Biomass augmentation through thermochemical pretreatments greatly enhances digestion of switchgrass by Clostridium thermocellum View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Ninad Kothari, Evert K. Holwerda, Charles M. Cai, Rajeev Kumar, Charles E. Wyman

ABSTRACT

Background: The thermophilic anaerobic bacterium Clostridium thermocellum is a multifunctional ethanol producer, capable of both saccharification and fermentation, that is central to the consolidated bioprocessing (CBP) approach of converting lignocellulosic biomass to ethanol without external enzyme supplementation. Although CBP organisms have evolved efficient machinery for biomass deconstruction, achieving complete solubilization requires targeted approaches, such as pretreatment, to prepare recalcitrant biomass feedstocks for further biological digestion. Here, differences between how C. thermocellum and fungal cellulases respond to senescent switchgrass prepared by four different pretreatment techniques revealed relationships between biomass substrate composition and its digestion by the two biological approaches. Results: Alamo switchgrass was pretreated using hydrothermal, dilute acid, dilute alkali, and co-solvent-enhanced lignocellulosic fractionation (CELF) pretreatments to produce solids with varying glucan, xylan, and lignin compositions. C. thermocellum achieved highest sugar release and metabolite production from de-lignified switchgrass prepared by CELF and dilute alkali pretreatments demonstrating greater resilience to the presence of hemicellulose sugars than fungal enzymes. 100% glucan solubilization and glucan plus xylan release from switchgrass were achieved using the CELF-CBP combination. Lower glucan solubilization and metabolite production by C. thermocellum was observed on solids prepared by dilute acid and hydrothermal pretreatments with higher xylan removal from switchgrass than lignin removal. Further, C. thermocellum (2% by volume inoculum) showed ~ 48% glucan solubilization compared to < 10% through fungal enzymatic hydrolysis (15 and 65 mg protein/g glucan loadings) of unpretreated switchgrass indicating the effectiveness of C. thermocellum's cellulosome. Overall, C. thermocellum performed equivalent to 65 and better than 15 mg protein/g glucan fungal enzymatic hydrolysis on all substrates except CELF-pretreated substrates. CELF pretreatments of switchgrass produced solids that were highly digestible regardless of whether C. thermocellum or fungal enzymes were chosen. Conclusions: The unparalleled comprehensive nature of this work with a comparison of four pretreatment and two biological digestion techniques provides a strong platform for future integration of pretreatment with CBP. Lignin removal had a more positive impact on biological digestion of switchgrass than xylan removal from the biomass. However, the impact of switchgrass structural properties, including cellulose, hemicellulose, and lignin characterization, would provide a better understanding of lignocellulose deconstruction. More... »

PAGES

219

References to SciGraph publications

  • 2009-05. The Effect of Lignin Removal by Alkaline Peroxide Pretreatment on the Susceptibility of Corn Stover to Purified Cellulolytic and Xylanolytic Enzymes in APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
  • 2017-12. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum in SCIENTIFIC REPORTS
  • 2009-08. Summary of findings from the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI): corn stover pretreatment in CELLULOSE
  • 2012-06. A defined growth medium with very low background carbon for culturing Clostridium thermocellum in JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY
  • 1988-12. Ethanol production by Clostridium thermocellum grown on hydrothermally and organosolv-pretreated lignocellulosic materials in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2011-12. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? in BIOTECHNOLOGY FOR BIOFUELS
  • 2016-12. Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance in BIOTECHNOLOGY FOR BIOFUELS
  • 1982-06. Optimization of Clostridium thermocellum growth on cellulose and pretreated wood substrates in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2014-12. Comparison of enzymatic reactivity of corn stover solids prepared by dilute acid, AFEX™, and ionic liquid pretreatments in BIOTECHNOLOGY FOR BIOFUELS
  • 2014-12. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading in BIOTECHNOLOGY FOR BIOFUELS
  • 2014-12. A comparative study of ethanol production using dilute acid, ionic liquid and AFEX™ pretreated corn stover in BIOTECHNOLOGY FOR BIOFUELS
  • 2013-12. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria in BIOTECHNOLOGY FOR BIOFUELS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13068-018-1216-7

    DOI

    http://dx.doi.org/10.1186/s13068-018-1216-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105974112

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30087696


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Dept. of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside (UCR), Riverside, CA, USA", 
                "Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA, USA", 
                "BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kothari", 
            "givenName": "Ninad", 
            "id": "sg:person.015060220332.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015060220332.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Thayer School of Engineering, Dartmouth College, Hanover, NH, USA", 
                "BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holwerda", 
            "givenName": "Evert K.", 
            "id": "sg:person.01043605103.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043605103.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Dept. of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside (UCR), Riverside, CA, USA", 
                "Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA, USA", 
                "Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cai", 
            "givenName": "Charles M.", 
            "id": "sg:person.0734453425.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734453425.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA, USA", 
                "BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA", 
                "Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kumar", 
            "givenName": "Rajeev", 
            "id": "sg:person.015051762200.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015051762200.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Dept. of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside (UCR), Riverside, CA, USA", 
                "Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA, USA", 
                "BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA", 
                "Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wyman", 
            "givenName": "Charles E.", 
            "id": "sg:person.0670521500.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670521500.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/cssc.201403045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001071004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9783527807796.ch10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001427155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00260980", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004112162", 
              "https://doi.org/10.1007/bf00260980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00260980", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004112162", 
              "https://doi.org/10.1007/bf00260980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2015.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004823455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2015.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004823455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2015.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004823455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2015.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004823455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2011.09.091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005922873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.20750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006661551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0086389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009461072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.energy.21.1.403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012832137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-014-0155-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013076596", 
              "https://doi.org/10.1186/s13068-014-0155-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-014-0155-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013076596", 
              "https://doi.org/10.1186/s13068-014-0155-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260250107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013722845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12010-008-8511-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014449641", 
              "https://doi.org/10.1007/s12010-008-8511-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biombioe.2015.05.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014620111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.22258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014964762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2006.09.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016904624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enpol.2009.11.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016911848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5gc00689a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019007803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.251.4999.1318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022014021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-016-0660-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023219699", 
              "https://doi.org/10.1186/s13068-016-0660-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-016-0660-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023219699", 
              "https://doi.org/10.1186/s13068-016-0660-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-6-31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023730684", 
              "https://doi.org/10.1186/1754-6834-6-31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470975831.ch14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023806100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470975831.ch7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023860619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/btpr.137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026294113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/btpr.137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026294113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-8137.2010.03327.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026585462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-8137.2010.03327.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026585462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/btpr.102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030289058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/btpr.102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030289058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2008.11.057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031377143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/m83-057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032741763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2011.05.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033486566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0605381103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034192948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2005.01.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035087634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-7-71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035822219", 
              "https://doi.org/10.1186/1754-6834-7-71"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00500734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036137669", 
              "https://doi.org/10.1007/bf00500734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00500734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036137669", 
              "https://doi.org/10.1007/bf00500734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.22068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036276995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.24370", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037119677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10295-012-1091-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037172605", 
              "https://doi.org/10.1007/s10295-012-1091-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.24744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039716404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260220711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040933873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-7-72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041148802", 
              "https://doi.org/10.1186/1754-6834-7-72"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2005.01.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044840358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2004.06.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045833251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mmbr.66.3.506-577.2002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046000620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0005271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049262785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1137016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049275105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10570-009-9308-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049540739", 
              "https://doi.org/10.1007/s10570-009-9308-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10570-009-9308-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049540739", 
              "https://doi.org/10.1007/s10570-009-9308-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10570-009-9308-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049540739", 
              "https://doi.org/10.1007/s10570-009-9308-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b926617h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049694526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b926617h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049694526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-4-36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049839429", 
              "https://doi.org/10.1186/1754-6834-4-36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1208097109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050446714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470975831.ch6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052627634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260260110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053232595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acssuschemeng.6b01540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055140391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ef9014718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055482720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ef9014718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055482720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18331/brj2016.3.1.4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068612255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep43355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083860107", 
              "https://doi.org/10.1038/srep43355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c6ee03748h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084809171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acssuschemeng.7b00449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085277263"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Background: The thermophilic anaerobic bacterium Clostridium thermocellum is a multifunctional ethanol producer, capable of both saccharification and fermentation, that is central to the consolidated bioprocessing (CBP) approach of converting lignocellulosic biomass to ethanol without external enzyme supplementation. Although CBP organisms have evolved efficient machinery for biomass deconstruction, achieving complete solubilization requires targeted approaches, such as pretreatment, to prepare recalcitrant biomass feedstocks for further biological digestion. Here, differences between how C. thermocellum and fungal cellulases respond to senescent switchgrass prepared by four different pretreatment techniques revealed relationships between biomass substrate composition and its digestion by the two biological approaches.\nResults: Alamo switchgrass was pretreated using hydrothermal, dilute acid, dilute alkali, and co-solvent-enhanced lignocellulosic fractionation (CELF) pretreatments to produce solids with varying glucan, xylan, and lignin compositions. C. thermocellum achieved highest sugar release and metabolite production from de-lignified switchgrass prepared by CELF and dilute alkali pretreatments demonstrating greater resilience to the presence of hemicellulose sugars than fungal enzymes. 100% glucan solubilization and glucan plus xylan release from switchgrass were achieved using the CELF-CBP combination. Lower glucan solubilization and metabolite production by C. thermocellum was observed on solids prepared by dilute acid and hydrothermal pretreatments with higher xylan removal from switchgrass than lignin removal. Further, C. thermocellum (2% by volume inoculum) showed ~\u200948% glucan solubilization compared to <\u200910% through fungal enzymatic hydrolysis (15 and 65\u00a0mg protein/g glucan loadings) of unpretreated switchgrass indicating the effectiveness of C. thermocellum's cellulosome. Overall, C. thermocellum performed equivalent to 65 and better than 15\u00a0mg protein/g glucan fungal enzymatic hydrolysis on all substrates except CELF-pretreated substrates. CELF pretreatments of switchgrass produced solids that were highly digestible regardless of whether C. thermocellum or fungal enzymes were chosen.\nConclusions: The unparalleled comprehensive nature of this work with a comparison of four pretreatment and two biological digestion techniques provides a strong platform for future integration of pretreatment with CBP. Lignin removal had a more positive impact on biological digestion of switchgrass than xylan removal from the biomass. However, the impact of switchgrass structural properties, including cellulose, hemicellulose, and lignin characterization, would provide a better understanding of lignocellulose deconstruction.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13068-018-1216-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1039046", 
            "issn": [
              "1754-6834"
            ], 
            "name": "Biotechnology for Biofuels", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "name": "Biomass augmentation through thermochemical pretreatments greatly enhances digestion of switchgrass by Clostridium thermocellum", 
        "pagination": "219", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "276eac1bd8459bc5962be051c06ad452a6720bb9cdebb218e1941946bf122575"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30087696"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101316935"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13068-018-1216-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105974112"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13068-018-1216-7", 
          "https://app.dimensions.ai/details/publication/pub.1105974112"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000572.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13068-018-1216-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13068-018-1216-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13068-018-1216-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13068-018-1216-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13068-018-1216-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    274 TRIPLES      21 PREDICATES      83 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13068-018-1216-7 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author N7588543d135e4631ad87d8879c676791
    4 schema:citation sg:pub.10.1007/bf00260980
    5 sg:pub.10.1007/bf00500734
    6 sg:pub.10.1007/s10295-012-1091-3
    7 sg:pub.10.1007/s10570-009-9308-y
    8 sg:pub.10.1007/s12010-008-8511-x
    9 sg:pub.10.1038/srep43355
    10 sg:pub.10.1186/1754-6834-4-36
    11 sg:pub.10.1186/1754-6834-6-31
    12 sg:pub.10.1186/1754-6834-7-71
    13 sg:pub.10.1186/1754-6834-7-72
    14 sg:pub.10.1186/s13068-014-0155-1
    15 sg:pub.10.1186/s13068-016-0660-5
    16 https://doi.org/10.1002/9780470975831.ch14
    17 https://doi.org/10.1002/9780470975831.ch6
    18 https://doi.org/10.1002/9780470975831.ch7
    19 https://doi.org/10.1002/9783527807796.ch10
    20 https://doi.org/10.1002/bit.20750
    21 https://doi.org/10.1002/bit.22068
    22 https://doi.org/10.1002/bit.22258
    23 https://doi.org/10.1002/bit.24370
    24 https://doi.org/10.1002/bit.24744
    25 https://doi.org/10.1002/bit.260220711
    26 https://doi.org/10.1002/bit.260250107
    27 https://doi.org/10.1002/bit.260260110
    28 https://doi.org/10.1002/btpr.102
    29 https://doi.org/10.1002/btpr.137
    30 https://doi.org/10.1002/cssc.201403045
    31 https://doi.org/10.1016/j.biombioe.2015.05.006
    32 https://doi.org/10.1016/j.biortech.2004.06.025
    33 https://doi.org/10.1016/j.biortech.2005.01.011
    34 https://doi.org/10.1016/j.biortech.2005.01.018
    35 https://doi.org/10.1016/j.biortech.2006.09.003
    36 https://doi.org/10.1016/j.biortech.2008.11.057
    37 https://doi.org/10.1016/j.biortech.2011.05.021
    38 https://doi.org/10.1016/j.biortech.2011.09.091
    39 https://doi.org/10.1016/j.copbio.2015.02.006
    40 https://doi.org/10.1016/j.enpol.2009.11.006
    41 https://doi.org/10.1021/acssuschemeng.6b01540
    42 https://doi.org/10.1021/acssuschemeng.7b00449
    43 https://doi.org/10.1021/ef9014718
    44 https://doi.org/10.1039/b926617h
    45 https://doi.org/10.1039/c5gc00689a
    46 https://doi.org/10.1039/c6ee03748h
    47 https://doi.org/10.1073/pnas.0605381103
    48 https://doi.org/10.1073/pnas.1208097109
    49 https://doi.org/10.1111/j.1469-8137.2010.03327.x
    50 https://doi.org/10.1126/science.1137016
    51 https://doi.org/10.1126/science.251.4999.1318
    52 https://doi.org/10.1128/mmbr.66.3.506-577.2002
    53 https://doi.org/10.1139/m83-057
    54 https://doi.org/10.1146/annurev.energy.21.1.403
    55 https://doi.org/10.1371/journal.pone.0005271
    56 https://doi.org/10.1371/journal.pone.0086389
    57 https://doi.org/10.18331/brj2016.3.1.4
    58 schema:datePublished 2018-12
    59 schema:datePublishedReg 2018-12-01
    60 schema:description Background: The thermophilic anaerobic bacterium Clostridium thermocellum is a multifunctional ethanol producer, capable of both saccharification and fermentation, that is central to the consolidated bioprocessing (CBP) approach of converting lignocellulosic biomass to ethanol without external enzyme supplementation. Although CBP organisms have evolved efficient machinery for biomass deconstruction, achieving complete solubilization requires targeted approaches, such as pretreatment, to prepare recalcitrant biomass feedstocks for further biological digestion. Here, differences between how C. thermocellum and fungal cellulases respond to senescent switchgrass prepared by four different pretreatment techniques revealed relationships between biomass substrate composition and its digestion by the two biological approaches. Results: Alamo switchgrass was pretreated using hydrothermal, dilute acid, dilute alkali, and co-solvent-enhanced lignocellulosic fractionation (CELF) pretreatments to produce solids with varying glucan, xylan, and lignin compositions. C. thermocellum achieved highest sugar release and metabolite production from de-lignified switchgrass prepared by CELF and dilute alkali pretreatments demonstrating greater resilience to the presence of hemicellulose sugars than fungal enzymes. 100% glucan solubilization and glucan plus xylan release from switchgrass were achieved using the CELF-CBP combination. Lower glucan solubilization and metabolite production by C. thermocellum was observed on solids prepared by dilute acid and hydrothermal pretreatments with higher xylan removal from switchgrass than lignin removal. Further, C. thermocellum (2% by volume inoculum) showed ~ 48% glucan solubilization compared to < 10% through fungal enzymatic hydrolysis (15 and 65 mg protein/g glucan loadings) of unpretreated switchgrass indicating the effectiveness of C. thermocellum's cellulosome. Overall, C. thermocellum performed equivalent to 65 and better than 15 mg protein/g glucan fungal enzymatic hydrolysis on all substrates except CELF-pretreated substrates. CELF pretreatments of switchgrass produced solids that were highly digestible regardless of whether C. thermocellum or fungal enzymes were chosen. Conclusions: The unparalleled comprehensive nature of this work with a comparison of four pretreatment and two biological digestion techniques provides a strong platform for future integration of pretreatment with CBP. Lignin removal had a more positive impact on biological digestion of switchgrass than xylan removal from the biomass. However, the impact of switchgrass structural properties, including cellulose, hemicellulose, and lignin characterization, would provide a better understanding of lignocellulose deconstruction.
    61 schema:genre research_article
    62 schema:inLanguage en
    63 schema:isAccessibleForFree true
    64 schema:isPartOf N485707e25e88471ba57d84cd5c302411
    65 Nbc796e2a83c443da9433401c93ded7c0
    66 sg:journal.1039046
    67 schema:name Biomass augmentation through thermochemical pretreatments greatly enhances digestion of switchgrass by Clostridium thermocellum
    68 schema:pagination 219
    69 schema:productId N27d4915ffea94715ba82090d75ba7b7c
    70 N42c45bc5e09a4a72a26f8dfb3fe90800
    71 N4f76f6a69277457b91d4964e5abe84a6
    72 N831f523fbd5f4faba74b0f8db6aca1bd
    73 N96840cee139244b8a01cf89387e8ea71
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105974112
    75 https://doi.org/10.1186/s13068-018-1216-7
    76 schema:sdDatePublished 2019-04-10T15:10
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher N2cb357023dbb43c98d3460fe9b775a09
    79 schema:url https://link.springer.com/10.1186%2Fs13068-018-1216-7
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N27d4915ffea94715ba82090d75ba7b7c schema:name doi
    84 schema:value 10.1186/s13068-018-1216-7
    85 rdf:type schema:PropertyValue
    86 N2a3f17534e3f471a812d8f8d6d6c3a94 rdf:first sg:person.01043605103.10
    87 rdf:rest Ndeafdcddc87244d5913fa52dece72620
    88 N2cb357023dbb43c98d3460fe9b775a09 schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 N42c45bc5e09a4a72a26f8dfb3fe90800 schema:name nlm_unique_id
    91 schema:value 101316935
    92 rdf:type schema:PropertyValue
    93 N47967837121c4dd09cde0f8ce2d56195 rdf:first sg:person.0670521500.45
    94 rdf:rest rdf:nil
    95 N485707e25e88471ba57d84cd5c302411 schema:volumeNumber 11
    96 rdf:type schema:PublicationVolume
    97 N4f76f6a69277457b91d4964e5abe84a6 schema:name readcube_id
    98 schema:value 276eac1bd8459bc5962be051c06ad452a6720bb9cdebb218e1941946bf122575
    99 rdf:type schema:PropertyValue
    100 N7588543d135e4631ad87d8879c676791 rdf:first sg:person.015060220332.38
    101 rdf:rest N2a3f17534e3f471a812d8f8d6d6c3a94
    102 N831f523fbd5f4faba74b0f8db6aca1bd schema:name dimensions_id
    103 schema:value pub.1105974112
    104 rdf:type schema:PropertyValue
    105 N87a48ecae2e142a4986df975877fb6a8 rdf:first sg:person.015051762200.31
    106 rdf:rest N47967837121c4dd09cde0f8ce2d56195
    107 N96840cee139244b8a01cf89387e8ea71 schema:name pubmed_id
    108 schema:value 30087696
    109 rdf:type schema:PropertyValue
    110 Nbc796e2a83c443da9433401c93ded7c0 schema:issueNumber 1
    111 rdf:type schema:PublicationIssue
    112 Ndeafdcddc87244d5913fa52dece72620 rdf:first sg:person.0734453425.55
    113 rdf:rest N87a48ecae2e142a4986df975877fb6a8
    114 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Biological Sciences
    116 rdf:type schema:DefinedTerm
    117 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Biochemistry and Cell Biology
    119 rdf:type schema:DefinedTerm
    120 sg:journal.1039046 schema:issn 1754-6834
    121 schema:name Biotechnology for Biofuels
    122 rdf:type schema:Periodical
    123 sg:person.01043605103.10 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    124 schema:familyName Holwerda
    125 schema:givenName Evert K.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043605103.10
    127 rdf:type schema:Person
    128 sg:person.015051762200.31 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    129 schema:familyName Kumar
    130 schema:givenName Rajeev
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015051762200.31
    132 rdf:type schema:Person
    133 sg:person.015060220332.38 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    134 schema:familyName Kothari
    135 schema:givenName Ninad
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015060220332.38
    137 rdf:type schema:Person
    138 sg:person.0670521500.45 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    139 schema:familyName Wyman
    140 schema:givenName Charles E.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670521500.45
    142 rdf:type schema:Person
    143 sg:person.0734453425.55 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    144 schema:familyName Cai
    145 schema:givenName Charles M.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734453425.55
    147 rdf:type schema:Person
    148 sg:pub.10.1007/bf00260980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004112162
    149 https://doi.org/10.1007/bf00260980
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf00500734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036137669
    152 https://doi.org/10.1007/bf00500734
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s10295-012-1091-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037172605
    155 https://doi.org/10.1007/s10295-012-1091-3
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s10570-009-9308-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049540739
    158 https://doi.org/10.1007/s10570-009-9308-y
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s12010-008-8511-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014449641
    161 https://doi.org/10.1007/s12010-008-8511-x
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/srep43355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083860107
    164 https://doi.org/10.1038/srep43355
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1186/1754-6834-4-36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049839429
    167 https://doi.org/10.1186/1754-6834-4-36
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1186/1754-6834-6-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023730684
    170 https://doi.org/10.1186/1754-6834-6-31
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1186/1754-6834-7-71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035822219
    173 https://doi.org/10.1186/1754-6834-7-71
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1186/1754-6834-7-72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041148802
    176 https://doi.org/10.1186/1754-6834-7-72
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1186/s13068-014-0155-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013076596
    179 https://doi.org/10.1186/s13068-014-0155-1
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1186/s13068-016-0660-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023219699
    182 https://doi.org/10.1186/s13068-016-0660-5
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1002/9780470975831.ch14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023806100
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1002/9780470975831.ch6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052627634
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1002/9780470975831.ch7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023860619
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1002/9783527807796.ch10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001427155
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1002/bit.20750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006661551
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1002/bit.22068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036276995
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1002/bit.22258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014964762
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1002/bit.24370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037119677
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1002/bit.24744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039716404
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1002/bit.260220711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040933873
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1002/bit.260250107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013722845
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1002/bit.260260110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053232595
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1002/btpr.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030289058
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1002/btpr.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026294113
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1002/cssc.201403045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001071004
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.biombioe.2015.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014620111
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.biortech.2004.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045833251
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/j.biortech.2005.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044840358
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.biortech.2005.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035087634
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/j.biortech.2006.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016904624
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.biortech.2008.11.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031377143
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.biortech.2011.05.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033486566
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.biortech.2011.09.091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005922873
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.copbio.2015.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004823455
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.enpol.2009.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016911848
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1021/acssuschemeng.6b01540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055140391
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1021/acssuschemeng.7b00449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085277263
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1021/ef9014718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055482720
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1039/b926617h schema:sameAs https://app.dimensions.ai/details/publication/pub.1049694526
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1039/c5gc00689a schema:sameAs https://app.dimensions.ai/details/publication/pub.1019007803
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1039/c6ee03748h schema:sameAs https://app.dimensions.ai/details/publication/pub.1084809171
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1073/pnas.0605381103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034192948
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1073/pnas.1208097109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050446714
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1111/j.1469-8137.2010.03327.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026585462
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1126/science.1137016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049275105
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1126/science.251.4999.1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022014021
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1128/mmbr.66.3.506-577.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046000620
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1139/m83-057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032741763
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1146/annurev.energy.21.1.403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012832137
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1371/journal.pone.0005271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049262785
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1371/journal.pone.0086389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009461072
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.18331/brj2016.3.1.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068612255
    267 rdf:type schema:CreativeWork
    268 https://www.grid.ac/institutes/grid.135519.a schema:alternateName Oak Ridge National Laboratory
    269 schema:name BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA
    270 Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA
    271 Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA, USA
    272 Dept. of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside (UCR), Riverside, CA, USA
    273 Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
    274 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...