.d
    193 schema:familyName de Haan
    194 schema:givenName Mark
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237173011.82
    196 rdf:type schema:Person
    197 sg:person.01246365537.28 schema:affiliation grid-institutes:grid.4494.d
    198 schema:familyName van der Velde
    199 schema:givenName K Joeri
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246365537.28
    201 rdf:type schema:Person
    202 sg:person.01316140701.98 schema:affiliation grid-institutes:grid.4494.d
    203 schema:familyName Fu
    204 schema:givenName Jingyuan
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316140701.98
    206 rdf:type schema:Person
    207 sg:person.01344404521.43 schema:affiliation grid-institutes:grid.4494.d
    208 schema:familyName Franke
    209 schema:givenName Lude
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344404521.43
    211 rdf:type schema:Person
    212 sg:person.01372510466.28 schema:affiliation grid-institutes:grid.4494.d
    213 schema:familyName Wijmenga
    214 schema:givenName Cisca
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372510466.28
    216 rdf:type schema:Person
    217 sg:person.0646651114.37 schema:affiliation grid-institutes:grid.4494.d
    218 schema:familyName Karjalainen
    219 schema:givenName Juha
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646651114.37
    221 rdf:type schema:Person
    222 sg:person.0674542670.59 schema:affiliation grid-institutes:grid.4494.d
    223 schema:familyName Sinke
    224 schema:givenName Richard J
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674542670.59
    226 rdf:type schema:Person
    227 sg:person.0703026332.87 schema:affiliation grid-institutes:grid.4494.d
    228 schema:familyName Deelen
    229 schema:givenName Patrick
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703026332.87
    231 rdf:type schema:Person
    232 sg:person.0727107235.84 schema:affiliation grid-institutes:grid.4494.d
    233 schema:familyName Swertz
    234 schema:givenName Morris A
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727107235.84
    236 rdf:type schema:Person
    237 sg:person.0744243711.06 schema:affiliation grid-institutes:grid.4494.d
    238 schema:familyName Abbott
    239 schema:givenName Kristin M
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744243711.06
    241 rdf:type schema:Person
    242 sg:person.0763077514.08 schema:affiliation grid-institutes:grid.4494.d
    243 schema:familyName Zhernakova
    244 schema:givenName Daria V
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763077514.08
    246 rdf:type schema:Person
    247 sg:pub.10.1007/978-3-642-41714-6_200234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018717102
    248 https://doi.org/10.1007/978-3-642-41714-6_200234
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/ejhg.2014.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036460474
    251 https://doi.org/10.1038/ejhg.2014.19
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nature08872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044630803
    254 https://doi.org/10.1038/nature08872
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nature08903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001350952
    257 https://doi.org/10.1038/nature08903
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nature12531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052616209
    260 https://doi.org/10.1038/nature12531
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nature13127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002821806
    263 https://doi.org/10.1038/nature13127
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/ng.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043556936
    266 https://doi.org/10.1038/ng.152
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/ng.2283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020345108
    269 https://doi.org/10.1038/ng.2283
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/ng.2653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032444369
    272 https://doi.org/10.1038/ng.2653
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/ng.2756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014945864
    275 https://doi.org/10.1038/ng.2756
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/ng.2951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028118113
    278 https://doi.org/10.1038/ng.2951
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/ng.3021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030784697
    281 https://doi.org/10.1038/ng.3021
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/ng.421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005840846
    284 https://doi.org/10.1038/ng.421
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/ng.543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050960747
    287 https://doi.org/10.1038/ng.543
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/ng.806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010244476
    290 https://doi.org/10.1038/ng.806
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/nrg2815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022124777
    293 https://doi.org/10.1038/nrg2815
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1186/1471-2105-11-s12-s12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013964510
    296 https://doi.org/10.1186/1471-2105-11-s12-s12
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1186/gb-2010-11-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050509557
    299 https://doi.org/10.1186/gb-2010-11-3-r25
    300 rdf:type schema:CreativeWork
    301 grid-institutes:grid.4494.d schema:alternateName University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands
    302 University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 RB, Groningen, The Netherlands
    303 schema:name University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB, Groningen, The Netherlands
    304 University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 RB, Groningen, The Netherlands
    305 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...