Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Wenjuan Mo, Mengzhu Wang, Rongrong Zhan, Yao Yu, Yungang He, Hong Lu

ABSTRACT

Background: Kluyveromyces marxianus, the known fastest-growing eukaryote on the earth, has remarkable thermotolerance and capacity to utilize various agricultural residues to produce low-cost bioethanol, and hence is industrially important to resolve the imminent energy shortage crisis. Currently, the poor ethanol tolerance hinders its operable application in the industry, and it is necessary to improve K. marxianus' ethanol resistance and unravel the underlying systematical mechanisms. However, this has been seldom reported to date. Results: We carried out a wild-type haploid K. marxianus FIM1 in adaptive evolution in 6% (v/v) ethanol. After 100-day evolution, the KM-100d population was obtained; its ethanol tolerance increased up to 10% (v/v). Interestingly, DNA analysis and RNA-seq analysis showed that KM-100d yeasts' ethanol tolerance improvement was not due to ploidy change or meaningful mutations, but founded on transcriptional reprogramming in a genome-wide range. Even growth in an ethanol-free medium, many genes in KM-100d maintained their up-regulation. Especially, pathways of ethanol consumption, membrane lipid biosynthesis, anti-osmotic pressure, anti-oxidative stress, and protein folding were generally up-regulated in KM-100d to resist ethanol. Notably, enhancement of the secretory pathway may be the new strategy KM-100d developed to anti-osmotic pressure, instead of the traditional glycerol production way in S. cerevisiae. Inferred from the transcriptome data, besides ethanol tolerance, KM-100d may also develop the ability to resist osmotic, oxidative, and thermic stresses, and this was further confirmed by the cell viability test. Furthermore, under such environmental stresses, KM-100d greatly improved ethanol production than the original strain. In addition, we found that K. marxianus may adopt distinct routes to resist different ethanol concentrations. Trehalose biosynthesis was required for low ethanol, while sterol biosynthesis and the whole secretory pathway were activated for high ethanol. Conclusions: This study reveals that ethanol-driven laboratory evolution could improve K. marxianus' ethanol tolerance via significant up-regulation of multiple pathways including anti-osmotic, anti-oxidative, and anti-thermic processes, and indeed consequently raised ethanol yield in industrial high-temperature and high-ethanol circumstance. Our findings give genetic clues for further rational optimization of K. marxianus' ethanol production, and also partly confirm the positively correlated relationship between yeast's ethanol tolerance and production. More... »

PAGES

63

References to SciGraph publications

  • 2014-04. Physiological characterization of thermotolerant yeast for cellulosic ethanol production in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2019-01. Ethanol production from xylose is highly increased by the Kluyveromyces marxianus mutant 17694-DH1 in BIOPROCESS AND BIOSYSTEMS ENGINEERING
  • 2018-12. Engineering TATA-binding protein Spt15 to improve ethanol tolerance and production in Kluyveromyces marxianus in BIOTECHNOLOGY FOR BIOFUELS
  • 2011-11. Physiological and metabolic diversity in the yeast Kluyveromyces marxianus in ANTONIE VAN LEEUWENHOEK
  • 2015-12. Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance in BIOTECHNOLOGY FOR BIOFUELS
  • 2008-06. The yeast Kluyveromyces marxianus and its biotechnological potential in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2011-08. Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2015-04. HISAT: a fast spliced aligner with low memory requirements in NATURE METHODS
  • 2010-02. Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae in JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY
  • 1982-09. Activity and stability of glycolytic enzymes in the presence of ethanol in BIOTECHNOLOGY LETTERS
  • 1998-01. Biochemical aspects of stuck and sluggish fermentation in grape must in JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY
  • 2010-07. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2010-02. Improved Production of Ethanol by Novel Genome Shuffling in Saccharomyces cerevisiae in APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
  • 2017-09. Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2016-08. How do yeast cells become tolerant to high ethanol concentrations? in CURRENT GENETICS
  • 2009-11. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2008-05. Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2011-06-22. Global Strain Engineering by Mutant Transcription Factors in STRAIN ENGINEERING
  • 2015-12. Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses in BIOTECHNOLOGY FOR BIOFUELS
  • 2007-07. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2017-12. Synergistic effect of thioredoxin and its reductase from Kluyveromyces marxianus on enhanced tolerance to multiple lignocellulose-derived inhibitors in MICROBIAL CELL FACTORIES
  • Journal

    TITLE

    Biotechnology for Biofuels

    ISSUE

    1

    VOLUME

    12

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13068-019-1393-z

    DOI

    http://dx.doi.org/10.1186/s13068-019-1393-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112948287

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30949239


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Fudan University", 
              "id": "https://www.grid.ac/institutes/grid.8547.e", 
              "name": [
                "State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, 200438, Shanghai, China", 
                "Shanghai Engineering Research Center of Industrial Microorganisms, 200438, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mo", 
            "givenName": "Wenjuan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fudan University", 
              "id": "https://www.grid.ac/institutes/grid.8547.e", 
              "name": [
                "State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, 200438, Shanghai, China", 
                "Shanghai Engineering Research Center of Industrial Microorganisms, 200438, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Mengzhu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fudan University", 
              "id": "https://www.grid.ac/institutes/grid.8547.e", 
              "name": [
                "State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, 200438, Shanghai, China", 
                "Shanghai Engineering Research Center of Industrial Microorganisms, 200438, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhan", 
            "givenName": "Rongrong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fudan University", 
              "id": "https://www.grid.ac/institutes/grid.8547.e", 
              "name": [
                "State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, 200438, Shanghai, China", 
                "Shanghai Engineering Research Center of Industrial Microorganisms, 200438, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Yao", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fudan University", 
              "id": "https://www.grid.ac/institutes/grid.8547.e", 
              "name": [
                "Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "He", 
            "givenName": "Yungang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fudan University", 
              "id": "https://www.grid.ac/institutes/grid.8547.e", 
              "name": [
                "State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, 200438, Shanghai, China", 
                "Shanghai Engineering Research Center of Industrial Microorganisms, 200438, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Hong", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000466381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.69.3.1499-1503.2003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004969210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005140994", 
              "https://doi.org/10.1038/nmeth.3317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0960-8524(01)00212-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006362250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12010-009-8552-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006583198", 
              "https://doi.org/10.1007/s12010-009-8552-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1567-1364.2009.00497.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007683010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jhered/esp057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008081135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1742-4658.2008.06778.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009788199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0098-2997(01)00012-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010597614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10295-009-0655-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010856201", 
              "https://doi.org/10.1007/s10295-009-0655-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10295-009-0655-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010856201", 
              "https://doi.org/10.1007/s10295-009-0655-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10295-009-0655-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010856201", 
              "https://doi.org/10.1007/s10295-009-0655-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-61779-197-0_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012067158", 
              "https://doi.org/10.1007/978-1-61779-197-0_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-61779-197-0_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012067158", 
              "https://doi.org/10.1007/978-1-61779-197-0_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00294-015-0561-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014443160", 
              "https://doi.org/10.1007/s00294-015-0561-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00294-015-0561-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014443160", 
              "https://doi.org/10.1007/s00294-015-0561-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2672.2009.04657.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014503295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2672.2009.04657.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014503295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-010-2594-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015576942", 
              "https://doi.org/10.1007/s00253-010-2594-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-010-2594-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015576942", 
              "https://doi.org/10.1007/s00253-010-2594-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2010.12.086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016384111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-008-1431-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018232749", 
              "https://doi.org/10.1007/s00253-008-1431-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-008-1431-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018232749", 
              "https://doi.org/10.1007/s00253-008-1431-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1567-1364.2012.00803.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020453039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nbt.2012.11.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020454237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv1344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022063719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.jim.2900442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022541692", 
              "https://doi.org/10.1038/sj.jim.2900442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-014-5580-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022608672", 
              "https://doi.org/10.1007/s00253-014-5580-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-014-5580-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022608672", 
              "https://doi.org/10.1007/s00253-014-5580-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023014918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/10409238.2013.869543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023441971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-015-0227-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024199261", 
              "https://doi.org/10.1186/s13068-015-0227-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-015-0227-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024199261", 
              "https://doi.org/10.1186/s13068-015-0227-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-015-0216-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028978007", 
              "https://doi.org/10.1186/s13068-015-0216-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-015-0216-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028978007", 
              "https://doi.org/10.1186/s13068-015-0216-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10482-011-9606-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030805184", 
              "https://doi.org/10.1007/s10482-011-9606-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijfoodmicro.2006.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033145355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-008-1458-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034874229", 
              "https://doi.org/10.1007/s00253-008-1458-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-008-1458-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034874229", 
              "https://doi.org/10.1007/s00253-008-1458-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fbr.2010.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034899044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0014-5793(01)02503-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035489178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-011-3298-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036169435", 
              "https://doi.org/10.1007/s00253-011-3298-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elsc.201400199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036604932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0076-6879(10)70020-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036646851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1389-1723(00)80087-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037613689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.lwt.2014.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040379442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bies.20441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044306030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00127792", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044400976", 
              "https://doi.org/10.1007/bf00127792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00127792", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044400976", 
              "https://doi.org/10.1007/bf00127792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-007-0940-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045947023", 
              "https://doi.org/10.1007/s00253-007-0940-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-007-0940-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045947023", 
              "https://doi.org/10.1007/s00253-007-0940-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-009-2223-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046439168", 
              "https://doi.org/10.1007/s00253-009-2223-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-009-2223-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046439168", 
              "https://doi.org/10.1007/s00253-009-2223-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-009-2223-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046439168", 
              "https://doi.org/10.1007/s00253-009-2223-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0141-0229(89)90135-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048022911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0141-0229(89)90135-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048022911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1131969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062454688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1257859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062470239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1257859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062470239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077613847", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078323200", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-017-8432-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090955284", 
              "https://doi.org/10.1007/s00253-017-8432-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-017-8432-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090955284", 
              "https://doi.org/10.1007/s00253-017-8432-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12934-017-0795-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092450158", 
              "https://doi.org/10.1186/s12934-017-0795-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fgene.2018.00094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101634372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jam.13917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104021532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-018-1206-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105803388", 
              "https://doi.org/10.1186/s13068-018-1206-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00449-018-2014-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107186538", 
              "https://doi.org/10.1007/s00449-018-2014-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Background: Kluyveromyces marxianus, the known fastest-growing eukaryote on the earth, has remarkable thermotolerance and capacity to utilize various agricultural residues to produce low-cost bioethanol, and hence is industrially important to resolve the imminent energy shortage crisis. Currently, the poor ethanol tolerance hinders its operable application in the industry, and it is necessary to improve K. marxianus' ethanol resistance and unravel the underlying systematical mechanisms. However, this has been seldom reported to date.\nResults: We carried out a wild-type haploid K. marxianus FIM1 in adaptive evolution in 6% (v/v) ethanol. After 100-day evolution, the KM-100d population was obtained; its ethanol tolerance increased up to 10% (v/v). Interestingly, DNA analysis and RNA-seq analysis showed that KM-100d yeasts' ethanol tolerance improvement was not due to ploidy change or meaningful mutations, but founded on transcriptional reprogramming in a genome-wide range. Even growth in an ethanol-free medium, many genes in KM-100d maintained their up-regulation. Especially, pathways of ethanol consumption, membrane lipid biosynthesis, anti-osmotic pressure, anti-oxidative stress, and protein folding were generally up-regulated in KM-100d to resist ethanol. Notably, enhancement of the secretory pathway may be the new strategy KM-100d developed to anti-osmotic pressure, instead of the traditional glycerol production way in S. cerevisiae. Inferred from the transcriptome data, besides ethanol tolerance, KM-100d may also develop the ability to resist osmotic, oxidative, and thermic stresses, and this was further confirmed by the cell viability test. Furthermore, under such environmental stresses, KM-100d greatly improved ethanol production than the original strain. In addition, we found that K. marxianus may adopt distinct routes to resist different ethanol concentrations. Trehalose biosynthesis was required for low ethanol, while sterol biosynthesis and the whole secretory pathway were activated for high ethanol.\nConclusions: This study reveals that ethanol-driven laboratory evolution could improve K. marxianus' ethanol tolerance via significant up-regulation of multiple pathways including anti-osmotic, anti-oxidative, and anti-thermic processes, and indeed consequently raised ethanol yield in industrial high-temperature and high-ethanol circumstance. Our findings give genetic clues for further rational optimization of K. marxianus' ethanol production, and also partly confirm the positively correlated relationship between yeast's ethanol tolerance and production.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13068-019-1393-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1039046", 
            "issn": [
              "1754-6834"
            ], 
            "name": "Biotechnology for Biofuels", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "name": "Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways", 
        "pagination": "63", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13068-019-1393-z"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ca10ff31e1fb4239fb56cbb411df8b9300ce6869bc922fbaa1330f27dd8c4e36"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112948287"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101316935"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30949239"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13068-019-1393-z", 
          "https://app.dimensions.ai/details/publication/pub.1112948287"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91450_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13068-019-1393-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13068-019-1393-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13068-019-1393-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13068-019-1393-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13068-019-1393-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    268 TRIPLES      21 PREDICATES      79 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13068-019-1393-z schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N818e62a715c9435598f6d9a905cac3de
    4 schema:citation sg:pub.10.1007/978-1-61779-197-0_15
    5 sg:pub.10.1007/bf00127792
    6 sg:pub.10.1007/s00253-007-0940-x
    7 sg:pub.10.1007/s00253-008-1431-4
    8 sg:pub.10.1007/s00253-008-1458-6
    9 sg:pub.10.1007/s00253-009-2223-1
    10 sg:pub.10.1007/s00253-010-2594-3
    11 sg:pub.10.1007/s00253-011-3298-z
    12 sg:pub.10.1007/s00253-014-5580-3
    13 sg:pub.10.1007/s00253-017-8432-0
    14 sg:pub.10.1007/s00294-015-0561-3
    15 sg:pub.10.1007/s00449-018-2014-0
    16 sg:pub.10.1007/s10295-009-0655-3
    17 sg:pub.10.1007/s10482-011-9606-x
    18 sg:pub.10.1007/s12010-009-8552-9
    19 sg:pub.10.1038/nmeth.3317
    20 sg:pub.10.1038/sj.jim.2900442
    21 sg:pub.10.1186/s12934-017-0795-5
    22 sg:pub.10.1186/s13068-015-0216-0
    23 sg:pub.10.1186/s13068-015-0227-x
    24 sg:pub.10.1186/s13068-018-1206-9
    25 https://app.dimensions.ai/details/publication/pub.1077613847
    26 https://app.dimensions.ai/details/publication/pub.1078323200
    27 https://doi.org/10.1002/bies.20441
    28 https://doi.org/10.1002/elsc.201400199
    29 https://doi.org/10.1016/0141-0229(89)90135-x
    30 https://doi.org/10.1016/j.biortech.2010.12.086
    31 https://doi.org/10.1016/j.fbr.2010.01.001
    32 https://doi.org/10.1016/j.ijfoodmicro.2006.02.002
    33 https://doi.org/10.1016/j.lwt.2014.03.004
    34 https://doi.org/10.1016/j.nbt.2012.11.017
    35 https://doi.org/10.1016/s0014-5793(01)02503-0
    36 https://doi.org/10.1016/s0076-6879(10)70020-3
    37 https://doi.org/10.1016/s0098-2997(01)00012-7
    38 https://doi.org/10.1016/s0960-8524(01)00212-7
    39 https://doi.org/10.1016/s1389-1723(00)80087-0
    40 https://doi.org/10.1093/bioinformatics/btp352
    41 https://doi.org/10.1093/bioinformatics/btr665
    42 https://doi.org/10.1093/jhered/esp057
    43 https://doi.org/10.1093/nar/gkv1344
    44 https://doi.org/10.1111/j.1365-2672.2009.04657.x
    45 https://doi.org/10.1111/j.1567-1364.2009.00497.x
    46 https://doi.org/10.1111/j.1567-1364.2012.00803.x
    47 https://doi.org/10.1111/j.1742-4658.2008.06778.x
    48 https://doi.org/10.1111/jam.13917
    49 https://doi.org/10.1126/science.1131969
    50 https://doi.org/10.1126/science.1257859
    51 https://doi.org/10.1128/aem.69.3.1499-1503.2003
    52 https://doi.org/10.3109/10409238.2013.869543
    53 https://doi.org/10.3389/fgene.2018.00094
    54 schema:datePublished 2019-12
    55 schema:datePublishedReg 2019-12-01
    56 schema:description Background: Kluyveromyces marxianus, the known fastest-growing eukaryote on the earth, has remarkable thermotolerance and capacity to utilize various agricultural residues to produce low-cost bioethanol, and hence is industrially important to resolve the imminent energy shortage crisis. Currently, the poor ethanol tolerance hinders its operable application in the industry, and it is necessary to improve K. marxianus' ethanol resistance and unravel the underlying systematical mechanisms. However, this has been seldom reported to date. Results: We carried out a wild-type haploid K. marxianus FIM1 in adaptive evolution in 6% (v/v) ethanol. After 100-day evolution, the KM-100d population was obtained; its ethanol tolerance increased up to 10% (v/v). Interestingly, DNA analysis and RNA-seq analysis showed that KM-100d yeasts' ethanol tolerance improvement was not due to ploidy change or meaningful mutations, but founded on transcriptional reprogramming in a genome-wide range. Even growth in an ethanol-free medium, many genes in KM-100d maintained their up-regulation. Especially, pathways of ethanol consumption, membrane lipid biosynthesis, anti-osmotic pressure, anti-oxidative stress, and protein folding were generally up-regulated in KM-100d to resist ethanol. Notably, enhancement of the secretory pathway may be the new strategy KM-100d developed to anti-osmotic pressure, instead of the traditional glycerol production way in S. cerevisiae. Inferred from the transcriptome data, besides ethanol tolerance, KM-100d may also develop the ability to resist osmotic, oxidative, and thermic stresses, and this was further confirmed by the cell viability test. Furthermore, under such environmental stresses, KM-100d greatly improved ethanol production than the original strain. In addition, we found that K. marxianus may adopt distinct routes to resist different ethanol concentrations. Trehalose biosynthesis was required for low ethanol, while sterol biosynthesis and the whole secretory pathway were activated for high ethanol. Conclusions: This study reveals that ethanol-driven laboratory evolution could improve K. marxianus' ethanol tolerance via significant up-regulation of multiple pathways including anti-osmotic, anti-oxidative, and anti-thermic processes, and indeed consequently raised ethanol yield in industrial high-temperature and high-ethanol circumstance. Our findings give genetic clues for further rational optimization of K. marxianus' ethanol production, and also partly confirm the positively correlated relationship between yeast's ethanol tolerance and production.
    57 schema:genre research_article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree true
    60 schema:isPartOf N94876de381774c9da9a7810e73884e51
    61 Nfb903c705ad747e8bcde6e5e76401f7d
    62 sg:journal.1039046
    63 schema:name Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways
    64 schema:pagination 63
    65 schema:productId N06c00ee9907541e99e17ea8ccf75bdc7
    66 N17fce6fff9784a998f4646b102eeb691
    67 N6bc2a4f4ff4649f2a30578b8ea009793
    68 N78d805ed6aa64c41b2749af4ca3c8fea
    69 Nd44e3144cbd0456e830b3d8fa4b854f7
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112948287
    71 https://doi.org/10.1186/s13068-019-1393-z
    72 schema:sdDatePublished 2019-04-15T09:02
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher Nb55fa9d7b3a54741988b6aec7eed4b1b
    75 schema:url https://link.springer.com/10.1186%2Fs13068-019-1393-z
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N06c00ee9907541e99e17ea8ccf75bdc7 schema:name nlm_unique_id
    80 schema:value 101316935
    81 rdf:type schema:PropertyValue
    82 N17fce6fff9784a998f4646b102eeb691 schema:name dimensions_id
    83 schema:value pub.1112948287
    84 rdf:type schema:PropertyValue
    85 N209be39d4b784e409db994966fa9a717 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
    86 schema:familyName Wang
    87 schema:givenName Mengzhu
    88 rdf:type schema:Person
    89 N39ffa9d22df140fcbea398f39302f656 rdf:first Nf62b8c77421346cabe165ba58a872ed8
    90 rdf:rest rdf:nil
    91 N481fe82b38c8496e92a98a75a6ec4a3c schema:affiliation https://www.grid.ac/institutes/grid.8547.e
    92 schema:familyName He
    93 schema:givenName Yungang
    94 rdf:type schema:Person
    95 N53d0c340305649d5a176569195645c0a rdf:first N60a04ded3b5e4c0d88fc0392b4af7171
    96 rdf:rest Na5449866b25043efb83663d3a3a78dee
    97 N60a04ded3b5e4c0d88fc0392b4af7171 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
    98 schema:familyName Yu
    99 schema:givenName Yao
    100 rdf:type schema:Person
    101 N6bc2a4f4ff4649f2a30578b8ea009793 schema:name doi
    102 schema:value 10.1186/s13068-019-1393-z
    103 rdf:type schema:PropertyValue
    104 N78d805ed6aa64c41b2749af4ca3c8fea schema:name pubmed_id
    105 schema:value 30949239
    106 rdf:type schema:PropertyValue
    107 N818e62a715c9435598f6d9a905cac3de rdf:first Na33e2eb026eb4fd5b240e1b25f1bfbf4
    108 rdf:rest Ncc8b8ab568e2485cb2e7e180751c01bd
    109 N94876de381774c9da9a7810e73884e51 schema:volumeNumber 12
    110 rdf:type schema:PublicationVolume
    111 Na33e2eb026eb4fd5b240e1b25f1bfbf4 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
    112 schema:familyName Mo
    113 schema:givenName Wenjuan
    114 rdf:type schema:Person
    115 Na5449866b25043efb83663d3a3a78dee rdf:first N481fe82b38c8496e92a98a75a6ec4a3c
    116 rdf:rest N39ffa9d22df140fcbea398f39302f656
    117 Nab9cd91cb60a442093e9cab4fa8e0e4c schema:affiliation https://www.grid.ac/institutes/grid.8547.e
    118 schema:familyName Zhan
    119 schema:givenName Rongrong
    120 rdf:type schema:Person
    121 Nb55fa9d7b3a54741988b6aec7eed4b1b schema:name Springer Nature - SN SciGraph project
    122 rdf:type schema:Organization
    123 Ncc8b8ab568e2485cb2e7e180751c01bd rdf:first N209be39d4b784e409db994966fa9a717
    124 rdf:rest Ndfa2ccb5d1234a17875473c46a96b5c9
    125 Nd44e3144cbd0456e830b3d8fa4b854f7 schema:name readcube_id
    126 schema:value ca10ff31e1fb4239fb56cbb411df8b9300ce6869bc922fbaa1330f27dd8c4e36
    127 rdf:type schema:PropertyValue
    128 Ndfa2ccb5d1234a17875473c46a96b5c9 rdf:first Nab9cd91cb60a442093e9cab4fa8e0e4c
    129 rdf:rest N53d0c340305649d5a176569195645c0a
    130 Nf62b8c77421346cabe165ba58a872ed8 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
    131 schema:familyName Lu
    132 schema:givenName Hong
    133 rdf:type schema:Person
    134 Nfb903c705ad747e8bcde6e5e76401f7d schema:issueNumber 1
    135 rdf:type schema:PublicationIssue
    136 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Biological Sciences
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Genetics
    141 rdf:type schema:DefinedTerm
    142 sg:journal.1039046 schema:issn 1754-6834
    143 schema:name Biotechnology for Biofuels
    144 rdf:type schema:Periodical
    145 sg:pub.10.1007/978-1-61779-197-0_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012067158
    146 https://doi.org/10.1007/978-1-61779-197-0_15
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf00127792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044400976
    149 https://doi.org/10.1007/bf00127792
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s00253-007-0940-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045947023
    152 https://doi.org/10.1007/s00253-007-0940-x
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s00253-008-1431-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018232749
    155 https://doi.org/10.1007/s00253-008-1431-4
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s00253-008-1458-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034874229
    158 https://doi.org/10.1007/s00253-008-1458-6
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s00253-009-2223-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046439168
    161 https://doi.org/10.1007/s00253-009-2223-1
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s00253-010-2594-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015576942
    164 https://doi.org/10.1007/s00253-010-2594-3
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s00253-011-3298-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1036169435
    167 https://doi.org/10.1007/s00253-011-3298-z
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s00253-014-5580-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022608672
    170 https://doi.org/10.1007/s00253-014-5580-3
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s00253-017-8432-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090955284
    173 https://doi.org/10.1007/s00253-017-8432-0
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s00294-015-0561-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014443160
    176 https://doi.org/10.1007/s00294-015-0561-3
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s00449-018-2014-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107186538
    179 https://doi.org/10.1007/s00449-018-2014-0
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s10295-009-0655-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010856201
    182 https://doi.org/10.1007/s10295-009-0655-3
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s10482-011-9606-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030805184
    185 https://doi.org/10.1007/s10482-011-9606-x
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s12010-009-8552-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006583198
    188 https://doi.org/10.1007/s12010-009-8552-9
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nmeth.3317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005140994
    191 https://doi.org/10.1038/nmeth.3317
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/sj.jim.2900442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022541692
    194 https://doi.org/10.1038/sj.jim.2900442
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1186/s12934-017-0795-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092450158
    197 https://doi.org/10.1186/s12934-017-0795-5
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1186/s13068-015-0216-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028978007
    200 https://doi.org/10.1186/s13068-015-0216-0
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1186/s13068-015-0227-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024199261
    203 https://doi.org/10.1186/s13068-015-0227-x
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1186/s13068-018-1206-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105803388
    206 https://doi.org/10.1186/s13068-018-1206-9
    207 rdf:type schema:CreativeWork
    208 https://app.dimensions.ai/details/publication/pub.1077613847 schema:CreativeWork
    209 https://app.dimensions.ai/details/publication/pub.1078323200 schema:CreativeWork
    210 https://doi.org/10.1002/bies.20441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044306030
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1002/elsc.201400199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036604932
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/0141-0229(89)90135-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048022911
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.biortech.2010.12.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016384111
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/j.fbr.2010.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034899044
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.ijfoodmicro.2006.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033145355
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/j.lwt.2014.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040379442
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.nbt.2012.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020454237
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/s0014-5793(01)02503-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035489178
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/s0076-6879(10)70020-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036646851
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/s0098-2997(01)00012-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010597614
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/s0960-8524(01)00212-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006362250
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/s1389-1723(00)80087-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037613689
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1093/bioinformatics/btr665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000466381
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1093/jhered/esp057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081135
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1093/nar/gkv1344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022063719
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1111/j.1365-2672.2009.04657.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014503295
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1111/j.1567-1364.2009.00497.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007683010
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1111/j.1567-1364.2012.00803.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020453039
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1111/j.1742-4658.2008.06778.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009788199
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1111/jam.13917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104021532
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1126/science.1131969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062454688
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1126/science.1257859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062470239
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1128/aem.69.3.1499-1503.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004969210
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.3109/10409238.2013.869543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023441971
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.3389/fgene.2018.00094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101634372
    263 rdf:type schema:CreativeWork
    264 https://www.grid.ac/institutes/grid.8547.e schema:alternateName Fudan University
    265 schema:name Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
    266 Shanghai Engineering Research Center of Industrial Microorganisms, 200438, Shanghai, China
    267 State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, 200438, Shanghai, China
    268 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...