Probability of dengue transmission and propagation in a non-endemic temperate area: conceptual model and decision risk levels for early alert, ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Cecilia A. Marques-Toledo, Maria Mercedes Bendati, Claudia T. Codeço, Mauro M. Teixeira

ABSTRACT

BACKGROUND: Dengue viruses have spread rapidly across tropical regions of the world in recent decades. Today, dengue transmission is observed in the Americas, Southeast Asia, Western Pacific, Africa and in non-endemic areas of the USA and Europe. Dengue is responsible for 16% of travel-related febrile illnesses. Although most prevalent in tropical areas, risk maps indicate that subtropical regions are suitable for transmission. Dengue-control programs in these regions should focus on minimizing virus importation, community engagement, improved vector surveillance and control. RESULTS: We developed a conceptual model for the probability of local introduction and propagation of dengue, comprising disease vulnerability and receptivity, in a temperate area, considering risk factors and social media indicators. Using a rich data set from a temperate area in the south of Brazil (where there is active surveillance of mosquitoes, viruses and human cases), we used a conceptual model as a framework to build two probabilistic models to estimate the probability of initiation and propagation of local dengue transmission. The final models estimated with good accuracy the probabilities of local transmission and propagation, with three and four weeks in advance, respectively. Vulnerability indicators (number of imported cases and dengue virus circulation in mosquitoes) and a receptivity indicator (vector abundance) could be optimally integrated with tweets and temperature data to estimate probability of early local dengue transmission. CONCLUSIONS: We demonstrated how vulnerability and receptivity indicators can be integrated into probabilistic models to estimate initiation and propagation of dengue transmission. The models successfully estimate disease risk in different scenarios and periods of the year. We propose a decision model with three different risk levels to assist in the planning of prevention and control measures in temperate regions at risk of dengue introduction. More... »

PAGES

38

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13071-018-3280-z

DOI

http://dx.doi.org/10.1186/s13071-018-3280-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111461221

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30651125


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Minas Gerais", 
          "id": "https://www.grid.ac/institutes/grid.8430.f", 
          "name": [
            "Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marques-Toledo", 
        "givenName": "Cecilia A.", 
        "id": "sg:person.01147311146.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147311146.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Vigilancia de Roedores e Vetores da Secretaria Municipal de Saude (CGVS/SMS), Porto Alegre, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bendati", 
        "givenName": "Maria Mercedes", 
        "id": "sg:person.014630355050.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014630355050.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oswaldo Cruz Foundation", 
          "id": "https://www.grid.ac/institutes/grid.418068.3", 
          "name": [
            "Programa de Computacao Cientifica, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Code\u00e7o", 
        "givenName": "Claudia T.", 
        "id": "sg:person.01120326615.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120326615.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Minas Gerais", 
          "id": "https://www.grid.ac/institutes/grid.8430.f", 
          "name": [
            "Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teixeira", 
        "givenName": "Mauro M.", 
        "id": "sg:person.012400013462.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012400013462.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.emc.2013.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000672037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1508114112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001721636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004869272", 
          "https://doi.org/10.1038/nature12060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra1110265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005131799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11908-014-0404-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009834268", 
          "https://doi.org/10.1007/s11908-014-0404-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11908-014-0404-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009834268", 
          "https://doi.org/10.1007/s11908-014-0404-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1473-3099(11)70313-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012068456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1000168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013564191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014582441", 
          "https://doi.org/10.1186/1471-2105-12-77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014582441", 
          "https://doi.org/10.1186/1471-2105-12-77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2527031.2527049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016197555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0104394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018331521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0004943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021817805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6947-12-147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027911346", 
          "https://doi.org/10.1186/1472-6947-12-147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4269/ajtmh.2011.10-0521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028146542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1213349110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028707179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0102-311x2009001300005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031684893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.idm.2016.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035386348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1750-2659.2012.00422.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036224923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0037-86822005000300008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038632623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-98141-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041188628", 
          "https://doi.org/10.1007/978-0-387-98141-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-98141-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041188628", 
          "https://doi.org/10.1007/978-0-387-98141-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcv.2009.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043114940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1904.120117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044892392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0000775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046220210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0004680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050479972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0157971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052028165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(14)60572-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052898843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0002520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053561400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1974.1100705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061471419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1127/0941-2948/2013/0507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062700103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078176559", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079389125", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2016.10.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083696074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13071-017-2025-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083812386", 
          "https://doi.org/10.1186/s13071-017-2025-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13071-017-2025-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083812386", 
          "https://doi.org/10.1186/s13071-017-2025-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaj9384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084221218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0005568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085082474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0005729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090746706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0006070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092750563"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Dengue viruses have spread rapidly across tropical regions of the world in recent decades. Today, dengue transmission is observed in the Americas, Southeast Asia, Western Pacific, Africa and in non-endemic areas of the USA and Europe. Dengue is responsible for 16% of travel-related febrile illnesses. Although most prevalent in tropical areas, risk maps indicate that subtropical regions are suitable for transmission. Dengue-control programs in these regions should focus on minimizing virus importation, community engagement, improved vector surveillance and control.\nRESULTS: We developed a conceptual model for the probability of local introduction and propagation of dengue, comprising disease vulnerability and receptivity, in a temperate area, considering risk factors and social media indicators. Using a rich data set from a temperate area in the south of Brazil (where there is active surveillance of mosquitoes, viruses and human cases), we used a conceptual model as a framework to build two probabilistic models to estimate the probability of initiation and propagation of local dengue transmission. The final models estimated with good accuracy the probabilities of local transmission and propagation, with three and four weeks in advance, respectively. Vulnerability indicators (number of imported cases and dengue virus circulation in mosquitoes) and a receptivity indicator (vector abundance) could be optimally integrated with tweets and temperature data to estimate probability of early local dengue transmission.\nCONCLUSIONS: We demonstrated how vulnerability and receptivity indicators can be integrated into probabilistic models to estimate initiation and propagation of dengue transmission. The models successfully estimate disease risk in different scenarios and periods of the year. We propose a decision model with three different risk levels to assist in the planning of prevention and control measures in temperate regions at risk of dengue introduction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13071-018-3280-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039458", 
        "issn": [
          "1756-3305"
        ], 
        "name": "Filaria Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Probability of dengue transmission and propagation in a non-endemic temperate area: conceptual model and decision risk levels for early alert, prevention and control", 
    "pagination": "38", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ff7ae9575286a61d65b6ca43057677bf634dfc62129ee51b9814ff72e8d379c3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30651125"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101462774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13071-018-3280-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111461221"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13071-018-3280-z", 
      "https://app.dimensions.ai/details/publication/pub.1111461221"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100782_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13071-018-3280-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13071-018-3280-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13071-018-3280-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13071-018-3280-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13071-018-3280-z'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      65 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13071-018-3280-z schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author Nc4313575a49c4f498ae74bfd7f0b8893
4 schema:citation sg:pub.10.1007/978-0-387-98141-3
5 sg:pub.10.1007/s11908-014-0404-2
6 sg:pub.10.1038/nature12060
7 sg:pub.10.1186/1471-2105-12-77
8 sg:pub.10.1186/1472-6947-12-147
9 sg:pub.10.1186/s13071-017-2025-8
10 https://app.dimensions.ai/details/publication/pub.1078176559
11 https://app.dimensions.ai/details/publication/pub.1079389125
12 https://doi.org/10.1016/j.emc.2013.07.001
13 https://doi.org/10.1016/j.idm.2016.08.002
14 https://doi.org/10.1016/j.jcv.2009.02.010
15 https://doi.org/10.1016/j.vaccine.2016.10.070
16 https://doi.org/10.1016/s0140-6736(14)60572-9
17 https://doi.org/10.1016/s1473-3099(11)70313-9
18 https://doi.org/10.1056/nejmra1110265
19 https://doi.org/10.1073/pnas.1213349110
20 https://doi.org/10.1073/pnas.1508114112
21 https://doi.org/10.1109/tac.1974.1100705
22 https://doi.org/10.1111/j.1750-2659.2012.00422.x
23 https://doi.org/10.1126/science.aaj9384
24 https://doi.org/10.1127/0941-2948/2013/0507
25 https://doi.org/10.1145/2527031.2527049
26 https://doi.org/10.1371/journal.pmed.1000168
27 https://doi.org/10.1371/journal.pntd.0000775
28 https://doi.org/10.1371/journal.pntd.0002520
29 https://doi.org/10.1371/journal.pntd.0004680
30 https://doi.org/10.1371/journal.pntd.0004943
31 https://doi.org/10.1371/journal.pntd.0005568
32 https://doi.org/10.1371/journal.pntd.0005729
33 https://doi.org/10.1371/journal.pntd.0006070
34 https://doi.org/10.1371/journal.pone.0104394
35 https://doi.org/10.1371/journal.pone.0157971
36 https://doi.org/10.1590/s0037-86822005000300008
37 https://doi.org/10.1590/s0102-311x2009001300005
38 https://doi.org/10.3201/eid1904.120117
39 https://doi.org/10.4269/ajtmh.2011.10-0521
40 schema:datePublished 2019-12
41 schema:datePublishedReg 2019-12-01
42 schema:description BACKGROUND: Dengue viruses have spread rapidly across tropical regions of the world in recent decades. Today, dengue transmission is observed in the Americas, Southeast Asia, Western Pacific, Africa and in non-endemic areas of the USA and Europe. Dengue is responsible for 16% of travel-related febrile illnesses. Although most prevalent in tropical areas, risk maps indicate that subtropical regions are suitable for transmission. Dengue-control programs in these regions should focus on minimizing virus importation, community engagement, improved vector surveillance and control. RESULTS: We developed a conceptual model for the probability of local introduction and propagation of dengue, comprising disease vulnerability and receptivity, in a temperate area, considering risk factors and social media indicators. Using a rich data set from a temperate area in the south of Brazil (where there is active surveillance of mosquitoes, viruses and human cases), we used a conceptual model as a framework to build two probabilistic models to estimate the probability of initiation and propagation of local dengue transmission. The final models estimated with good accuracy the probabilities of local transmission and propagation, with three and four weeks in advance, respectively. Vulnerability indicators (number of imported cases and dengue virus circulation in mosquitoes) and a receptivity indicator (vector abundance) could be optimally integrated with tweets and temperature data to estimate probability of early local dengue transmission. CONCLUSIONS: We demonstrated how vulnerability and receptivity indicators can be integrated into probabilistic models to estimate initiation and propagation of dengue transmission. The models successfully estimate disease risk in different scenarios and periods of the year. We propose a decision model with three different risk levels to assist in the planning of prevention and control measures in temperate regions at risk of dengue introduction.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N319e646c309544b4a7dd984f59870a24
47 Ncceea72ff3e0485c955bd5a7cccb2e00
48 sg:journal.1039458
49 schema:name Probability of dengue transmission and propagation in a non-endemic temperate area: conceptual model and decision risk levels for early alert, prevention and control
50 schema:pagination 38
51 schema:productId N42b459f64b4d496c85f6769db1e61a52
52 N8d64eabb58304cd79371be0635d7f04b
53 Nc1cb26fd4eb34f079f1b4052eeb579f0
54 Nc5e1a2be9a0c42279839eb9572409bd1
55 Nfddc393fae434ebe8238dbede129bc54
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111461221
57 https://doi.org/10.1186/s13071-018-3280-z
58 schema:sdDatePublished 2019-04-11T08:55
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N9f5c207a6b0443e6acfa8d0389a06f1b
61 schema:url https://link.springer.com/10.1186%2Fs13071-018-3280-z
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N319e646c309544b4a7dd984f59870a24 schema:volumeNumber 12
66 rdf:type schema:PublicationVolume
67 N42b459f64b4d496c85f6769db1e61a52 schema:name dimensions_id
68 schema:value pub.1111461221
69 rdf:type schema:PropertyValue
70 N43e85f7b6c41453fa3c6072ca7682dc2 rdf:first sg:person.014630355050.40
71 rdf:rest Nc6c7162746b8452e98796f234a0782b5
72 N7afac2d09bb64e2497c29cc1a5b708df schema:name Vigilancia de Roedores e Vetores da Secretaria Municipal de Saude (CGVS/SMS), Porto Alegre, Brazil
73 rdf:type schema:Organization
74 N8d64eabb58304cd79371be0635d7f04b schema:name readcube_id
75 schema:value ff7ae9575286a61d65b6ca43057677bf634dfc62129ee51b9814ff72e8d379c3
76 rdf:type schema:PropertyValue
77 N9f5c207a6b0443e6acfa8d0389a06f1b schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nb2b4c3c383aa46fd8a4c0d0310379b0d rdf:first sg:person.012400013462.78
80 rdf:rest rdf:nil
81 Nc1cb26fd4eb34f079f1b4052eeb579f0 schema:name pubmed_id
82 schema:value 30651125
83 rdf:type schema:PropertyValue
84 Nc4313575a49c4f498ae74bfd7f0b8893 rdf:first sg:person.01147311146.85
85 rdf:rest N43e85f7b6c41453fa3c6072ca7682dc2
86 Nc5e1a2be9a0c42279839eb9572409bd1 schema:name nlm_unique_id
87 schema:value 101462774
88 rdf:type schema:PropertyValue
89 Nc6c7162746b8452e98796f234a0782b5 rdf:first sg:person.01120326615.64
90 rdf:rest Nb2b4c3c383aa46fd8a4c0d0310379b0d
91 Ncceea72ff3e0485c955bd5a7cccb2e00 schema:issueNumber 1
92 rdf:type schema:PublicationIssue
93 Nfddc393fae434ebe8238dbede129bc54 schema:name doi
94 schema:value 10.1186/s13071-018-3280-z
95 rdf:type schema:PropertyValue
96 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
97 schema:name Medical and Health Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
100 schema:name Public Health and Health Services
101 rdf:type schema:DefinedTerm
102 sg:journal.1039458 schema:issn 1756-3305
103 schema:name Filaria Journal
104 rdf:type schema:Periodical
105 sg:person.01120326615.64 schema:affiliation https://www.grid.ac/institutes/grid.418068.3
106 schema:familyName Codeço
107 schema:givenName Claudia T.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120326615.64
109 rdf:type schema:Person
110 sg:person.01147311146.85 schema:affiliation https://www.grid.ac/institutes/grid.8430.f
111 schema:familyName Marques-Toledo
112 schema:givenName Cecilia A.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147311146.85
114 rdf:type schema:Person
115 sg:person.012400013462.78 schema:affiliation https://www.grid.ac/institutes/grid.8430.f
116 schema:familyName Teixeira
117 schema:givenName Mauro M.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012400013462.78
119 rdf:type schema:Person
120 sg:person.014630355050.40 schema:affiliation N7afac2d09bb64e2497c29cc1a5b708df
121 schema:familyName Bendati
122 schema:givenName Maria Mercedes
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014630355050.40
124 rdf:type schema:Person
125 sg:pub.10.1007/978-0-387-98141-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041188628
126 https://doi.org/10.1007/978-0-387-98141-3
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11908-014-0404-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009834268
129 https://doi.org/10.1007/s11908-014-0404-2
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nature12060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004869272
132 https://doi.org/10.1038/nature12060
133 rdf:type schema:CreativeWork
134 sg:pub.10.1186/1471-2105-12-77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014582441
135 https://doi.org/10.1186/1471-2105-12-77
136 rdf:type schema:CreativeWork
137 sg:pub.10.1186/1472-6947-12-147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027911346
138 https://doi.org/10.1186/1472-6947-12-147
139 rdf:type schema:CreativeWork
140 sg:pub.10.1186/s13071-017-2025-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083812386
141 https://doi.org/10.1186/s13071-017-2025-8
142 rdf:type schema:CreativeWork
143 https://app.dimensions.ai/details/publication/pub.1078176559 schema:CreativeWork
144 https://app.dimensions.ai/details/publication/pub.1079389125 schema:CreativeWork
145 https://doi.org/10.1016/j.emc.2013.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000672037
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.idm.2016.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035386348
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jcv.2009.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043114940
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.vaccine.2016.10.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083696074
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0140-6736(14)60572-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052898843
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s1473-3099(11)70313-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012068456
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1056/nejmra1110265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005131799
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1073/pnas.1213349110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028707179
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1073/pnas.1508114112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001721636
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1111/j.1750-2659.2012.00422.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036224923
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1126/science.aaj9384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084221218
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1127/0941-2948/2013/0507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062700103
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1145/2527031.2527049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016197555
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1371/journal.pmed.1000168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013564191
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1371/journal.pntd.0000775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046220210
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1371/journal.pntd.0002520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053561400
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1371/journal.pntd.0004680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050479972
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1371/journal.pntd.0004943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021817805
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1371/journal.pntd.0005568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085082474
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1371/journal.pntd.0005729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090746706
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1371/journal.pntd.0006070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092750563
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1371/journal.pone.0104394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018331521
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1371/journal.pone.0157971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052028165
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1590/s0037-86822005000300008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038632623
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1590/s0102-311x2009001300005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031684893
196 rdf:type schema:CreativeWork
197 https://doi.org/10.3201/eid1904.120117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044892392
198 rdf:type schema:CreativeWork
199 https://doi.org/10.4269/ajtmh.2011.10-0521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028146542
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.418068.3 schema:alternateName Oswaldo Cruz Foundation
202 schema:name Programa de Computacao Cientifica, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.8430.f schema:alternateName Universidade Federal de Minas Gerais
205 schema:name Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...