Combined resistance to oxidative stress and reduced antenna size enhance light-to-biomass conversion efficiency in Chlorella vulgaris cultures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-09-16

AUTHORS

Luca Dall’Osto, Stefano Cazzaniga, Zeno Guardini, Simone Barera, Manuel Benedetti, Giuseppe Mannino, Massimo E. Maffei, Roberto Bassi

ABSTRACT

BackgroundMicroalgae are efficient producers of lipid-rich biomass, making them a key component in developing a sustainable energy source, and an alternative to fossil fuels. Chlorella species are of special interest because of their fast growth rate in photobioreactors. However, biological constraints still cast a significant gap between the high cost of biofuel and cheap oil, thus hampering perspective of producing CO2-neutral biofuels. A key issue is the inefficient use of light caused by its uneven distribution in the culture that generates photoinhibition of the surface-exposed cells and darkening of the inner layers. Efficient biofuel production, thus, requires domestication, including traits which reduce optical density of cultures and enhance photoprotection.ResultsWe applied two steps of mutagenesis and phenotypic selection to the microalga Chlorella vulgaris. First, a pale-green mutant (PG-14) was selected, with a 50% reduction of both chlorophyll content per cell and LHCII complement per PSII, with respect to WT. PG-14 showed a 30% increased photon conversion into biomass efficiency vs. WT. A second step of mutagenesis of PG-14, followed by selection for higher tolerance to Rose Bengal, led to the isolation of pale-green genotypes, exhibiting higher resistance to singlet oxygen (strains SOR). Growth in photobioreactors under high light conditions showed an enhanced biomass production of SOR strains with respect to PG-14. When compared to WT strain, biomass yield of the pale green + sor genotype was enhanced by 68%.ConclusionsDomestication of microalgae like Chlorella vulgaris, by optimizing both light distribution and ROS resistance, yielded an enhanced carbon assimilation rate in photobioreactor. More... »

PAGES

221

References to SciGraph publications

  • 2003-02-12. tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size in PLANTA
  • 2008-07-03. Biomass Productivities in Wild Type and Pigment Mutant of Cyclotella sp. (Diatom) in APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
  • 2004-12-01. The complex architecture of oxygenic photosynthesis in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2008-09-09. Singlet oxygen production in photosystem II and related protection mechanism in PHOTOSYNTHESIS RESEARCH
  • 2009-08-19. Function and regulation of the glutathione peroxidase homologous gene GPXH/GPX5 in Chlamydomonas reinhardtii in PLANT MOLECULAR BIOLOGY
  • 2014-09-20. Photoprotective Mechanisms: Carotenoids in PLASTID BIOLOGY
  • 2009-11. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis in NATURE
  • 2010-09-30. Stress-Induced Changes in Optical Properties, Pigment and Fatty Acid Content of Nannochloropsis sp.: Implications for Non-destructive Assay of Total Fatty Acids in MARINE BIOTECHNOLOGY
  • 2009-10-08. Theoretical Maximum Algal Oil Production in BIOENERGY RESEARCH
  • 2013-04-18. Light harvesting in photosystem II in PHOTOSYNTHESIS RESEARCH
  • 2014-10-21. Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor in BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS
  • 2018-11-10. Biomass from microalgae: the potential of domestication towards sustainable biofactories in MICROBIAL CELL FACTORIES
  • 2015-09-25. Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production in BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13068-019-1566-9

    DOI

    http://dx.doi.org/10.1186/s13068-019-1566-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1121036571

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/31534480


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1003", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Industrial Biotechnology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dall\u2019Osto", 
            "givenName": "Luca", 
            "id": "sg:person.01360021350.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360021350.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cazzaniga", 
            "givenName": "Stefano", 
            "id": "sg:person.01372047057.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372047057.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guardini", 
            "givenName": "Zeno", 
            "id": "sg:person.012214261105.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214261105.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barera", 
            "givenName": "Simone", 
            "id": "sg:person.01071052635.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071052635.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benedetti", 
            "givenName": "Manuel", 
            "id": "sg:person.01222273214.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222273214.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Scienze della Vita e Biologia dei Sistemi, Unit\u00e0 di Fisiologia Vegetale, Universit\u00e0 di Torino, Via Quarello 15/a, 10135, Turin, Italy", 
              "id": "http://www.grid.ac/institutes/grid.7605.4", 
              "name": [
                "Dipartimento di Scienze della Vita e Biologia dei Sistemi, Unit\u00e0 di Fisiologia Vegetale, Universit\u00e0 di Torino, Via Quarello 15/a, 10135, Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mannino", 
            "givenName": "Giuseppe", 
            "id": "sg:person.07653553075.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653553075.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Scienze della Vita e Biologia dei Sistemi, Unit\u00e0 di Fisiologia Vegetale, Universit\u00e0 di Torino, Via Quarello 15/a, 10135, Turin, Italy", 
              "id": "http://www.grid.ac/institutes/grid.7605.4", 
              "name": [
                "Dipartimento di Scienze della Vita e Biologia dei Sistemi, Unit\u00e0 di Fisiologia Vegetale, Universit\u00e0 di Torino, Via Quarello 15/a, 10135, Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maffei", 
            "givenName": "Massimo E.", 
            "id": "sg:person.0703252225.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703252225.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bassi", 
            "givenName": "Roberto", 
            "id": "sg:person.0605371157.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10126-010-9323-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045076879", 
              "https://doi.org/10.1007/s10126-010-9323-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12934-018-1019-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109806292", 
              "https://doi.org/10.1186/s12934-018-1019-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-015-0337-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021708527", 
              "https://doi.org/10.1186/s13068-015-0337-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-008-9349-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010450858", 
              "https://doi.org/10.1007/s11120-008-9349-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12155-009-9046-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015339498", 
              "https://doi.org/10.1007/s12155-009-9046-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-1136-3_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023376302", 
              "https://doi.org/10.1007/978-1-4939-1136-3_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12010-008-8298-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003715128", 
              "https://doi.org/10.1007/s12010-008-8298-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-014-0157-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013205307", 
              "https://doi.org/10.1186/s13068-014-0157-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-009-9540-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028209046", 
              "https://doi.org/10.1007/s11103-009-9540-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-013-9824-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025197531", 
              "https://doi.org/10.1007/s11120-013-9824-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036072520", 
              "https://doi.org/10.1038/nature08587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047258526", 
              "https://doi.org/10.1038/nrm1525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-002-0968-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1075277755", 
              "https://doi.org/10.1007/s00425-002-0968-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-09-16", 
        "datePublishedReg": "2019-09-16", 
        "description": "BackgroundMicroalgae are efficient producers of lipid-rich biomass, making them a key component in developing a sustainable energy source, and an alternative to fossil fuels. Chlorella species are of special interest because of their fast growth rate in photobioreactors. However, biological constraints still cast a significant gap between the high cost of biofuel and cheap oil, thus hampering perspective of producing CO2-neutral biofuels. A key issue is the inefficient use of light caused by its uneven distribution in the culture that generates photoinhibition of the surface-exposed cells and darkening of the inner layers. Efficient biofuel production, thus, requires domestication, including traits which reduce optical density of cultures and enhance photoprotection.ResultsWe applied two steps of mutagenesis and phenotypic selection to the microalga Chlorella vulgaris. First, a pale-green mutant (PG-14) was selected, with a 50% reduction of both chlorophyll content per cell and LHCII complement per PSII, with respect to WT. PG-14 showed a 30% increased photon conversion into biomass efficiency vs. WT. A second step of mutagenesis of PG-14, followed by selection for higher tolerance to Rose Bengal, led to the isolation of pale-green genotypes, exhibiting higher resistance to singlet oxygen (strains SOR). Growth in photobioreactors under high light conditions showed an enhanced biomass production of SOR strains with respect to PG-14. When compared to WT strain, biomass yield of the pale green\u2009+\u2009sor genotype was enhanced by 68%.ConclusionsDomestication of microalgae like Chlorella vulgaris, by optimizing both light distribution and ROS resistance, yielded an enhanced carbon assimilation rate in photobioreactor.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13068-019-1566-9", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1429595", 
            "issn": [
              "2731-3654"
            ], 
            "name": "Biotechnology for Biofuels and Bioproducts", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "enhanced biomass production", 
          "biomass conversion efficiency", 
          "efficient biofuel production", 
          "carbon assimilation rate", 
          "biomass yield", 
          "phenotypic selection", 
          "biomass production", 
          "chlorophyll content", 
          "biomass efficiency", 
          "assimilation rate", 
          "PG-14", 
          "high light conditions", 
          "faster growth rate", 
          "biofuel production", 
          "Combined resistance", 
          "high tolerance", 
          "biological constraints", 
          "efficient producers", 
          "pale green mutants", 
          "inefficient use", 
          "genotypes", 
          "ROS resistance", 
          "cheap oil", 
          "high resistance", 
          "light conditions", 
          "growth rate", 
          "biofuels", 
          "lipid-rich biomass", 
          "production", 
          "light distribution", 
          "resistance", 
          "domestication", 
          "sustainable energy sources", 
          "fossil fuels", 
          "high cost", 
          "biomass", 
          "selection", 
          "yield", 
          "traits", 
          "conversion efficiency", 
          "producers", 
          "photon conversion", 
          "Chlorella vulgaris cultures", 
          "PSII", 
          "tolerance", 
          "microalga Chlorella", 
          "photobioreactor", 
          "uneven distribution", 
          "species", 
          "photoinhibition", 
          "Chlorella species", 
          "growth", 
          "vulgaris cultures", 
          "efficiency", 
          "Chlorella vulgaris", 
          "Bengal", 
          "BackgroundMicroalgae", 
          "optical density", 
          "content", 
          "microalgae", 
          "stress", 
          "vulgaris", 
          "key component", 
          "Rose Bengal", 
          "oil", 
          "inner layer", 
          "rate", 
          "density", 
          "culture", 
          "alternative", 
          "source", 
          "significant gap", 
          "key issues", 
          "photoprotection", 
          "wt", 
          "energy sources", 
          "use", 
          "mutagenesis", 
          "light", 
          "darkening", 
          "conditions", 
          "cost", 
          "layer", 
          "fuel", 
          "distribution", 
          "reduction", 
          "constraints", 
          "Chlorella", 
          "isolation", 
          "second step", 
          "conversion", 
          "components", 
          "special interest", 
          "cells", 
          "step", 
          "mutants", 
          "respect", 
          "gap", 
          "interest", 
          "oxygen", 
          "perspective", 
          "ResultsWe", 
          "issues", 
          "complement", 
          "SOR"
        ], 
        "name": "Combined resistance to oxidative stress and reduced antenna size enhance light-to-biomass conversion efficiency in Chlorella vulgaris cultures", 
        "pagination": "221", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1121036571"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13068-019-1566-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "31534480"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13068-019-1566-9", 
          "https://app.dimensions.ai/details/publication/pub.1121036571"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_819.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13068-019-1566-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13068-019-1566-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13068-019-1566-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13068-019-1566-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13068-019-1566-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    277 TRIPLES      21 PREDICATES      145 URIs      122 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13068-019-1566-9 schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 anzsrc-for:10
    4 anzsrc-for:1003
    5 schema:author Ndfe8a4b187784069822d0ecc1b7bed7d
    6 schema:citation sg:pub.10.1007/978-1-4939-1136-3_15
    7 sg:pub.10.1007/s00425-002-0968-1
    8 sg:pub.10.1007/s10126-010-9323-x
    9 sg:pub.10.1007/s11103-009-9540-8
    10 sg:pub.10.1007/s11120-008-9349-3
    11 sg:pub.10.1007/s11120-013-9824-3
    12 sg:pub.10.1007/s12010-008-8298-9
    13 sg:pub.10.1007/s12155-009-9046-x
    14 sg:pub.10.1038/nature08587
    15 sg:pub.10.1038/nrm1525
    16 sg:pub.10.1186/s12934-018-1019-3
    17 sg:pub.10.1186/s13068-014-0157-z
    18 sg:pub.10.1186/s13068-015-0337-5
    19 schema:datePublished 2019-09-16
    20 schema:datePublishedReg 2019-09-16
    21 schema:description BackgroundMicroalgae are efficient producers of lipid-rich biomass, making them a key component in developing a sustainable energy source, and an alternative to fossil fuels. Chlorella species are of special interest because of their fast growth rate in photobioreactors. However, biological constraints still cast a significant gap between the high cost of biofuel and cheap oil, thus hampering perspective of producing CO2-neutral biofuels. A key issue is the inefficient use of light caused by its uneven distribution in the culture that generates photoinhibition of the surface-exposed cells and darkening of the inner layers. Efficient biofuel production, thus, requires domestication, including traits which reduce optical density of cultures and enhance photoprotection.ResultsWe applied two steps of mutagenesis and phenotypic selection to the microalga Chlorella vulgaris. First, a pale-green mutant (PG-14) was selected, with a 50% reduction of both chlorophyll content per cell and LHCII complement per PSII, with respect to WT. PG-14 showed a 30% increased photon conversion into biomass efficiency vs. WT. A second step of mutagenesis of PG-14, followed by selection for higher tolerance to Rose Bengal, led to the isolation of pale-green genotypes, exhibiting higher resistance to singlet oxygen (strains SOR). Growth in photobioreactors under high light conditions showed an enhanced biomass production of SOR strains with respect to PG-14. When compared to WT strain, biomass yield of the pale green + sor genotype was enhanced by 68%.ConclusionsDomestication of microalgae like Chlorella vulgaris, by optimizing both light distribution and ROS resistance, yielded an enhanced carbon assimilation rate in photobioreactor.
    22 schema:genre article
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N737a326a594548fcbf3b547bbdfecf4c
    25 Nd33d99c95ab845969a6af7c127a7781b
    26 sg:journal.1429595
    27 schema:keywords BackgroundMicroalgae
    28 Bengal
    29 Chlorella
    30 Chlorella species
    31 Chlorella vulgaris
    32 Chlorella vulgaris cultures
    33 Combined resistance
    34 PG-14
    35 PSII
    36 ROS resistance
    37 ResultsWe
    38 Rose Bengal
    39 SOR
    40 alternative
    41 assimilation rate
    42 biofuel production
    43 biofuels
    44 biological constraints
    45 biomass
    46 biomass conversion efficiency
    47 biomass efficiency
    48 biomass production
    49 biomass yield
    50 carbon assimilation rate
    51 cells
    52 cheap oil
    53 chlorophyll content
    54 complement
    55 components
    56 conditions
    57 constraints
    58 content
    59 conversion
    60 conversion efficiency
    61 cost
    62 culture
    63 darkening
    64 density
    65 distribution
    66 domestication
    67 efficiency
    68 efficient biofuel production
    69 efficient producers
    70 energy sources
    71 enhanced biomass production
    72 faster growth rate
    73 fossil fuels
    74 fuel
    75 gap
    76 genotypes
    77 growth
    78 growth rate
    79 high cost
    80 high light conditions
    81 high resistance
    82 high tolerance
    83 inefficient use
    84 inner layer
    85 interest
    86 isolation
    87 issues
    88 key component
    89 key issues
    90 layer
    91 light
    92 light conditions
    93 light distribution
    94 lipid-rich biomass
    95 microalga Chlorella
    96 microalgae
    97 mutagenesis
    98 mutants
    99 oil
    100 optical density
    101 oxygen
    102 pale green mutants
    103 perspective
    104 phenotypic selection
    105 photobioreactor
    106 photoinhibition
    107 photon conversion
    108 photoprotection
    109 producers
    110 production
    111 rate
    112 reduction
    113 resistance
    114 respect
    115 second step
    116 selection
    117 significant gap
    118 source
    119 special interest
    120 species
    121 step
    122 stress
    123 sustainable energy sources
    124 tolerance
    125 traits
    126 uneven distribution
    127 use
    128 vulgaris
    129 vulgaris cultures
    130 wt
    131 yield
    132 schema:name Combined resistance to oxidative stress and reduced antenna size enhance light-to-biomass conversion efficiency in Chlorella vulgaris cultures
    133 schema:pagination 221
    134 schema:productId N3b7baa8537b84a5089c1079a1c5e3411
    135 N9a594dde6e5b4b818a7358b50742b366
    136 Nba1123f5bb1a455daa19eef2c029be47
    137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121036571
    138 https://doi.org/10.1186/s13068-019-1566-9
    139 schema:sdDatePublished 2022-10-01T06:46
    140 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    141 schema:sdPublisher N8199d6a34cab4e00baf8d0830f53af18
    142 schema:url https://doi.org/10.1186/s13068-019-1566-9
    143 sgo:license sg:explorer/license/
    144 sgo:sdDataset articles
    145 rdf:type schema:ScholarlyArticle
    146 N1daeb3351a8f425ebc2ff26bd318c864 rdf:first sg:person.012214261105.13
    147 rdf:rest Ncb9eccd3349641dea59d5b2f1ae77a5f
    148 N3b7baa8537b84a5089c1079a1c5e3411 schema:name doi
    149 schema:value 10.1186/s13068-019-1566-9
    150 rdf:type schema:PropertyValue
    151 N523a06e67a8148179bbb0188481ca07b rdf:first sg:person.07653553075.35
    152 rdf:rest Naccb4d1e7f68472b950024383ad927fa
    153 N737a326a594548fcbf3b547bbdfecf4c schema:volumeNumber 12
    154 rdf:type schema:PublicationVolume
    155 N8199d6a34cab4e00baf8d0830f53af18 schema:name Springer Nature - SN SciGraph project
    156 rdf:type schema:Organization
    157 N8f492a7064f54d078e95fd15744e0866 rdf:first sg:person.0605371157.35
    158 rdf:rest rdf:nil
    159 N96396839d1e148b385e481861bcdd469 rdf:first sg:person.01222273214.46
    160 rdf:rest N523a06e67a8148179bbb0188481ca07b
    161 N9a594dde6e5b4b818a7358b50742b366 schema:name dimensions_id
    162 schema:value pub.1121036571
    163 rdf:type schema:PropertyValue
    164 Nab55ddcb74864f2a8bb80ad6b9e97d37 rdf:first sg:person.01372047057.28
    165 rdf:rest N1daeb3351a8f425ebc2ff26bd318c864
    166 Naccb4d1e7f68472b950024383ad927fa rdf:first sg:person.0703252225.01
    167 rdf:rest N8f492a7064f54d078e95fd15744e0866
    168 Nba1123f5bb1a455daa19eef2c029be47 schema:name pubmed_id
    169 schema:value 31534480
    170 rdf:type schema:PropertyValue
    171 Ncb9eccd3349641dea59d5b2f1ae77a5f rdf:first sg:person.01071052635.86
    172 rdf:rest N96396839d1e148b385e481861bcdd469
    173 Nd33d99c95ab845969a6af7c127a7781b schema:issueNumber 1
    174 rdf:type schema:PublicationIssue
    175 Ndfe8a4b187784069822d0ecc1b7bed7d rdf:first sg:person.01360021350.97
    176 rdf:rest Nab55ddcb74864f2a8bb80ad6b9e97d37
    177 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    178 schema:name Engineering
    179 rdf:type schema:DefinedTerm
    180 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    181 schema:name Chemical Engineering
    182 rdf:type schema:DefinedTerm
    183 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    184 schema:name Technology
    185 rdf:type schema:DefinedTerm
    186 anzsrc-for:1003 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Industrial Biotechnology
    188 rdf:type schema:DefinedTerm
    189 sg:journal.1429595 schema:issn 2731-3654
    190 schema:name Biotechnology for Biofuels and Bioproducts
    191 schema:publisher Springer Nature
    192 rdf:type schema:Periodical
    193 sg:person.01071052635.86 schema:affiliation grid-institutes:grid.5611.3
    194 schema:familyName Barera
    195 schema:givenName Simone
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071052635.86
    197 rdf:type schema:Person
    198 sg:person.012214261105.13 schema:affiliation grid-institutes:grid.5611.3
    199 schema:familyName Guardini
    200 schema:givenName Zeno
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214261105.13
    202 rdf:type schema:Person
    203 sg:person.01222273214.46 schema:affiliation grid-institutes:grid.5611.3
    204 schema:familyName Benedetti
    205 schema:givenName Manuel
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222273214.46
    207 rdf:type schema:Person
    208 sg:person.01360021350.97 schema:affiliation grid-institutes:grid.5611.3
    209 schema:familyName Dall’Osto
    210 schema:givenName Luca
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360021350.97
    212 rdf:type schema:Person
    213 sg:person.01372047057.28 schema:affiliation grid-institutes:grid.5611.3
    214 schema:familyName Cazzaniga
    215 schema:givenName Stefano
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372047057.28
    217 rdf:type schema:Person
    218 sg:person.0605371157.35 schema:affiliation grid-institutes:grid.5611.3
    219 schema:familyName Bassi
    220 schema:givenName Roberto
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35
    222 rdf:type schema:Person
    223 sg:person.0703252225.01 schema:affiliation grid-institutes:grid.7605.4
    224 schema:familyName Maffei
    225 schema:givenName Massimo E.
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703252225.01
    227 rdf:type schema:Person
    228 sg:person.07653553075.35 schema:affiliation grid-institutes:grid.7605.4
    229 schema:familyName Mannino
    230 schema:givenName Giuseppe
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653553075.35
    232 rdf:type schema:Person
    233 sg:pub.10.1007/978-1-4939-1136-3_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023376302
    234 https://doi.org/10.1007/978-1-4939-1136-3_15
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s00425-002-0968-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075277755
    237 https://doi.org/10.1007/s00425-002-0968-1
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s10126-010-9323-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045076879
    240 https://doi.org/10.1007/s10126-010-9323-x
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s11103-009-9540-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028209046
    243 https://doi.org/10.1007/s11103-009-9540-8
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s11120-008-9349-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010450858
    246 https://doi.org/10.1007/s11120-008-9349-3
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s11120-013-9824-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025197531
    249 https://doi.org/10.1007/s11120-013-9824-3
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s12010-008-8298-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003715128
    252 https://doi.org/10.1007/s12010-008-8298-9
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s12155-009-9046-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015339498
    255 https://doi.org/10.1007/s12155-009-9046-x
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nature08587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036072520
    258 https://doi.org/10.1038/nature08587
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nrm1525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047258526
    261 https://doi.org/10.1038/nrm1525
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1186/s12934-018-1019-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109806292
    264 https://doi.org/10.1186/s12934-018-1019-3
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1186/s13068-014-0157-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013205307
    267 https://doi.org/10.1186/s13068-014-0157-z
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1186/s13068-015-0337-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021708527
    270 https://doi.org/10.1186/s13068-015-0337-5
    271 rdf:type schema:CreativeWork
    272 grid-institutes:grid.5611.3 schema:alternateName Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
    273 schema:name Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
    274 rdf:type schema:Organization
    275 grid-institutes:grid.7605.4 schema:alternateName Dipartimento di Scienze della Vita e Biologia dei Sistemi, Unità di Fisiologia Vegetale, Università di Torino, Via Quarello 15/a, 10135, Turin, Italy
    276 schema:name Dipartimento di Scienze della Vita e Biologia dei Sistemi, Unità di Fisiologia Vegetale, Università di Torino, Via Quarello 15/a, 10135, Turin, Italy
    277 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...