Genome expansion by allopolyploidization in the fungal strain Coniochaeta 2T2.1 and its exceptional lignocellulolytic machinery View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-09-23

AUTHORS

Stephen J. Mondo, Diego Javier Jiménez, Ronald E. Hector, Anna Lipzen, Mi Yan, Kurt LaButti, Kerrie Barry, Jan Dirk van Elsas, Igor V. Grigoriev, Nancy N. Nichols

ABSTRACT

BackgroundParticular species of the genus Coniochaeta (Sordariomycetes) exhibit great potential for bioabatement of furanic compounds and have been identified as an underexplored source of novel lignocellulolytic enzymes, especially Coniochaeta ligniaria. However, there is a lack of information about their genomic features and metabolic capabilities. Here, we report the first in-depth genome/transcriptome survey of a Coniochaeta species (strain 2T2.1).ResultsThe genome of Coniochaeta sp. strain 2T2.1 has a size of 74.53 Mbp and contains 24,735 protein-encoding genes. Interestingly, we detected a genome expansion event, resulting ~ 98% of the assembly being duplicated with 91.9% average nucleotide identity between the duplicated regions. The lack of gene loss, as well as the high divergence and strong genome-wide signatures of purifying selection between copies indicates that this is likely a recent duplication, which arose through hybridization between two related Coniochaeta-like species (allopolyploidization). Phylogenomic analysis revealed that 2T2.1 is related Coniochaeta sp. PMI546 and Lecythophora sp. AK0013, which both occur endophytically. Based on carbohydrate-active enzyme (CAZy) annotation, we observed that even after in silico removal of its duplicated content, the 2T2.1 genome contains exceptional lignocellulolytic machinery. Moreover, transcriptomic data reveal the overexpression of proteins affiliated to CAZy families GH11, GH10 (endoxylanases), CE5, CE1 (xylan esterases), GH62, GH51 (α-l-arabinofuranosidases), GH12, GH7 (cellulases), and AA9 (lytic polysaccharide monoxygenases) when the fungus was grown on wheat straw compared with glucose as the sole carbon source.ConclusionsWe provide data that suggest that a recent hybridization between the genomes of related species may have given rise to Coniochaeta sp. 2T2.1. Moreover, our results reveal that the degradation of arabinoxylan, xyloglucan and cellulose are key metabolic processes in strain 2T2.1 growing on wheat straw. Different genes for key lignocellulolytic enzymes were identified, which can be starting points for production, characterization and/or supplementation of enzyme cocktails used in saccharification of agricultural residues. Our findings represent first steps that enable a better understanding of the reticulate evolution and “eco-enzymology” of lignocellulolytic Coniochaeta species. More... »

PAGES

229

References to SciGraph publications

  • 2018-03-02. Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses in BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS
  • 2016-10-17. Phased diploid genome assembly with single-molecule real-time sequencing in NATURE METHODS
  • 2015-05-09. Classification of fungal and bacterial lytic polysaccharide monooxygenases in BMC GENOMICS
  • 2008-04-25. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework in BMC BIOINFORMATICS
  • 2014-04-03. Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2011-02-22. Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides in BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS
  • 2018-10-22. Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri in NATURE GENETICS
  • 2015-05-30. An endophytic Coniochaeta velutina producing broad spectrum antimycotics in JOURNAL OF MICROBIOLOGY
  • 2013-10-10. Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2016-05-12. Different inocula produce distinctive microbial consortia with similar lignocellulose degradation capacity in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2017-04-28. Predicting Secretory Proteins with SignalP in PROTEIN FUNCTION PREDICTION
  • 2011-12-20. The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed in BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS
  • 2014-06-12. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia in BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS
  • 2011-05-18. The Lignicolous Fungus Coniochaeta pulveracea and Its Interactions with Syntrophic Yeasts from the Woody Phylloplane in MICROBIAL ECOLOGY
  • 2015-05-07. The Phyre2 web portal for protein modeling, prediction and analysis in NATURE PROTOCOLS
  • 2014-12-05. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 in GENOME BIOLOGY
  • 2012-07-02. Novel enzymes for the degradation of cellulose in BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS
  • 2013-06-09. Coniochaeta polymorpha, a new species from endotracheal aspirate of a preterm neonate, and transfer of Lecythophora species to Coniochaeta in ANTONIE VAN LEEUWENHOEK
  • 2015-03-09. HISAT: a fast spliced aligner with low memory requirements in NATURE METHODS
  • 2003-07. Use of nitrate non-utilising (Nit) mutants to determine vegetative compatibility in Botryotinia fuckeliana (Botrytis cinerea) in EUROPEAN JOURNAL OF PLANT PATHOLOGY
  • 2015-03-18. From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production in BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS
  • 2017-11-13. Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus Malbranchea cinnamomea in BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS
  • 2015-11-25. Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions in BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS
  • 2015-02-23. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists in NATURE GENETICS
  • 2017-05-08. Widespread adenine N6-methylation of active genes in fungi in NATURE GENETICS
  • 2017-05-30. A parts list for fungal cellulosomes revealed by comparative genomics in NATURE MICROBIOLOGY
  • 2015-10-20. Soil-Derived Microbial Consortia Enriched with Different Plant Biomass Reveal Distinct Players Acting in Lignocellulose Degradation in MICROBIAL ECOLOGY
  • 2018-04-03. Transcriptome and secretome analysis of Aspergillus fumigatus in the presence of sugarcane bagasse in BMC GENOMICS
  • 2011-05-15. Full-length transcriptome assembly from RNA-Seq data without a reference genome in NATURE BIOTECHNOLOGY
  • 2003-08-08. Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2016-10-28. Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications in BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS
  • 2012-08-12. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13068-019-1569-6

    DOI

    http://dx.doi.org/10.1186/s13068-019-1569-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1121190089

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/31572496


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1003", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Industrial Biotechnology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Bioagricultural Science and Pest Management Department, Colorado State University, 80521, Fort Collins, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.47894.36", 
              "name": [
                "U.S. Department of Energy Joint Genome Institute, 94598, Walnut Creek, CA, USA", 
                "Bioagricultural Science and Pest Management Department, Colorado State University, 80521, Fort Collins, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mondo", 
            "givenName": "Stephen J.", 
            "id": "sg:person.01004445231.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004445231.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Carrera 1 No 18A-12, Bogot\u00e1, Colombia", 
              "id": "http://www.grid.ac/institutes/grid.7247.6", 
              "name": [
                "Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Carrera 1 No 18A-12, Bogot\u00e1, Colombia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jim\u00e9nez", 
            "givenName": "Diego Javier", 
            "id": "sg:person.01147341635.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147341635.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, 61604, Peoria, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.507311.1", 
              "name": [
                "Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, 61604, Peoria, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hector", 
            "givenName": "Ronald E.", 
            "id": "sg:person.01251454605.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251454605.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "U.S. Department of Energy Joint Genome Institute, 94598, Walnut Creek, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.451309.a", 
              "name": [
                "U.S. Department of Energy Joint Genome Institute, 94598, Walnut Creek, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lipzen", 
            "givenName": "Anna", 
            "id": "sg:person.01216546632.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216546632.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "U.S. Department of Energy Joint Genome Institute, 94598, Walnut Creek, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.451309.a", 
              "name": [
                "U.S. Department of Energy Joint Genome Institute, 94598, Walnut Creek, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Mi", 
            "id": "sg:person.016363344577.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016363344577.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "U.S. Department of Energy Joint Genome Institute, 94598, Walnut Creek, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.451309.a", 
              "name": [
                "U.S. Department of Energy Joint Genome Institute, 94598, Walnut Creek, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "LaButti", 
            "givenName": "Kurt", 
            "id": "sg:person.01164667257.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164667257.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "U.S. Department of Energy Joint Genome Institute, 94598, Walnut Creek, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.451309.a", 
              "name": [
                "U.S. Department of Energy Joint Genome Institute, 94598, Walnut Creek, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barry", 
            "givenName": "Kerrie", 
            "id": "sg:person.0707307031.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707307031.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4830.f", 
              "name": [
                "Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van Elsas", 
            "givenName": "Jan Dirk", 
            "id": "sg:person.01260176024.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260176024.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Plant and Microbial Biology, University of California Berkeley, 94720-3102, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "U.S. Department of Energy Joint Genome Institute, 94598, Walnut Creek, CA, USA", 
                "Department of Plant and Microbial Biology, University of California Berkeley, 94720-3102, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grigoriev", 
            "givenName": "Igor V.", 
            "id": "sg:person.01170043567.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170043567.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, 61604, Peoria, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.507311.1", 
              "name": [
                "Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, 61604, Peoria, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nichols", 
            "givenName": "Nancy N.", 
            "id": "sg:person.01362477120.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362477120.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41588-018-0246-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107689541", 
              "https://doi.org/10.1038/s41588-018-0246-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-011-9869-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041368450", 
              "https://doi.org/10.1007/s00248-011-9869-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-7-92", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012894844", 
              "https://doi.org/10.1186/1754-6834-7-92"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2017.87", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085662601", 
              "https://doi.org/10.1038/nmicrobiol.2017.87"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-016-0651-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051939545", 
              "https://doi.org/10.1186/s13068-016-0651-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-1601-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037501007", 
              "https://doi.org/10.1186/s12864-015-1601-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006234163", 
              "https://doi.org/10.1038/ng.2372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042600951", 
              "https://doi.org/10.1038/ng.3223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10482-013-9943-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053666881", 
              "https://doi.org/10.1007/s10482-013-9943-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-015-0232-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006568973", 
              "https://doi.org/10.1186/s13068-015-0232-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052288599", 
              "https://doi.org/10.1186/1471-2105-9-212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12275-015-5105-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018146807", 
              "https://doi.org/10.1007/s12275-015-5105-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-018-1060-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101305001", 
              "https://doi.org/10.1186/s13068-018-1060-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-5-45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002219986", 
              "https://doi.org/10.1186/1754-6834-5-45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005140994", 
              "https://doi.org/10.1038/nmeth.3317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-4-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023297302", 
              "https://doi.org/10.1186/1754-6834-4-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085212217", 
              "https://doi.org/10.1038/ng.3859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019059120", 
              "https://doi.org/10.1038/nmeth.4035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-003-1401-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039013735", 
              "https://doi.org/10.1007/s00253-003-1401-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-014-5698-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047582829", 
              "https://doi.org/10.1007/s00253-014-5698-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-016-7516-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006685745", 
              "https://doi.org/10.1007/s00253-016-7516-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-015-0376-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032177310", 
              "https://doi.org/10.1186/s13068-015-0376-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1883", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015803168", 
              "https://doi.org/10.1038/nbt.1883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-7015-5_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085083567", 
              "https://doi.org/10.1007/978-1-4939-7015-5_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-018-4627-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103148443", 
              "https://doi.org/10.1186/s12864-018-4627-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2015.053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001304490", 
              "https://doi.org/10.1038/nprot.2015.053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0550-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015222646", 
              "https://doi.org/10.1186/s13059-014-0550-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-013-5253-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016620117", 
              "https://doi.org/10.1007/s00253-013-5253-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-017-0956-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092655224", 
              "https://doi.org/10.1186/s13068-017-0956-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-4-60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051585482", 
              "https://doi.org/10.1186/1754-6834-4-60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1024732815134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049178070", 
              "https://doi.org/10.1023/a:1024732815134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-015-0683-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044434597", 
              "https://doi.org/10.1007/s00248-015-0683-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-09-23", 
        "datePublishedReg": "2019-09-23", 
        "description": "BackgroundParticular species of the genus Coniochaeta (Sordariomycetes) exhibit great potential for bioabatement of furanic compounds and have been identified as an underexplored source of novel lignocellulolytic enzymes, especially Coniochaeta ligniaria. However, there is a lack of information about their genomic features and metabolic capabilities. Here, we report the first in-depth genome/transcriptome survey of a Coniochaeta species (strain 2T2.1).ResultsThe genome of Coniochaeta sp. strain 2T2.1 has a size of 74.53 Mbp and contains 24,735 protein-encoding genes. Interestingly, we detected a genome expansion event, resulting\u2009~\u200998% of the assembly being duplicated with 91.9% average nucleotide identity between the duplicated regions. The lack of gene loss, as well as the\u00a0high divergence and strong genome-wide signatures of purifying selection between copies indicates that this is likely a recent duplication, which arose through hybridization between two related Coniochaeta-like species (allopolyploidization). Phylogenomic analysis revealed that 2T2.1 is related Coniochaeta sp. PMI546 and Lecythophora sp. AK0013, which both occur endophytically. Based on carbohydrate-active enzyme (CAZy) annotation, we observed that even after in silico removal of its duplicated content, the\u00a02T2.1 genome contains exceptional lignocellulolytic machinery. Moreover, transcriptomic data reveal the overexpression of proteins affiliated to CAZy families GH11, GH10 (endoxylanases), CE5, CE1 (xylan esterases), GH62, GH51 (\u03b1-l-arabinofuranosidases), GH12, GH7 (cellulases), and AA9 (lytic polysaccharide monoxygenases) when the fungus was grown on wheat straw compared with glucose as the sole carbon source.ConclusionsWe provide data that suggest that\u00a0a recent hybridization between the genomes of\u00a0related species may have given rise to Coniochaeta sp. 2T2.1. Moreover, our results reveal that the degradation of arabinoxylan, xyloglucan and cellulose are key metabolic processes in strain\u00a02T2.1 growing on wheat straw. Different genes for key lignocellulolytic enzymes\u00a0were identified, which can be starting points for production, characterization and/or supplementation of enzyme cocktails used in saccharification of agricultural residues. Our findings represent first steps that enable a better understanding of the reticulate evolution and \u201ceco-enzymology\u201d of lignocellulolytic Coniochaeta species.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13068-019-1569-6", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1429595", 
            "issn": [
              "2731-3654"
            ], 
            "name": "Biotechnology for Biofuels and Bioproducts", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "lignocellulolytic machinery", 
          "Coniochaeta species", 
          "Coniochaeta sp", 
          "carbohydrate-active enzyme annotation", 
          "lignocellulolytic enzymes", 
          "genome-wide signatures", 
          "protein-encoding genes", 
          "average nucleotide identity", 
          "novel lignocellulolytic enzymes", 
          "key metabolic processes", 
          "overexpression of proteins", 
          "reticulate evolution", 
          "genome expansion", 
          "recent duplication", 
          "Coniochaeta ligniaria", 
          "transcriptome survey", 
          "gene loss", 
          "phylogenomic analysis", 
          "recent hybridization", 
          "expansion events", 
          "sole carbon source", 
          "metabolic capabilities", 
          "transcriptomic data", 
          "degradation of arabinoxylan", 
          "high divergence", 
          "silico removal", 
          "genomic features", 
          "nucleotide identity", 
          "enzyme annotation", 
          "different genes", 
          "underexplored source", 
          "metabolic processes", 
          "genome", 
          "species", 
          "sp", 
          "enzyme cocktail", 
          "carbon source", 
          "genes", 
          "machinery", 
          "enzyme", 
          "hybridization", 
          "wheat straw", 
          "allopolyploidization", 
          "bioabatement", 
          "GH62", 
          "Coniochaeta", 
          "GH51", 
          "GH11", 
          "AA9", 
          "xyloglucan", 
          "GH10", 
          "fungi", 
          "GH12", 
          "duplication", 
          "GH7", 
          "protein", 
          "overexpression", 
          "divergence", 
          "residues", 
          "better understanding", 
          "annotation", 
          "copies", 
          "lack of information", 
          "CE5", 
          "assembly", 
          "arabinoxylan", 
          "MBP", 
          "first step", 
          "strains", 
          "agricultural residues", 
          "degradation", 
          "evolution", 
          "saccharification", 
          "straw", 
          "selection", 
          "production", 
          "cocktail", 
          "characterization", 
          "signatures", 
          "identity", 
          "great potential", 
          "region", 
          "understanding", 
          "cellulose", 
          "glucose", 
          "lack", 
          "loss", 
          "events", 
          "Ce1", 
          "source", 
          "compounds", 
          "potential", 
          "expansion", 
          "supplementation", 
          "content", 
          "data", 
          "step", 
          "analysis", 
          "size", 
          "process", 
          "findings", 
          "removal", 
          "rise", 
          "features", 
          "information", 
          "ConclusionsWe", 
          "results", 
          "capability", 
          "survey", 
          "point", 
          "furanic compounds"
        ], 
        "name": "Genome expansion by allopolyploidization in the fungal strain Coniochaeta 2T2.1 and its exceptional lignocellulolytic machinery", 
        "pagination": "229", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1121190089"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13068-019-1569-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "31572496"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13068-019-1569-6", 
          "https://app.dimensions.ai/details/publication/pub.1121190089"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_822.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13068-019-1569-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13068-019-1569-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13068-019-1569-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13068-019-1569-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13068-019-1569-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    387 TRIPLES      21 PREDICATES      170 URIs      128 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13068-019-1569-6 schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 anzsrc-for:10
    4 anzsrc-for:1003
    5 schema:author Nd402b12985b445fd8a0ec458965aaa75
    6 schema:citation sg:pub.10.1007/978-1-4939-7015-5_6
    7 sg:pub.10.1007/s00248-011-9869-9
    8 sg:pub.10.1007/s00248-015-0683-7
    9 sg:pub.10.1007/s00253-003-1401-9
    10 sg:pub.10.1007/s00253-013-5253-7
    11 sg:pub.10.1007/s00253-014-5698-3
    12 sg:pub.10.1007/s00253-016-7516-6
    13 sg:pub.10.1007/s10482-013-9943-z
    14 sg:pub.10.1007/s12275-015-5105-5
    15 sg:pub.10.1023/a:1024732815134
    16 sg:pub.10.1038/nbt.1883
    17 sg:pub.10.1038/ng.2372
    18 sg:pub.10.1038/ng.3223
    19 sg:pub.10.1038/ng.3859
    20 sg:pub.10.1038/nmeth.3317
    21 sg:pub.10.1038/nmeth.4035
    22 sg:pub.10.1038/nmicrobiol.2017.87
    23 sg:pub.10.1038/nprot.2015.053
    24 sg:pub.10.1038/s41588-018-0246-1
    25 sg:pub.10.1186/1471-2105-9-212
    26 sg:pub.10.1186/1754-6834-4-5
    27 sg:pub.10.1186/1754-6834-4-60
    28 sg:pub.10.1186/1754-6834-5-45
    29 sg:pub.10.1186/1754-6834-7-92
    30 sg:pub.10.1186/s12864-015-1601-6
    31 sg:pub.10.1186/s12864-018-4627-8
    32 sg:pub.10.1186/s13059-014-0550-8
    33 sg:pub.10.1186/s13068-015-0232-0
    34 sg:pub.10.1186/s13068-015-0376-y
    35 sg:pub.10.1186/s13068-016-0651-6
    36 sg:pub.10.1186/s13068-017-0956-0
    37 sg:pub.10.1186/s13068-018-1060-9
    38 schema:datePublished 2019-09-23
    39 schema:datePublishedReg 2019-09-23
    40 schema:description BackgroundParticular species of the genus Coniochaeta (Sordariomycetes) exhibit great potential for bioabatement of furanic compounds and have been identified as an underexplored source of novel lignocellulolytic enzymes, especially Coniochaeta ligniaria. However, there is a lack of information about their genomic features and metabolic capabilities. Here, we report the first in-depth genome/transcriptome survey of a Coniochaeta species (strain 2T2.1).ResultsThe genome of Coniochaeta sp. strain 2T2.1 has a size of 74.53 Mbp and contains 24,735 protein-encoding genes. Interestingly, we detected a genome expansion event, resulting ~ 98% of the assembly being duplicated with 91.9% average nucleotide identity between the duplicated regions. The lack of gene loss, as well as the high divergence and strong genome-wide signatures of purifying selection between copies indicates that this is likely a recent duplication, which arose through hybridization between two related Coniochaeta-like species (allopolyploidization). Phylogenomic analysis revealed that 2T2.1 is related Coniochaeta sp. PMI546 and Lecythophora sp. AK0013, which both occur endophytically. Based on carbohydrate-active enzyme (CAZy) annotation, we observed that even after in silico removal of its duplicated content, the 2T2.1 genome contains exceptional lignocellulolytic machinery. Moreover, transcriptomic data reveal the overexpression of proteins affiliated to CAZy families GH11, GH10 (endoxylanases), CE5, CE1 (xylan esterases), GH62, GH51 (α-l-arabinofuranosidases), GH12, GH7 (cellulases), and AA9 (lytic polysaccharide monoxygenases) when the fungus was grown on wheat straw compared with glucose as the sole carbon source.ConclusionsWe provide data that suggest that a recent hybridization between the genomes of related species may have given rise to Coniochaeta sp. 2T2.1. Moreover, our results reveal that the degradation of arabinoxylan, xyloglucan and cellulose are key metabolic processes in strain 2T2.1 growing on wheat straw. Different genes for key lignocellulolytic enzymes were identified, which can be starting points for production, characterization and/or supplementation of enzyme cocktails used in saccharification of agricultural residues. Our findings represent first steps that enable a better understanding of the reticulate evolution and “eco-enzymology” of lignocellulolytic Coniochaeta species.
    41 schema:genre article
    42 schema:isAccessibleForFree true
    43 schema:isPartOf N6cb3405edd5842d5b01a8ae34412d06f
    44 N99cfa2abc03149a0a54492971991b9e2
    45 sg:journal.1429595
    46 schema:keywords AA9
    47 CE5
    48 Ce1
    49 ConclusionsWe
    50 Coniochaeta
    51 Coniochaeta ligniaria
    52 Coniochaeta sp
    53 Coniochaeta species
    54 GH10
    55 GH11
    56 GH12
    57 GH51
    58 GH62
    59 GH7
    60 MBP
    61 agricultural residues
    62 allopolyploidization
    63 analysis
    64 annotation
    65 arabinoxylan
    66 assembly
    67 average nucleotide identity
    68 better understanding
    69 bioabatement
    70 capability
    71 carbohydrate-active enzyme annotation
    72 carbon source
    73 cellulose
    74 characterization
    75 cocktail
    76 compounds
    77 content
    78 copies
    79 data
    80 degradation
    81 degradation of arabinoxylan
    82 different genes
    83 divergence
    84 duplication
    85 enzyme
    86 enzyme annotation
    87 enzyme cocktail
    88 events
    89 evolution
    90 expansion
    91 expansion events
    92 features
    93 findings
    94 first step
    95 fungi
    96 furanic compounds
    97 gene loss
    98 genes
    99 genome
    100 genome expansion
    101 genome-wide signatures
    102 genomic features
    103 glucose
    104 great potential
    105 high divergence
    106 hybridization
    107 identity
    108 information
    109 key metabolic processes
    110 lack
    111 lack of information
    112 lignocellulolytic enzymes
    113 lignocellulolytic machinery
    114 loss
    115 machinery
    116 metabolic capabilities
    117 metabolic processes
    118 novel lignocellulolytic enzymes
    119 nucleotide identity
    120 overexpression
    121 overexpression of proteins
    122 phylogenomic analysis
    123 point
    124 potential
    125 process
    126 production
    127 protein
    128 protein-encoding genes
    129 recent duplication
    130 recent hybridization
    131 region
    132 removal
    133 residues
    134 results
    135 reticulate evolution
    136 rise
    137 saccharification
    138 selection
    139 signatures
    140 silico removal
    141 size
    142 sole carbon source
    143 source
    144 sp
    145 species
    146 step
    147 strains
    148 straw
    149 supplementation
    150 survey
    151 transcriptome survey
    152 transcriptomic data
    153 underexplored source
    154 understanding
    155 wheat straw
    156 xyloglucan
    157 schema:name Genome expansion by allopolyploidization in the fungal strain Coniochaeta 2T2.1 and its exceptional lignocellulolytic machinery
    158 schema:pagination 229
    159 schema:productId N153de6748f574789a7dbe36085938a87
    160 N25fd83870a8947d2b8105a156b1e7217
    161 N6d19b0624fc04eebb6f3e73f0004847a
    162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121190089
    163 https://doi.org/10.1186/s13068-019-1569-6
    164 schema:sdDatePublished 2022-12-01T06:39
    165 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    166 schema:sdPublisher N827007943549499d9167daf5bc2affed
    167 schema:url https://doi.org/10.1186/s13068-019-1569-6
    168 sgo:license sg:explorer/license/
    169 sgo:sdDataset articles
    170 rdf:type schema:ScholarlyArticle
    171 N05a0a76b0ca94cdba1129bb24a7da3a5 rdf:first sg:person.01216546632.17
    172 rdf:rest Na6eab8d70be144b2ba5793e653611ffc
    173 N06ce4227591a4c55a73a77dcae15c6cd rdf:first sg:person.01362477120.95
    174 rdf:rest rdf:nil
    175 N153de6748f574789a7dbe36085938a87 schema:name doi
    176 schema:value 10.1186/s13068-019-1569-6
    177 rdf:type schema:PropertyValue
    178 N241a540095624701b510c73e76828101 rdf:first sg:person.01251454605.07
    179 rdf:rest N05a0a76b0ca94cdba1129bb24a7da3a5
    180 N25fd83870a8947d2b8105a156b1e7217 schema:name pubmed_id
    181 schema:value 31572496
    182 rdf:type schema:PropertyValue
    183 N3dd0eadd1c284044953e315a89cff4e7 rdf:first sg:person.01260176024.04
    184 rdf:rest Ndfc5bfb7d40d4ee89f83fab66b2ba4d9
    185 N6cb3405edd5842d5b01a8ae34412d06f schema:volumeNumber 12
    186 rdf:type schema:PublicationVolume
    187 N6d19b0624fc04eebb6f3e73f0004847a schema:name dimensions_id
    188 schema:value pub.1121190089
    189 rdf:type schema:PropertyValue
    190 N827007943549499d9167daf5bc2affed schema:name Springer Nature - SN SciGraph project
    191 rdf:type schema:Organization
    192 N82e760b9d3004e53b437676c941d0cba rdf:first sg:person.01147341635.51
    193 rdf:rest N241a540095624701b510c73e76828101
    194 N86c4be333b21490f8635e1a21eaa226c rdf:first sg:person.01164667257.69
    195 rdf:rest N8c8c9c6d56a840778115ec0a4a4420fe
    196 N8c8c9c6d56a840778115ec0a4a4420fe rdf:first sg:person.0707307031.57
    197 rdf:rest N3dd0eadd1c284044953e315a89cff4e7
    198 N99cfa2abc03149a0a54492971991b9e2 schema:issueNumber 1
    199 rdf:type schema:PublicationIssue
    200 Na6eab8d70be144b2ba5793e653611ffc rdf:first sg:person.016363344577.69
    201 rdf:rest N86c4be333b21490f8635e1a21eaa226c
    202 Nd402b12985b445fd8a0ec458965aaa75 rdf:first sg:person.01004445231.03
    203 rdf:rest N82e760b9d3004e53b437676c941d0cba
    204 Ndfc5bfb7d40d4ee89f83fab66b2ba4d9 rdf:first sg:person.01170043567.09
    205 rdf:rest N06ce4227591a4c55a73a77dcae15c6cd
    206 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    207 schema:name Engineering
    208 rdf:type schema:DefinedTerm
    209 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    210 schema:name Chemical Engineering
    211 rdf:type schema:DefinedTerm
    212 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    213 schema:name Technology
    214 rdf:type schema:DefinedTerm
    215 anzsrc-for:1003 schema:inDefinedTermSet anzsrc-for:
    216 schema:name Industrial Biotechnology
    217 rdf:type schema:DefinedTerm
    218 sg:journal.1429595 schema:issn 2731-3654
    219 schema:name Biotechnology for Biofuels and Bioproducts
    220 schema:publisher Springer Nature
    221 rdf:type schema:Periodical
    222 sg:person.01004445231.03 schema:affiliation grid-institutes:grid.47894.36
    223 schema:familyName Mondo
    224 schema:givenName Stephen J.
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004445231.03
    226 rdf:type schema:Person
    227 sg:person.01147341635.51 schema:affiliation grid-institutes:grid.7247.6
    228 schema:familyName Jiménez
    229 schema:givenName Diego Javier
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147341635.51
    231 rdf:type schema:Person
    232 sg:person.01164667257.69 schema:affiliation grid-institutes:grid.451309.a
    233 schema:familyName LaButti
    234 schema:givenName Kurt
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164667257.69
    236 rdf:type schema:Person
    237 sg:person.01170043567.09 schema:affiliation grid-institutes:grid.47840.3f
    238 schema:familyName Grigoriev
    239 schema:givenName Igor V.
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170043567.09
    241 rdf:type schema:Person
    242 sg:person.01216546632.17 schema:affiliation grid-institutes:grid.451309.a
    243 schema:familyName Lipzen
    244 schema:givenName Anna
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216546632.17
    246 rdf:type schema:Person
    247 sg:person.01251454605.07 schema:affiliation grid-institutes:grid.507311.1
    248 schema:familyName Hector
    249 schema:givenName Ronald E.
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251454605.07
    251 rdf:type schema:Person
    252 sg:person.01260176024.04 schema:affiliation grid-institutes:grid.4830.f
    253 schema:familyName van Elsas
    254 schema:givenName Jan Dirk
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260176024.04
    256 rdf:type schema:Person
    257 sg:person.01362477120.95 schema:affiliation grid-institutes:grid.507311.1
    258 schema:familyName Nichols
    259 schema:givenName Nancy N.
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362477120.95
    261 rdf:type schema:Person
    262 sg:person.016363344577.69 schema:affiliation grid-institutes:grid.451309.a
    263 schema:familyName Yan
    264 schema:givenName Mi
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016363344577.69
    266 rdf:type schema:Person
    267 sg:person.0707307031.57 schema:affiliation grid-institutes:grid.451309.a
    268 schema:familyName Barry
    269 schema:givenName Kerrie
    270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707307031.57
    271 rdf:type schema:Person
    272 sg:pub.10.1007/978-1-4939-7015-5_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085083567
    273 https://doi.org/10.1007/978-1-4939-7015-5_6
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1007/s00248-011-9869-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041368450
    276 https://doi.org/10.1007/s00248-011-9869-9
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1007/s00248-015-0683-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044434597
    279 https://doi.org/10.1007/s00248-015-0683-7
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1007/s00253-003-1401-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039013735
    282 https://doi.org/10.1007/s00253-003-1401-9
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1007/s00253-013-5253-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016620117
    285 https://doi.org/10.1007/s00253-013-5253-7
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1007/s00253-014-5698-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047582829
    288 https://doi.org/10.1007/s00253-014-5698-3
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1007/s00253-016-7516-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006685745
    291 https://doi.org/10.1007/s00253-016-7516-6
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1007/s10482-013-9943-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1053666881
    294 https://doi.org/10.1007/s10482-013-9943-z
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1007/s12275-015-5105-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018146807
    297 https://doi.org/10.1007/s12275-015-5105-5
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1023/a:1024732815134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049178070
    300 https://doi.org/10.1023/a:1024732815134
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/nbt.1883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015803168
    303 https://doi.org/10.1038/nbt.1883
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/ng.2372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006234163
    306 https://doi.org/10.1038/ng.2372
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/ng.3223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042600951
    309 https://doi.org/10.1038/ng.3223
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1038/ng.3859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085212217
    312 https://doi.org/10.1038/ng.3859
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1038/nmeth.3317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005140994
    315 https://doi.org/10.1038/nmeth.3317
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1038/nmeth.4035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019059120
    318 https://doi.org/10.1038/nmeth.4035
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1038/nmicrobiol.2017.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085662601
    321 https://doi.org/10.1038/nmicrobiol.2017.87
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1038/nprot.2015.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001304490
    324 https://doi.org/10.1038/nprot.2015.053
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1038/s41588-018-0246-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107689541
    327 https://doi.org/10.1038/s41588-018-0246-1
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1186/1471-2105-9-212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052288599
    330 https://doi.org/10.1186/1471-2105-9-212
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1186/1754-6834-4-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023297302
    333 https://doi.org/10.1186/1754-6834-4-5
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1186/1754-6834-4-60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051585482
    336 https://doi.org/10.1186/1754-6834-4-60
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1186/1754-6834-5-45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002219986
    339 https://doi.org/10.1186/1754-6834-5-45
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1186/1754-6834-7-92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012894844
    342 https://doi.org/10.1186/1754-6834-7-92
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1186/s12864-015-1601-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037501007
    345 https://doi.org/10.1186/s12864-015-1601-6
    346 rdf:type schema:CreativeWork
    347 sg:pub.10.1186/s12864-018-4627-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103148443
    348 https://doi.org/10.1186/s12864-018-4627-8
    349 rdf:type schema:CreativeWork
    350 sg:pub.10.1186/s13059-014-0550-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015222646
    351 https://doi.org/10.1186/s13059-014-0550-8
    352 rdf:type schema:CreativeWork
    353 sg:pub.10.1186/s13068-015-0232-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006568973
    354 https://doi.org/10.1186/s13068-015-0232-0
    355 rdf:type schema:CreativeWork
    356 sg:pub.10.1186/s13068-015-0376-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1032177310
    357 https://doi.org/10.1186/s13068-015-0376-y
    358 rdf:type schema:CreativeWork
    359 sg:pub.10.1186/s13068-016-0651-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051939545
    360 https://doi.org/10.1186/s13068-016-0651-6
    361 rdf:type schema:CreativeWork
    362 sg:pub.10.1186/s13068-017-0956-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092655224
    363 https://doi.org/10.1186/s13068-017-0956-0
    364 rdf:type schema:CreativeWork
    365 sg:pub.10.1186/s13068-018-1060-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101305001
    366 https://doi.org/10.1186/s13068-018-1060-9
    367 rdf:type schema:CreativeWork
    368 grid-institutes:grid.451309.a schema:alternateName U.S. Department of Energy Joint Genome Institute, 94598, Walnut Creek, CA, USA
    369 schema:name U.S. Department of Energy Joint Genome Institute, 94598, Walnut Creek, CA, USA
    370 rdf:type schema:Organization
    371 grid-institutes:grid.47840.3f schema:alternateName Department of Plant and Microbial Biology, University of California Berkeley, 94720-3102, Berkeley, CA, USA
    372 schema:name Department of Plant and Microbial Biology, University of California Berkeley, 94720-3102, Berkeley, CA, USA
    373 U.S. Department of Energy Joint Genome Institute, 94598, Walnut Creek, CA, USA
    374 rdf:type schema:Organization
    375 grid-institutes:grid.47894.36 schema:alternateName Bioagricultural Science and Pest Management Department, Colorado State University, 80521, Fort Collins, CO, USA
    376 schema:name Bioagricultural Science and Pest Management Department, Colorado State University, 80521, Fort Collins, CO, USA
    377 U.S. Department of Energy Joint Genome Institute, 94598, Walnut Creek, CA, USA
    378 rdf:type schema:Organization
    379 grid-institutes:grid.4830.f schema:alternateName Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
    380 schema:name Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
    381 rdf:type schema:Organization
    382 grid-institutes:grid.507311.1 schema:alternateName Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, 61604, Peoria, IL, USA
    383 schema:name Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, 61604, Peoria, IL, USA
    384 rdf:type schema:Organization
    385 grid-institutes:grid.7247.6 schema:alternateName Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá, Colombia
    386 schema:name Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá, Colombia
    387 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...