Prediction of Toxoplasma gondii virulence factor ROP18 competitive inhibitors by virtual screening View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Kun Yin, Guihua Zhao, Chao Xu, Xiao Qiu, Biwei Wen, Hui Sun, Gongzhen Liu, Ye Liu, Qingsong Zhao, Qingkuan Wei, Bingcheng Huang, Ge Yan, Jianping Cao

ABSTRACT

BACKGROUND: Rhoptry protein 18 (ROP18) is a key virulence factor of Toxoplasma gondii. The host's immune responses mediated by immune-related GTPases (IRGs) could be blocked by ROP18's kinase activity. ROP18 also interacts with various substrates, such as activating transcription factor 6 beta (ATF6β) and affects multiple physiological functions within host cells, thereby inducing intense virulence. In this study, competitive inhibitors targeted to ROP18 were subjected to virtual screening based on the principle of structure-based drug design (SBDD). METHODS: The preparation of the ROP18 structure was conducted using the "Structure Prepare" function of Molecular Operating Environment (MOE) software. The ATP-binding pocket was selected as the starting point for virtual screening. Construction of the pharmacophore model used Extended Hückel Theory (EHT) half-quantitative measurement and construction, as well as the characteristics of Type I kinase inhibitors. The pharmacophore model of ROP18 was imported into the Specs database for small molecule similarity screening using EHT pharmacophore measurement. Hit compounds were selected using the functions of London dG and generalized-born volume integral/weighted surface area (GBVI/WSA) scoring. The top 100 hits were analyzed by molecular docking and structure activity relationships (SAR) analysis. RESULTS: The final pharmacophore comprised three typical characteristics: three hydrogen bond acceptors/donors, two ring aromatic features occupying the hydrophobic core, and one cation group feature targeted to the terminus of ATP. A total of 1314 hit compounds analogous to ROP18 pharmacophore were passed through the Specs. After two rounds of docking, 25 out of 100 hits were identified as belonging to two main scaffold types: phthalimide ring structure, thiazole ring and styrene structure. Additionally, the screen also identified 13 inhibitors with distinct scaffold types. The docking models and SAR analysis demonstrated that these hits could engage in multiple hydrogen bonds, salt bridges halogen bonds, and hydrophobic interactions with ROP18, and para-position halo substituents on the benzene ring may enhance their affinity scoring. CONCLUSIONS: A pharmacophore against the ROP18 ATP-binding pocket was successfully constructed, and 25 representative inhibitors from 15 scaffold clusters were screened using the Specs database. Our results provide useful scaffold types for the chemical inhibition of ROP18 or alternative conformations to develop new anti-toxoplasmosis drug leads. More... »

PAGES

98

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13071-019-3341-y

DOI

http://dx.doi.org/10.1186/s13071-019-3341-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112739205

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30867024


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Docking Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Kinase Inhibitors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein-Serine-Threonine Kinases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Structure-Activity Relationship", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Toxoplasma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Virulence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Virulence Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Health and Family Planning Commission", 
          "id": "https://www.grid.ac/institutes/grid.453135.5", 
          "name": [
            "Shandong Academy of Medical Sciences, Shandong Institute of Parasitical Disease, 272033, Jining, China", 
            "Key Laboratory of Parasite and Vector Biology, Ministry of Health, 200025, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Kun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Health and Family Planning Commission", 
          "id": "https://www.grid.ac/institutes/grid.453135.5", 
          "name": [
            "Shandong Academy of Medical Sciences, Shandong Institute of Parasitical Disease, 272033, Jining, China", 
            "Key Laboratory of Parasite and Vector Biology, Ministry of Health, 200025, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Guihua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Shandong Academy of Medical Sciences, Shandong Institute of Parasitical Disease, 272033, Jining, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Chao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Jining No.1 People\u2019s Hospital, 272000, Jining, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "Xiao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology, Shanghai Changhai Hospital, Second Military Medical University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "Biwei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "Shandong Academy of Medical Sciences, Shandong Institute of Parasitical Disease, 272033, Jining, China", 
            "Key Laboratory of Parasite and Vector Biology, Ministry of Health, 200025, Shanghai, China", 
            "National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, 200025, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Hui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Shandong Academy of Medical Sciences, Shandong Institute of Parasitical Disease, 272033, Jining, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Gongzhen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Jining No.1 People\u2019s Hospital, 272000, Jining, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Ye", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Jining No.1 People\u2019s Hospital, 272000, Jining, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Qingsong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Shandong Academy of Medical Sciences, Shandong Institute of Parasitical Disease, 272033, Jining, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Qingkuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Shandong Academy of Medical Sciences, Shandong Institute of Parasitical Disease, 272033, Jining, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Bingcheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Shandong Academy of Medical Sciences, Shandong Institute of Parasitical Disease, 272033, Jining, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Ge", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "Shandong Academy of Medical Sciences, Shandong Institute of Parasitical Disease, 272033, Jining, China", 
            "Key Laboratory of Parasite and Vector Biology, Ministry of Health, 200025, Shanghai, China", 
            "National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, 200025, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Jianping", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrc2559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001079875", 
          "https://doi.org/10.1038/nrc2559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bmcl.2012.01.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004026910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mbio.02280-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005924973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1084/jem.20101660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006617518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tips.2015.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010189647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00436-016-5141-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012838348", 
          "https://doi.org/10.1007/s00436-016-5141-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015266989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.ppat.0030014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016055990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cmi.12499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016119078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m113.523266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017545153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1005434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020197216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chom.2014.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021164062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chom.2014.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021164062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/2229-5070.190817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022257523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-3305-4-165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022762474", 
          "https://doi.org/10.1186/1756-3305-4-165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/viru.3.1.18340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023961033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(04)16412-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030211666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0024434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039030606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chom.2010.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046142843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m111.251710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048865969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1000576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050771258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsinfecdis.5b00102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055135839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsinfecdis.5b00102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055135839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsinfecdis.5b00102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055135839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/infdis/172.6.1561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059705560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1061888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1133643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062454814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1133690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062454818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m116.063602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079392148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fimmu.2018.00061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100823879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fimmu.2018.00061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100823879"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Rhoptry protein 18 (ROP18) is a key virulence factor of Toxoplasma gondii. The host's immune responses mediated by immune-related GTPases (IRGs) could be blocked by ROP18's kinase activity. ROP18 also interacts with various substrates, such as activating transcription factor 6 beta (ATF6\u03b2) and affects multiple physiological functions within host cells, thereby inducing intense virulence. In this study, competitive inhibitors targeted to ROP18 were subjected to virtual screening based on the principle of structure-based drug design (SBDD).\nMETHODS: The preparation of the ROP18 structure was conducted using the \"Structure Prepare\" function of Molecular Operating Environment (MOE) software. The ATP-binding pocket was selected as the starting point for virtual screening. Construction of the pharmacophore model used Extended H\u00fcckel Theory (EHT) half-quantitative measurement and construction, as well as the characteristics of Type I kinase inhibitors. The pharmacophore model of ROP18 was imported into the Specs database for small molecule similarity screening using EHT pharmacophore measurement. Hit compounds were selected using the functions of London dG and generalized-born volume integral/weighted surface area (GBVI/WSA) scoring. The top 100 hits were analyzed by molecular docking and structure activity relationships (SAR) analysis.\nRESULTS: The final pharmacophore comprised three typical characteristics: three hydrogen bond acceptors/donors, two ring aromatic features occupying the hydrophobic core, and one cation group feature targeted to the terminus of ATP. A total of 1314 hit compounds analogous to ROP18 pharmacophore were passed through the Specs. After two rounds of docking, 25 out of 100 hits were identified as belonging to two main scaffold types: phthalimide ring structure, thiazole ring and styrene structure. Additionally, the screen also identified 13 inhibitors with distinct scaffold types. The docking models and SAR analysis demonstrated that these hits could engage in multiple hydrogen bonds, salt bridges halogen bonds, and hydrophobic interactions with ROP18, and para-position halo substituents on the benzene ring may enhance their affinity scoring.\nCONCLUSIONS: A pharmacophore against the ROP18 ATP-binding pocket was successfully constructed, and 25 representative inhibitors from 15 scaffold clusters were screened using the Specs database. Our results provide useful scaffold types for the chemical inhibition of ROP18 or alternative conformations to develop new anti-toxoplasmosis drug leads.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13071-019-3341-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7205709", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039458", 
        "issn": [
          "1756-3305"
        ], 
        "name": "Filaria Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Prediction of Toxoplasma gondii virulence factor ROP18 competitive inhibitors by virtual screening", 
    "pagination": "98", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13071-019-3341-y"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "481f320657d115d41cd3875fd03bcae1f5d7e746de016d8616324e50fa5de212"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112739205"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101462774"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30867024"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13071-019-3341-y", 
      "https://app.dimensions.ai/details/publication/pub.1112739205"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119752_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13071-019-3341-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13071-019-3341-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13071-019-3341-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13071-019-3341-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13071-019-3341-y'


 

This table displays all metadata directly associated to this object as RDF triples.

285 TRIPLES      21 PREDICATES      65 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13071-019-3341-y schema:about N4f84504affca49c988dff3889d88fb50
2 N56224a729fcc4e45a18d19791dbb5163
3 N66c981d4a59a405b9223fab3457defa6
4 N79f2402b3cc94f64a8f534b563e6b5de
5 N88c7cd165785465e88fff0ccc0b11cca
6 N93c891a8ca594f31b7a888d0186f2eee
7 Naa2b3434aa0e4ce7bfe98ab2d3669917
8 Nbdfaea330f394a40aaeac010a7b0319c
9 Ncfb5d5b27eb84f4fbe438873eb9953e1
10 anzsrc-for:06
11 anzsrc-for:0601
12 schema:author Nb8c818f6ccd941feabcc86fd7a640c88
13 schema:citation sg:pub.10.1007/s00436-016-5141-z
14 sg:pub.10.1038/nrc2559
15 sg:pub.10.1186/1756-3305-4-165
16 https://doi.org/10.1016/j.bmcl.2012.01.043
17 https://doi.org/10.1016/j.chom.2010.11.005
18 https://doi.org/10.1016/j.chom.2014.04.002
19 https://doi.org/10.1016/j.tips.2015.04.005
20 https://doi.org/10.1016/s0140-6736(04)16412-x
21 https://doi.org/10.1021/acsinfecdis.5b00102
22 https://doi.org/10.1074/jbc.m111.251710
23 https://doi.org/10.1074/jbc.m113.523266
24 https://doi.org/10.1074/mcp.m116.063602
25 https://doi.org/10.1084/jem.20101660
26 https://doi.org/10.1093/bioinformatics/btq572
27 https://doi.org/10.1093/infdis/172.6.1561
28 https://doi.org/10.1111/cmi.12499
29 https://doi.org/10.1126/science.1061888
30 https://doi.org/10.1126/science.1133643
31 https://doi.org/10.1126/science.1133690
32 https://doi.org/10.1128/mbio.02280-14
33 https://doi.org/10.1371/journal.pbio.1000576
34 https://doi.org/10.1371/journal.pgen.1005434
35 https://doi.org/10.1371/journal.pone.0024434
36 https://doi.org/10.1371/journal.ppat.0030014
37 https://doi.org/10.3389/fimmu.2018.00061
38 https://doi.org/10.4103/2229-5070.190817
39 https://doi.org/10.4161/viru.3.1.18340
40 schema:datePublished 2019-12
41 schema:datePublishedReg 2019-12-01
42 schema:description BACKGROUND: Rhoptry protein 18 (ROP18) is a key virulence factor of Toxoplasma gondii. The host's immune responses mediated by immune-related GTPases (IRGs) could be blocked by ROP18's kinase activity. ROP18 also interacts with various substrates, such as activating transcription factor 6 beta (ATF6β) and affects multiple physiological functions within host cells, thereby inducing intense virulence. In this study, competitive inhibitors targeted to ROP18 were subjected to virtual screening based on the principle of structure-based drug design (SBDD). METHODS: The preparation of the ROP18 structure was conducted using the "Structure Prepare" function of Molecular Operating Environment (MOE) software. The ATP-binding pocket was selected as the starting point for virtual screening. Construction of the pharmacophore model used Extended Hückel Theory (EHT) half-quantitative measurement and construction, as well as the characteristics of Type I kinase inhibitors. The pharmacophore model of ROP18 was imported into the Specs database for small molecule similarity screening using EHT pharmacophore measurement. Hit compounds were selected using the functions of London dG and generalized-born volume integral/weighted surface area (GBVI/WSA) scoring. The top 100 hits were analyzed by molecular docking and structure activity relationships (SAR) analysis. RESULTS: The final pharmacophore comprised three typical characteristics: three hydrogen bond acceptors/donors, two ring aromatic features occupying the hydrophobic core, and one cation group feature targeted to the terminus of ATP. A total of 1314 hit compounds analogous to ROP18 pharmacophore were passed through the Specs. After two rounds of docking, 25 out of 100 hits were identified as belonging to two main scaffold types: phthalimide ring structure, thiazole ring and styrene structure. Additionally, the screen also identified 13 inhibitors with distinct scaffold types. The docking models and SAR analysis demonstrated that these hits could engage in multiple hydrogen bonds, salt bridges halogen bonds, and hydrophobic interactions with ROP18, and para-position halo substituents on the benzene ring may enhance their affinity scoring. CONCLUSIONS: A pharmacophore against the ROP18 ATP-binding pocket was successfully constructed, and 25 representative inhibitors from 15 scaffold clusters were screened using the Specs database. Our results provide useful scaffold types for the chemical inhibition of ROP18 or alternative conformations to develop new anti-toxoplasmosis drug leads.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N53ba638ab92e489ca3a9f994940df034
47 N67a070ef14cc49a4bd9d72391a055087
48 sg:journal.1039458
49 schema:name Prediction of Toxoplasma gondii virulence factor ROP18 competitive inhibitors by virtual screening
50 schema:pagination 98
51 schema:productId N122b59460e4e4cd9980cb2702740bcaa
52 N278304ecf05c4adfb2225fc808c0e3d9
53 N30b5ef475fce4eb48fb12addb68a6d5c
54 N4d8f1d9be6804b6c9d04070aebc14ca3
55 N535ac5ca04c041a387c6b5b46d0fe9d9
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112739205
57 https://doi.org/10.1186/s13071-019-3341-y
58 schema:sdDatePublished 2019-04-15T08:54
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Ne069b8176c924dbba14f895ad29d5cfb
61 schema:url https://link.springer.com/10.1186%2Fs13071-019-3341-y
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N085101e6655f4280ab9bbefd9b7c2a55 rdf:first N74e0f77448db43d58bb439456763e19c
66 rdf:rest Ne42db3b3c1d4467ca62a593e6e4b0188
67 N0add80fe971f4fcb97b04dbd89f89208 schema:affiliation N520c441fee42450789908797788f08bd
68 schema:familyName Yan
69 schema:givenName Ge
70 rdf:type schema:Person
71 N0f8eb4d35cbd4852bc6adbf62dfcbfd5 schema:name Shandong Academy of Medical Sciences, Shandong Institute of Parasitical Disease, 272033, Jining, China
72 rdf:type schema:Organization
73 N122b59460e4e4cd9980cb2702740bcaa schema:name dimensions_id
74 schema:value pub.1112739205
75 rdf:type schema:PropertyValue
76 N278304ecf05c4adfb2225fc808c0e3d9 schema:name readcube_id
77 schema:value 481f320657d115d41cd3875fd03bcae1f5d7e746de016d8616324e50fa5de212
78 rdf:type schema:PropertyValue
79 N27a5634251b342f980749fe1450b95a8 schema:affiliation https://www.grid.ac/institutes/grid.198530.6
80 schema:familyName Cao
81 schema:givenName Jianping
82 rdf:type schema:Person
83 N30b5ef475fce4eb48fb12addb68a6d5c schema:name nlm_unique_id
84 schema:value 101462774
85 rdf:type schema:PropertyValue
86 N32673528f1f54555b1db63681815d958 schema:name Jining No.1 People’s Hospital, 272000, Jining, China
87 rdf:type schema:Organization
88 N4d8f1d9be6804b6c9d04070aebc14ca3 schema:name pubmed_id
89 schema:value 30867024
90 rdf:type schema:PropertyValue
91 N4db14a1cd2d443b6aa2415b32f5c584d schema:affiliation N954e2bd74ad545308995335ce2fa68de
92 schema:familyName Huang
93 schema:givenName Bingcheng
94 rdf:type schema:Person
95 N4f65e1cfde31440dbb7ce1009dfb8631 schema:name Jining No.1 People’s Hospital, 272000, Jining, China
96 rdf:type schema:Organization
97 N4f84504affca49c988dff3889d88fb50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Structure-Activity Relationship
99 rdf:type schema:DefinedTerm
100 N520c441fee42450789908797788f08bd schema:name Shandong Academy of Medical Sciences, Shandong Institute of Parasitical Disease, 272033, Jining, China
101 rdf:type schema:Organization
102 N535ac5ca04c041a387c6b5b46d0fe9d9 schema:name doi
103 schema:value 10.1186/s13071-019-3341-y
104 rdf:type schema:PropertyValue
105 N53ba638ab92e489ca3a9f994940df034 schema:volumeNumber 12
106 rdf:type schema:PublicationVolume
107 N56224a729fcc4e45a18d19791dbb5163 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Protein Kinase Inhibitors
109 rdf:type schema:DefinedTerm
110 N5df7d831484d4e48a6f262ce9e77247e schema:affiliation Nfc7f5134bb7e433fb22e6ebd53db22c6
111 schema:familyName Liu
112 schema:givenName Gongzhen
113 rdf:type schema:Person
114 N63fe74b7a0f54aee94bac60f86baeca7 rdf:first N4db14a1cd2d443b6aa2415b32f5c584d
115 rdf:rest N9b1662fc9f864fee8de581c72f86364d
116 N66c981d4a59a405b9223fab3457defa6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Virulence
118 rdf:type schema:DefinedTerm
119 N67451d8b27dd4859ad559165eea58ad9 schema:affiliation N9babbd735b2c4105bc3697db2e5dd6cb
120 schema:familyName Wen
121 schema:givenName Biwei
122 rdf:type schema:Person
123 N67a070ef14cc49a4bd9d72391a055087 schema:issueNumber 1
124 rdf:type schema:PublicationIssue
125 N73753b5c291247c19f4361a7ffdceca2 schema:name Shandong Academy of Medical Sciences, Shandong Institute of Parasitical Disease, 272033, Jining, China
126 rdf:type schema:Organization
127 N74e0f77448db43d58bb439456763e19c schema:affiliation N8156e4e9f16541dcbbd9b58708fa1998
128 schema:familyName Qiu
129 schema:givenName Xiao
130 rdf:type schema:Person
131 N79f2402b3cc94f64a8f534b563e6b5de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Protein-Serine-Threonine Kinases
133 rdf:type schema:DefinedTerm
134 N7a38deee7e5749deb5d8122a29c67c8a schema:affiliation N0f8eb4d35cbd4852bc6adbf62dfcbfd5
135 schema:familyName Wei
136 schema:givenName Qingkuan
137 rdf:type schema:Person
138 N7e4a118d8a964ff38e1c9e22d5421bec schema:affiliation https://www.grid.ac/institutes/grid.453135.5
139 schema:familyName Yin
140 schema:givenName Kun
141 rdf:type schema:Person
142 N7fc68600bbdb4e5abf34b7d90802754a schema:affiliation N32673528f1f54555b1db63681815d958
143 schema:familyName Zhao
144 schema:givenName Qingsong
145 rdf:type schema:Person
146 N8156e4e9f16541dcbbd9b58708fa1998 schema:name Jining No.1 People’s Hospital, 272000, Jining, China
147 rdf:type schema:Organization
148 N88c7cd165785465e88fff0ccc0b11cca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Software
150 rdf:type schema:DefinedTerm
151 N8efe253731084c8485306cd01c9fa539 schema:affiliation https://www.grid.ac/institutes/grid.453135.5
152 schema:familyName Zhao
153 schema:givenName Guihua
154 rdf:type schema:Person
155 N93c891a8ca594f31b7a888d0186f2eee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Drug Design
157 rdf:type schema:DefinedTerm
158 N954e2bd74ad545308995335ce2fa68de schema:name Shandong Academy of Medical Sciences, Shandong Institute of Parasitical Disease, 272033, Jining, China
159 rdf:type schema:Organization
160 N9b1662fc9f864fee8de581c72f86364d rdf:first N0add80fe971f4fcb97b04dbd89f89208
161 rdf:rest Na839699500694789a3e4c38adb18c4b2
162 N9babbd735b2c4105bc3697db2e5dd6cb schema:name Department of Obstetrics and Gynecology, Shanghai Changhai Hospital, Second Military Medical University, 200433, Shanghai, China
163 rdf:type schema:Organization
164 N9c6bfb3cee8f4fd188578febf30bcb2d rdf:first N7a38deee7e5749deb5d8122a29c67c8a
165 rdf:rest N63fe74b7a0f54aee94bac60f86baeca7
166 Na0986fee48334da3bb2f797beb6fb7a7 schema:affiliation N73753b5c291247c19f4361a7ffdceca2
167 schema:familyName Xu
168 schema:givenName Chao
169 rdf:type schema:Person
170 Na839699500694789a3e4c38adb18c4b2 rdf:first N27a5634251b342f980749fe1450b95a8
171 rdf:rest rdf:nil
172 Naa2b3434aa0e4ce7bfe98ab2d3669917 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Virulence Factors
174 rdf:type schema:DefinedTerm
175 Nb4ba8e7e8c0d404a8e3c28df7d4ce164 rdf:first N5df7d831484d4e48a6f262ce9e77247e
176 rdf:rest Nc6fbc5adfa3540b7968f36c06579dd59
177 Nb8c818f6ccd941feabcc86fd7a640c88 rdf:first N7e4a118d8a964ff38e1c9e22d5421bec
178 rdf:rest Nfa03996f84f242698b6fb5e13aa6f592
179 Nbdfaea330f394a40aaeac010a7b0319c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Molecular Docking Simulation
181 rdf:type schema:DefinedTerm
182 Nc37aa09a71a24e38b7a503c9ee02b411 rdf:first Nfb46ac8e1ad743d79536b15e776c3333
183 rdf:rest Nb4ba8e7e8c0d404a8e3c28df7d4ce164
184 Nc6fbc5adfa3540b7968f36c06579dd59 rdf:first Nd53bc6fbc2ef4ff58930e00de57c0652
185 rdf:rest Nddd6fb7d158f4956a37f0099871b0a37
186 Ncfb5d5b27eb84f4fbe438873eb9953e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Toxoplasma
188 rdf:type schema:DefinedTerm
189 Nd53bc6fbc2ef4ff58930e00de57c0652 schema:affiliation N4f65e1cfde31440dbb7ce1009dfb8631
190 schema:familyName Liu
191 schema:givenName Ye
192 rdf:type schema:Person
193 Nddd6fb7d158f4956a37f0099871b0a37 rdf:first N7fc68600bbdb4e5abf34b7d90802754a
194 rdf:rest N9c6bfb3cee8f4fd188578febf30bcb2d
195 Ne069b8176c924dbba14f895ad29d5cfb schema:name Springer Nature - SN SciGraph project
196 rdf:type schema:Organization
197 Ne42db3b3c1d4467ca62a593e6e4b0188 rdf:first N67451d8b27dd4859ad559165eea58ad9
198 rdf:rest Nc37aa09a71a24e38b7a503c9ee02b411
199 Nf53a58afe9d146e7bae75ad2db6aeb66 rdf:first Na0986fee48334da3bb2f797beb6fb7a7
200 rdf:rest N085101e6655f4280ab9bbefd9b7c2a55
201 Nfa03996f84f242698b6fb5e13aa6f592 rdf:first N8efe253731084c8485306cd01c9fa539
202 rdf:rest Nf53a58afe9d146e7bae75ad2db6aeb66
203 Nfb46ac8e1ad743d79536b15e776c3333 schema:affiliation https://www.grid.ac/institutes/grid.198530.6
204 schema:familyName Sun
205 schema:givenName Hui
206 rdf:type schema:Person
207 Nfc7f5134bb7e433fb22e6ebd53db22c6 schema:name Shandong Academy of Medical Sciences, Shandong Institute of Parasitical Disease, 272033, Jining, China
208 rdf:type schema:Organization
209 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
210 schema:name Biological Sciences
211 rdf:type schema:DefinedTerm
212 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
213 schema:name Biochemistry and Cell Biology
214 rdf:type schema:DefinedTerm
215 sg:grant.7205709 http://pending.schema.org/fundedItem sg:pub.10.1186/s13071-019-3341-y
216 rdf:type schema:MonetaryGrant
217 sg:journal.1039458 schema:issn 1756-3305
218 schema:name Filaria Journal
219 rdf:type schema:Periodical
220 sg:pub.10.1007/s00436-016-5141-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012838348
221 https://doi.org/10.1007/s00436-016-5141-z
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/nrc2559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001079875
224 https://doi.org/10.1038/nrc2559
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/1756-3305-4-165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022762474
227 https://doi.org/10.1186/1756-3305-4-165
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.bmcl.2012.01.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004026910
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.chom.2010.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046142843
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.chom.2014.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021164062
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.tips.2015.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010189647
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/s0140-6736(04)16412-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030211666
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1021/acsinfecdis.5b00102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055135839
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1074/jbc.m111.251710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048865969
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1074/jbc.m113.523266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017545153
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1074/mcp.m116.063602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079392148
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1084/jem.20101660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006617518
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/bioinformatics/btq572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015266989
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1093/infdis/172.6.1561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059705560
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1111/cmi.12499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016119078
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1126/science.1061888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445144
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1126/science.1133643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062454814
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1126/science.1133690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062454818
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1128/mbio.02280-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005924973
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1371/journal.pbio.1000576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050771258
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1371/journal.pgen.1005434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020197216
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1371/journal.pone.0024434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039030606
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1371/journal.ppat.0030014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016055990
270 rdf:type schema:CreativeWork
271 https://doi.org/10.3389/fimmu.2018.00061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100823879
272 rdf:type schema:CreativeWork
273 https://doi.org/10.4103/2229-5070.190817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022257523
274 rdf:type schema:CreativeWork
275 https://doi.org/10.4161/viru.3.1.18340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023961033
276 rdf:type schema:CreativeWork
277 https://www.grid.ac/institutes/grid.198530.6 schema:alternateName Chinese Center For Disease Control and Prevention
278 schema:name Key Laboratory of Parasite and Vector Biology, Ministry of Health, 200025, Shanghai, China
279 National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, 200025, Shanghai, China
280 Shandong Academy of Medical Sciences, Shandong Institute of Parasitical Disease, 272033, Jining, China
281 rdf:type schema:Organization
282 https://www.grid.ac/institutes/grid.453135.5 schema:alternateName National Health and Family Planning Commission
283 schema:name Key Laboratory of Parasite and Vector Biology, Ministry of Health, 200025, Shanghai, China
284 Shandong Academy of Medical Sciences, Shandong Institute of Parasitical Disease, 272033, Jining, China
285 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...