Spatial and temporal distribution of house infestation by Triatoma infestans in the Toro Toro municipality, Potosi, Bolivia View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02-02

AUTHORS

Jorge Espinoza Echeverria, Antonio Nogales Rodriguez, Mirko Rojas Cortez, Liléia Gonçalves Diotaiuti, David E. Gorla

ABSTRACT

BackgroundTriatoma infestans is the main vector of Trypanosoma cruzi in Bolivia. The species is present both in domestic and peridomestic structures of rural areas, and in wild ecotopes of the Andean valleys and the Great Chaco. The identification of areas persistently showing low and high house infestation by the vector is important for the management of vector control programs. This study aimed at analyzing the temporal and spatial distribution of house infestation by T. infestans in the Toro Toro municipality (Potosi, Bolivia) between 2009 and 2014, and its association with environmental variables.MethodsHouse infestation and T. infestans density were calculated from entomological surveys of houses in the study area, using a fixed-time effort sampling technique. The spatial heterogeneity of house infestation was evaluated using the SatScan statistic. Association between house infestation with Bioclim variables (Worldclim database) and altitude was analyzed using a generalized linear model (GLM) with a logit link. Model selection was based on the Akaike information criteria after eliminating collinearity between variables using the variable inflation factor. The final model was used to create a probability map of house infestation for the Toro Toro municipality.ResultsA total of 73 communities and 16,489 house evaluation events were analyzed. Presence of T. infestans was recorded on 480 house evaluation events, giving an overall annual infestation of 2.9% during the studied period (range 1.5–5.4% in 2009 and 2012). Vector density remained at about 1.25 insects/ house. Infestation was highly aggregated in five clusters, including 11 communities. Relative risk of infestation within these clusters was 1.7–3.9 times the value for the regional average. Four environmental variables were identified as good descriptors of house infestation, explaining 57% of house infestation variability. The model allowed the estimation of a house infestation surface for the Toro Toro municipality.ConclusionThis study shows that residual and persistent populations of T. infestans maintain low house infestation, representing a potential risk for the transmission of T. cruzi in these communities, and it is possible to stratify house infestation using EV, and produce a risk map to guide the activities of vector control interventions in the municipality of Toro Toro (Potosi, Bolivia). More... »

PAGES

58

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13071-017-1984-0

DOI

http://dx.doi.org/10.1186/s13071-017-1984-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083403210

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28148283


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biostatistics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bolivia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cities", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Entomology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Family Characteristics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Insect Vectors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rural Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spatio-Temporal Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triatoma", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laborat\u00f3rio de Refer\u00eancia Triatom\u00edneos e Epidemiologia da Doen\u00e7a de Chagas, Centro de Pesquisas Ren\u00e9 Rachou, FIOCRUZ- MG, Belo Horizonte, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.418068.3", 
          "name": [
            "Laborat\u00f3rio de Refer\u00eancia Triatom\u00edneos e Epidemiologia da Doen\u00e7a de Chagas, Centro de Pesquisas Ren\u00e9 Rachou, FIOCRUZ- MG, Belo Horizonte, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Espinoza Echeverria", 
        "givenName": "Jorge", 
        "id": "sg:person.01352177013.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352177013.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Servicio Departamental de Salud - Potosi, Programa Nacional de Chagas, Potosi, Bolivia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Servicio Departamental de Salud - Potosi, Programa Nacional de Chagas, Potosi, Bolivia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodriguez", 
        "givenName": "Antonio Nogales", 
        "id": "sg:person.014450775053.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014450775053.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEADES Salud y Medio Ambiente /Plataforma Chagas, Cochabamba, Bolivia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "CEADES Salud y Medio Ambiente /Plataforma Chagas, Cochabamba, Bolivia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cortez", 
        "givenName": "Mirko Rojas", 
        "id": "sg:person.01275563560.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275563560.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laborat\u00f3rio de Refer\u00eancia Triatom\u00edneos e Epidemiologia da Doen\u00e7a de Chagas, Centro de Pesquisas Ren\u00e9 Rachou, FIOCRUZ- MG, Belo Horizonte, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.418068.3", 
          "name": [
            "Laborat\u00f3rio de Refer\u00eancia Triatom\u00edneos e Epidemiologia da Doen\u00e7a de Chagas, Centro de Pesquisas Ren\u00e9 Rachou, FIOCRUZ- MG, Belo Horizonte, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diotaiuti", 
        "givenName": "Lil\u00e9ia Gon\u00e7alves", 
        "id": "sg:person.0575761100.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575761100.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Multidisciplinario de Biolog\u00eda Vegetal (IMBIV-CONICET), C\u00f3rdoba, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.509694.7", 
          "name": [
            "Instituto Multidisciplinario de Biolog\u00eda Vegetal (IMBIV-CONICET), C\u00f3rdoba, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gorla", 
        "givenName": "David E.", 
        "id": "sg:person.01253740575.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253740575.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1476-072x-3-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012494620", 
          "https://doi.org/10.1186/1476-072x-3-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13071-015-0762-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007505901", 
          "https://doi.org/10.1186/s13071-015-0762-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02-02", 
    "datePublishedReg": "2017-02-02", 
    "description": "BackgroundTriatoma infestans is the main vector of Trypanosoma cruzi in Bolivia. The species is present both in domestic and peridomestic structures of rural areas, and in wild ecotopes of the Andean valleys and the Great Chaco. The identification of areas persistently showing low and high house infestation by the vector is important for the management of vector control programs. This study aimed at analyzing the temporal and spatial distribution of house infestation by T. infestans in the Toro Toro municipality (Potosi, Bolivia) between 2009 and 2014, and its association with environmental variables.MethodsHouse infestation and T. infestans density were calculated from entomological surveys of houses in the study area, using a fixed-time effort sampling technique. The spatial heterogeneity of house infestation was evaluated using the SatScan statistic. Association between house infestation with Bioclim variables (Worldclim database) and altitude was analyzed using a generalized linear model (GLM) with a logit link. Model selection was based on the Akaike information criteria after eliminating collinearity between variables using the variable inflation factor. The final model was used to create a probability map of house infestation for the Toro Toro municipality.ResultsA total of 73 communities and 16,489 house evaluation events were analyzed. Presence of T. infestans was recorded on 480 house evaluation events, giving an overall annual infestation of 2.9% during the studied period (range 1.5\u20135.4% in 2009 and 2012). Vector density remained at about 1.25 insects/ house. Infestation was highly aggregated in five clusters, including 11 communities. Relative risk of infestation within these clusters was 1.7\u20133.9 times the value for the regional average. Four environmental variables were identified as good descriptors of house infestation, explaining 57% of house infestation variability. The model allowed the estimation of a house infestation surface for the Toro Toro municipality.ConclusionThis study shows that residual and persistent populations of T. infestans maintain low house infestation, representing a potential risk for the transmission of T. cruzi in these communities, and it is possible to stratify house infestation using EV, and produce a risk map to guide the activities of vector control interventions in the municipality of Toro Toro (Potosi, Bolivia).", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13071-017-1984-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1399818", 
        "issn": [
          "1756-3305"
        ], 
        "name": "Parasites & Vectors", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "generalized linear model", 
      "model selection", 
      "Akaike information criterion", 
      "information criterion", 
      "variable inflation factor", 
      "linear model", 
      "inflation factor", 
      "logit link", 
      "probability maps", 
      "model", 
      "variables", 
      "vector", 
      "spatial distribution", 
      "statistics", 
      "estimation", 
      "distribution", 
      "good descriptor", 
      "spatial heterogeneity", 
      "collinearity", 
      "clusters", 
      "density", 
      "maps", 
      "final model", 
      "technique", 
      "structure", 
      "eV", 
      "identification of areas", 
      "Toro", 
      "vector density", 
      "criteria", 
      "descriptors", 
      "BIOCLIM variables", 
      "environmental variables", 
      "selection", 
      "values", 
      "link", 
      "risk maps", 
      "surface", 
      "average", 
      "altitude", 
      "time", 
      "temporal distribution", 
      "heterogeneity", 
      "transmission", 
      "area", 
      "identification", 
      "Great Chaco", 
      "infestation", 
      "efforts", 
      "presence", 
      "infestans", 
      "variability", 
      "main vector", 
      "persistent populations", 
      "control programs", 
      "study", 
      "regional average", 
      "events", 
      "study area", 
      "evaluation events", 
      "program", 
      "Andean valleys", 
      "Valley", 
      "potential risk", 
      "control interventions", 
      "vector control programs", 
      "municipalities", 
      "survey", 
      "Bolivia", 
      "peridomestic structures", 
      "rural areas", 
      "Chaco", 
      "entomological survey", 
      "factors", 
      "ecotopes", 
      "T. infestans", 
      "community", 
      "species", 
      "management", 
      "population", 
      "period", 
      "house", 
      "Potosi", 
      "Triatoma infestans", 
      "relative risk", 
      "risk", 
      "association", 
      "total", 
      "ConclusionThis study", 
      "T. cruzi", 
      "vector control interventions", 
      "cruzi", 
      "Trypanosoma cruzi", 
      "activity", 
      "intervention", 
      "house infestation", 
      "ResultsA total", 
      "wild ecotopes", 
      "Toro Toro"
    ], 
    "name": "Spatial and temporal distribution of house infestation by Triatoma infestans in the Toro Toro municipality, Potosi, Bolivia", 
    "pagination": "58", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083403210"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13071-017-1984-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28148283"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13071-017-1984-0", 
      "https://app.dimensions.ai/details/publication/pub.1083403210"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_734.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13071-017-1984-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13071-017-1984-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13071-017-1984-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13071-017-1984-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13071-017-1984-0'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      21 PREDICATES      138 URIs      128 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13071-017-1984-0 schema:about N187d2e52964b4a4db700bdba6bb5bc54
2 N2b1c8a09cb5c40c1b3de3d26d0920ea6
3 N6ffad16707834823a71ada3f07410393
4 N729994703e2f46e9b026b4003a08ea4a
5 N7348916b600041c7b73b7932e17e25eb
6 N73d950470d024b4d9e784cb5aa6f5376
7 N8e9dd98258014e6e85afc3deb48865a9
8 N9264e8e158fb434f98a799f5042494f3
9 N973f69b82e6e4b7fa4494990c16305bf
10 Nc1020bd9716c4f9da6ca3bdbc067ce4c
11 Ndc691853a1d943d4b66a4e3a89d5ffe8
12 Nea9dc24d4d4f447d97789a7c0cb1c746
13 anzsrc-for:11
14 anzsrc-for:1117
15 schema:author N0a4b795c7f9f4c01a0f4c3595bcc6c55
16 schema:citation sg:pub.10.1186/1476-072x-3-8
17 sg:pub.10.1186/s13071-015-0762-0
18 schema:datePublished 2017-02-02
19 schema:datePublishedReg 2017-02-02
20 schema:description BackgroundTriatoma infestans is the main vector of Trypanosoma cruzi in Bolivia. The species is present both in domestic and peridomestic structures of rural areas, and in wild ecotopes of the Andean valleys and the Great Chaco. The identification of areas persistently showing low and high house infestation by the vector is important for the management of vector control programs. This study aimed at analyzing the temporal and spatial distribution of house infestation by T. infestans in the Toro Toro municipality (Potosi, Bolivia) between 2009 and 2014, and its association with environmental variables.MethodsHouse infestation and T. infestans density were calculated from entomological surveys of houses in the study area, using a fixed-time effort sampling technique. The spatial heterogeneity of house infestation was evaluated using the SatScan statistic. Association between house infestation with Bioclim variables (Worldclim database) and altitude was analyzed using a generalized linear model (GLM) with a logit link. Model selection was based on the Akaike information criteria after eliminating collinearity between variables using the variable inflation factor. The final model was used to create a probability map of house infestation for the Toro Toro municipality.ResultsA total of 73 communities and 16,489 house evaluation events were analyzed. Presence of T. infestans was recorded on 480 house evaluation events, giving an overall annual infestation of 2.9% during the studied period (range 1.5–5.4% in 2009 and 2012). Vector density remained at about 1.25 insects/ house. Infestation was highly aggregated in five clusters, including 11 communities. Relative risk of infestation within these clusters was 1.7–3.9 times the value for the regional average. Four environmental variables were identified as good descriptors of house infestation, explaining 57% of house infestation variability. The model allowed the estimation of a house infestation surface for the Toro Toro municipality.ConclusionThis study shows that residual and persistent populations of T. infestans maintain low house infestation, representing a potential risk for the transmission of T. cruzi in these communities, and it is possible to stratify house infestation using EV, and produce a risk map to guide the activities of vector control interventions in the municipality of Toro Toro (Potosi, Bolivia).
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf N99806be8f9324403b0cd64ebd004ce32
24 Nb51d96c7720c40279786abb67dc5f915
25 sg:journal.1399818
26 schema:keywords Akaike information criterion
27 Andean valleys
28 BIOCLIM variables
29 Bolivia
30 Chaco
31 ConclusionThis study
32 Great Chaco
33 Potosi
34 ResultsA total
35 T. cruzi
36 T. infestans
37 Toro
38 Toro Toro
39 Triatoma infestans
40 Trypanosoma cruzi
41 Valley
42 activity
43 altitude
44 area
45 association
46 average
47 clusters
48 collinearity
49 community
50 control interventions
51 control programs
52 criteria
53 cruzi
54 density
55 descriptors
56 distribution
57 eV
58 ecotopes
59 efforts
60 entomological survey
61 environmental variables
62 estimation
63 evaluation events
64 events
65 factors
66 final model
67 generalized linear model
68 good descriptor
69 heterogeneity
70 house
71 house infestation
72 identification
73 identification of areas
74 infestans
75 infestation
76 inflation factor
77 information criterion
78 intervention
79 linear model
80 link
81 logit link
82 main vector
83 management
84 maps
85 model
86 model selection
87 municipalities
88 peridomestic structures
89 period
90 persistent populations
91 population
92 potential risk
93 presence
94 probability maps
95 program
96 regional average
97 relative risk
98 risk
99 risk maps
100 rural areas
101 selection
102 spatial distribution
103 spatial heterogeneity
104 species
105 statistics
106 structure
107 study
108 study area
109 surface
110 survey
111 technique
112 temporal distribution
113 time
114 total
115 transmission
116 values
117 variability
118 variable inflation factor
119 variables
120 vector
121 vector control interventions
122 vector control programs
123 vector density
124 wild ecotopes
125 schema:name Spatial and temporal distribution of house infestation by Triatoma infestans in the Toro Toro municipality, Potosi, Bolivia
126 schema:pagination 58
127 schema:productId N306b7e7ffeac4628bde886b7de7162cb
128 Nd709fd4c3ffd4636b67957330d49cfe0
129 Ne6b3f37d3cf1489a8ad49ba52af4dee7
130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083403210
131 https://doi.org/10.1186/s13071-017-1984-0
132 schema:sdDatePublished 2022-12-01T06:36
133 schema:sdLicense https://scigraph.springernature.com/explorer/license/
134 schema:sdPublisher N8b903a1861cf423bb8f32fae4f5d54c4
135 schema:url https://doi.org/10.1186/s13071-017-1984-0
136 sgo:license sg:explorer/license/
137 sgo:sdDataset articles
138 rdf:type schema:ScholarlyArticle
139 N0978c505f9474582ac184d152a19ac7b rdf:first sg:person.014450775053.36
140 rdf:rest N6f111ee76a334864aced6ec30a75c8c1
141 N0a4b795c7f9f4c01a0f4c3595bcc6c55 rdf:first sg:person.01352177013.44
142 rdf:rest N0978c505f9474582ac184d152a19ac7b
143 N187d2e52964b4a4db700bdba6bb5bc54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Bolivia
145 rdf:type schema:DefinedTerm
146 N2b1c8a09cb5c40c1b3de3d26d0920ea6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Entomology
148 rdf:type schema:DefinedTerm
149 N306b7e7ffeac4628bde886b7de7162cb schema:name pubmed_id
150 schema:value 28148283
151 rdf:type schema:PropertyValue
152 N6f111ee76a334864aced6ec30a75c8c1 rdf:first sg:person.01275563560.05
153 rdf:rest N8b2daa57bd6b4037b8d79093f88edc45
154 N6ffad16707834823a71ada3f07410393 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Biostatistics
156 rdf:type schema:DefinedTerm
157 N729994703e2f46e9b026b4003a08ea4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Spatio-Temporal Analysis
159 rdf:type schema:DefinedTerm
160 N7348916b600041c7b73b7932e17e25eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Cities
162 rdf:type schema:DefinedTerm
163 N73d950470d024b4d9e784cb5aa6f5376 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Insect Vectors
165 rdf:type schema:DefinedTerm
166 N8b2daa57bd6b4037b8d79093f88edc45 rdf:first sg:person.0575761100.85
167 rdf:rest Nf76ba853ee234dc3bd0f3ad991b1f8f2
168 N8b903a1861cf423bb8f32fae4f5d54c4 schema:name Springer Nature - SN SciGraph project
169 rdf:type schema:Organization
170 N8e9dd98258014e6e85afc3deb48865a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Environment
172 rdf:type schema:DefinedTerm
173 N9264e8e158fb434f98a799f5042494f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Triatoma
175 rdf:type schema:DefinedTerm
176 N973f69b82e6e4b7fa4494990c16305bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Animals
178 rdf:type schema:DefinedTerm
179 N99806be8f9324403b0cd64ebd004ce32 schema:volumeNumber 10
180 rdf:type schema:PublicationVolume
181 Nb51d96c7720c40279786abb67dc5f915 schema:issueNumber 1
182 rdf:type schema:PublicationIssue
183 Nc1020bd9716c4f9da6ca3bdbc067ce4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Family Characteristics
185 rdf:type schema:DefinedTerm
186 Nd709fd4c3ffd4636b67957330d49cfe0 schema:name dimensions_id
187 schema:value pub.1083403210
188 rdf:type schema:PropertyValue
189 Ndc691853a1d943d4b66a4e3a89d5ffe8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Rural Population
191 rdf:type schema:DefinedTerm
192 Ne6b3f37d3cf1489a8ad49ba52af4dee7 schema:name doi
193 schema:value 10.1186/s13071-017-1984-0
194 rdf:type schema:PropertyValue
195 Nea9dc24d4d4f447d97789a7c0cb1c746 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Population Density
197 rdf:type schema:DefinedTerm
198 Nf76ba853ee234dc3bd0f3ad991b1f8f2 rdf:first sg:person.01253740575.89
199 rdf:rest rdf:nil
200 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
201 schema:name Medical and Health Sciences
202 rdf:type schema:DefinedTerm
203 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
204 schema:name Public Health and Health Services
205 rdf:type schema:DefinedTerm
206 sg:journal.1399818 schema:issn 1756-3305
207 schema:name Parasites & Vectors
208 schema:publisher Springer Nature
209 rdf:type schema:Periodical
210 sg:person.01253740575.89 schema:affiliation grid-institutes:grid.509694.7
211 schema:familyName Gorla
212 schema:givenName David E.
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253740575.89
214 rdf:type schema:Person
215 sg:person.01275563560.05 schema:affiliation grid-institutes:None
216 schema:familyName Cortez
217 schema:givenName Mirko Rojas
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275563560.05
219 rdf:type schema:Person
220 sg:person.01352177013.44 schema:affiliation grid-institutes:grid.418068.3
221 schema:familyName Espinoza Echeverria
222 schema:givenName Jorge
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352177013.44
224 rdf:type schema:Person
225 sg:person.014450775053.36 schema:affiliation grid-institutes:None
226 schema:familyName Rodriguez
227 schema:givenName Antonio Nogales
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014450775053.36
229 rdf:type schema:Person
230 sg:person.0575761100.85 schema:affiliation grid-institutes:grid.418068.3
231 schema:familyName Diotaiuti
232 schema:givenName Liléia Gonçalves
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575761100.85
234 rdf:type schema:Person
235 sg:pub.10.1186/1476-072x-3-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012494620
236 https://doi.org/10.1186/1476-072x-3-8
237 rdf:type schema:CreativeWork
238 sg:pub.10.1186/s13071-015-0762-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007505901
239 https://doi.org/10.1186/s13071-015-0762-0
240 rdf:type schema:CreativeWork
241 grid-institutes:None schema:alternateName CEADES Salud y Medio Ambiente /Plataforma Chagas, Cochabamba, Bolivia
242 Servicio Departamental de Salud - Potosi, Programa Nacional de Chagas, Potosi, Bolivia
243 schema:name CEADES Salud y Medio Ambiente /Plataforma Chagas, Cochabamba, Bolivia
244 Servicio Departamental de Salud - Potosi, Programa Nacional de Chagas, Potosi, Bolivia
245 rdf:type schema:Organization
246 grid-institutes:grid.418068.3 schema:alternateName Laboratório de Referência Triatomíneos e Epidemiologia da Doença de Chagas, Centro de Pesquisas René Rachou, FIOCRUZ- MG, Belo Horizonte, Brazil
247 schema:name Laboratório de Referência Triatomíneos e Epidemiologia da Doença de Chagas, Centro de Pesquisas René Rachou, FIOCRUZ- MG, Belo Horizonte, Brazil
248 rdf:type schema:Organization
249 grid-institutes:grid.509694.7 schema:alternateName Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina
250 schema:name Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...