Genome-centric metatranscriptomes and ecological roles of the active microbial populations during cellulosic biomass anaerobic digestion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Yangyang Jia, Siu-Kin Ng, Hongyuan Lu, Mingwei Cai, Patrick K. H. Lee

ABSTRACT

Background: Although anaerobic digestion for biogas production is used worldwide in treatment processes to recover energy from carbon-rich waste such as cellulosic biomass, the activities and interactions among the microbial populations that perform anaerobic digestion deserve further investigations, especially at the population genome level. To understand the cellulosic biomass-degrading potentials in two full-scale digesters, this study examined five methanogenic enrichment cultures derived from the digesters that anaerobically digested cellulose or xylan for more than 2 years under 35 or 55 °C conditions. Results: Metagenomics and metatranscriptomics were used to capture the active microbial populations in each enrichment culture and reconstruct their meta-metabolic network and ecological roles. 107 population genomes were reconstructed from the five enrichment cultures using a differential coverage binning approach, of which only a subset was highly transcribed in the metatranscriptomes. Phylogenetic and functional convergence of communities by enrichment condition and phase of fermentation was observed for the highly transcribed populations in the metatranscriptomes. In the 35 °C cultures grown on cellulose, Clostridium cellulolyticum-related and Ruminococcus-related bacteria were identified as major hydrolyzers and primary fermenters in the early growth phase, while Clostridium leptum-related bacteria were major secondary fermenters and potential fatty acid scavengers in the late growth phase. While the meta-metabolism and trophic roles of the cultures were similar, the bacterial populations performing each function were distinct between the enrichment conditions. Conclusions: Overall, a population genome-centric view of the meta-metabolism and functional roles of key active players in anaerobic digestion of cellulosic biomass was obtained. This study represents a major step forward towards understanding the microbial functions and interactions at population genome level during the microbial conversion of lignocellulosic biomass to methane. The knowledge of this study can facilitate development of potential biomarkers and rational design of the microbiome in anaerobic digesters. More... »

PAGES

117

References to SciGraph publications

  • 2013-12. Clostridium leptum group bacteria abundance and diversity in the fecal microbiota of patients with inflammatory bowel disease: a case–control study in India in BMC GASTROENTEROLOGY
  • 2015-08. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor in THE ISME JOURNAL
  • 2018-01. DNA-SIP based genome-centric metagenomics identifies key long-chain fatty acid-degrading populations in anaerobic digesters with different feeding frequencies in THE ISME JOURNAL
  • 2015-01. Fast and sensitive protein alignment using DIAMOND in NATURE METHODS
  • 2015-05. Thermophilic microbial cellulose decomposition and methanogenesis pathways recharacterized by metatranscriptomic and metagenomic analysis in SCIENTIFIC REPORTS
  • 2016-12. The microbial community structure in industrial biogas plants influences the degradation rate of straw and cellulose in batch tests in BIOTECHNOLOGY FOR BIOFUELS
  • 2009-06. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge in THE ISME JOURNAL
  • 2012-12. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples in THEORY IN BIOSCIENCES
  • 2013-06. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes in NATURE BIOTECHNOLOGY
  • 1979-08. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens in ARCHIVES OF MICROBIOLOGY
  • 1981. Basic Principles of Bioconversions in Anaerobic Digestion and Methanogenesis in BIOMASS CONVERSION PROCESSES FOR ENERGY AND FUELS
  • 2016-12. Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants in BIOTECHNOLOGY FOR BIOFUELS
  • 2001-09. The cellulosome and cellulose degradation by anaerobic bacteria in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2016-12. Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies in BIOTECHNOLOGY FOR BIOFUELS
  • 2013-12. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes in NATURE COMMUNICATIONS
  • 2010-12. Prodigal: prokaryotic gene recognition and translation initiation site identification in BMC BIOINFORMATICS
  • 2011-12. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome in BMC BIOINFORMATICS
  • 2016-12. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy in BIOTECHNOLOGY FOR BIOFUELS
  • 2009-12. BLAST+: architecture and applications in BMC BIOINFORMATICS
  • Journal

    TITLE

    Biotechnology for Biofuels

    ISSUE

    1

    VOLUME

    11

    Author Affiliations

    From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13068-018-1121-0

    DOI

    http://dx.doi.org/10.1186/s13068-018-1121-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103590209

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29713376


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "City University of Hong Kong", 
              "id": "https://www.grid.ac/institutes/grid.35030.35", 
              "name": [
                "B5423-AC1, School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jia", 
            "givenName": "Yangyang", 
            "id": "sg:person.0742354213.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742354213.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "City University of Hong Kong", 
              "id": "https://www.grid.ac/institutes/grid.35030.35", 
              "name": [
                "B5423-AC1, School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ng", 
            "givenName": "Siu-Kin", 
            "id": "sg:person.01216552406.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216552406.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "City University of Hong Kong", 
              "id": "https://www.grid.ac/institutes/grid.35030.35", 
              "name": [
                "B5423-AC1, School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Hongyuan", 
            "id": "sg:person.01056602613.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056602613.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "City University of Hong Kong", 
              "id": "https://www.grid.ac/institutes/grid.35030.35", 
              "name": [
                "B5423-AC1, School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cai", 
            "givenName": "Mingwei", 
            "id": "sg:person.01124716013.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124716013.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "City University of Hong Kong", 
              "id": "https://www.grid.ac/institutes/grid.35030.35", 
              "name": [
                "B5423-AC1, School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Patrick K. H.", 
            "id": "sg:person.010047550502.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010047550502.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1042/bj20040892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000811159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj20040892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000811159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2014.256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000906028", 
              "https://doi.org/10.1038/ismej.2014.256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.00713-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001845614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002996628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-016-0441-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003905845", 
              "https://doi.org/10.1186/s13068-016-0441-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-016-0565-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005469448", 
              "https://doi.org/10.1186/s13068-016-0565-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-016-0565-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005469448", 
              "https://doi.org/10.1186/s13068-016-0565-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/28.1.33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007790653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv657", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008516055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.00612-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009590926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.00385-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009720837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2014.10.126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009857737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gki866", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009961531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2958.2007.05640.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010548997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010652073", 
              "https://doi.org/10.1038/nbt.2579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1015676108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011530180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gks479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011540630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1432-1327.1999.00738.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013113812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0036740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013954151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mbio.00889-14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014337412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.186072.114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015107573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkg006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016135999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2486.2007.01382.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016223094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2013.11.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016833963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1521-379x(200208)54:8<328::aid-star328>3.0.co;2-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017151264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.00362-07", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017511249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep06708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017906340", 
              "https://doi.org/10.1038/srep06708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021902674", 
              "https://doi.org/10.1186/1471-2105-12-323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv1344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022063719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00411351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022885853", 
              "https://doi.org/10.1007/bf00411351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00411351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022885853", 
              "https://doi.org/10.1007/bf00411351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1462-2920.13382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023061808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023901695", 
              "https://doi.org/10.1038/nmeth.3176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/14.9.755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024610917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.micro.57.030502.091022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024787833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2014.09.103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025011670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1159/000091557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025262188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.02566-14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025573412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/2041-210x.12628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025681872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002530100710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026098619", 
              "https://doi.org/10.1007/s002530100710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423599", 
              "https://doi.org/10.1186/1471-2105-11-119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-micro-090110-102844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026521400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1742-4658.2009.07025.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031963458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1742-4658.2009.07025.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031963458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2009.2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032031594", 
              "https://doi.org/10.1038/ismej.2009.2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-0301-6_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032302189", 
              "https://doi.org/10.1007/978-1-4757-0301-6_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0005-2728(00)00276-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033405268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035309471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.femsre.2004.11.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035368773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2009.10.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035595097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12064-012-0162-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036112334", 
              "https://doi.org/10.1007/s12064-012-0162-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbiotec.2012.01.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037840747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040093094", 
              "https://doi.org/10.1038/ncomms3304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042720804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044126939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-016-0534-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045521565", 
              "https://doi.org/10.1186/s13068-016-0534-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-016-0534-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045521565", 
              "https://doi.org/10.1186/s13068-016-0534-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-444-59592-8.00017-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046240474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1079/pns2002207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046245715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.03360-15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046815181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijhydene.2007.09.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046850657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gku1063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048670772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbabio.2012.07.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048976480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mbio.01208-16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049768614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050579230", 
              "https://doi.org/10.1186/1471-2105-10-421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-016-0543-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051056209", 
              "https://doi.org/10.1186/s13068-016-0543-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13068-016-0543-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051056209", 
              "https://doi.org/10.1186/s13068-016-0543-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-230x-13-20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052385071", 
              "https://doi.org/10.1186/1471-230x-13-20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1462-2920.12616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052539551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.est.6b00296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055088823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/femsec/fiv107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059580324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/femsec/fiv137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059580348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/00207713-34-2-155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060347783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.00789-16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062710127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.176.1.70-76.1994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062722656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083102715", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bk-2004-0889.ch001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089352694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.watres.2017.07.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090835816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.watres.2017.07.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090835816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.watres.2017.07.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090835816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.watres.2017.09.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091509181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2017.143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091562384", 
              "https://doi.org/10.1038/ismej.2017.143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2017.11.068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092998058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2017.11.068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092998058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2017.11.068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092998058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7287/peerj.preprints.1900v1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107335254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7287/peerj.preprints.1900v1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107335254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7287/peerj.preprints.1900v1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107335254"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Background: Although anaerobic digestion for biogas production is used worldwide in treatment processes to recover energy from carbon-rich waste such as cellulosic biomass, the activities and interactions among the microbial populations that perform anaerobic digestion deserve further investigations, especially at the population genome level. To understand the cellulosic biomass-degrading potentials in two full-scale digesters, this study examined five methanogenic enrichment cultures derived from the digesters that anaerobically digested cellulose or xylan for more than 2\u00a0years under 35 or 55\u00a0\u00b0C conditions.\nResults: Metagenomics and metatranscriptomics were used to capture the active microbial populations in each enrichment culture and reconstruct their meta-metabolic network and ecological roles. 107 population genomes were reconstructed from the five enrichment cultures using a differential coverage binning approach, of which only a subset was highly transcribed in the metatranscriptomes. Phylogenetic and functional convergence of communities by enrichment condition and phase of fermentation was observed for the highly transcribed populations in the metatranscriptomes. In the 35\u00a0\u00b0C cultures grown on cellulose, Clostridium cellulolyticum-related and Ruminococcus-related bacteria were identified as major hydrolyzers and primary fermenters in the early growth phase, while Clostridium leptum-related bacteria were major secondary fermenters and potential fatty acid scavengers in the late growth phase. While the meta-metabolism and trophic roles of the cultures were similar, the bacterial populations performing each function were distinct between the enrichment conditions.\nConclusions: Overall, a population genome-centric view of the meta-metabolism and functional roles of key active players in anaerobic digestion of cellulosic biomass was obtained. This study represents a major step forward towards understanding the microbial functions and interactions at population genome level during the microbial conversion of lignocellulosic biomass to methane. The knowledge of this study can facilitate development of potential biomarkers and rational design of the microbiome in anaerobic digesters.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13068-018-1121-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7426842", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1039046", 
            "issn": [
              "1754-6834"
            ], 
            "name": "Biotechnology for Biofuels", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "name": "Genome-centric metatranscriptomes and ecological roles of the active microbial populations during cellulosic biomass anaerobic digestion", 
        "pagination": "117", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "57b7de263067f1dd204d8441529dfed6e2b618b1f1a7b17aea462ba24d5ed239"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29713376"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101316935"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13068-018-1121-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103590209"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13068-018-1121-0", 
          "https://app.dimensions.ai/details/publication/pub.1103590209"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89807_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13068-018-1121-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13068-018-1121-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13068-018-1121-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13068-018-1121-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13068-018-1121-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    347 TRIPLES      21 PREDICATES      106 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13068-018-1121-0 schema:about anzsrc-for:06
    2 anzsrc-for:0605
    3 schema:author N00d59cc92e8a441b8ef881bfecef4972
    4 schema:citation sg:pub.10.1007/978-1-4757-0301-6_15
    5 sg:pub.10.1007/bf00411351
    6 sg:pub.10.1007/s002530100710
    7 sg:pub.10.1007/s12064-012-0162-3
    8 sg:pub.10.1038/ismej.2009.2
    9 sg:pub.10.1038/ismej.2014.256
    10 sg:pub.10.1038/ismej.2017.143
    11 sg:pub.10.1038/nbt.2579
    12 sg:pub.10.1038/ncomms3304
    13 sg:pub.10.1038/nmeth.3176
    14 sg:pub.10.1038/srep06708
    15 sg:pub.10.1186/1471-2105-10-421
    16 sg:pub.10.1186/1471-2105-11-119
    17 sg:pub.10.1186/1471-2105-12-323
    18 sg:pub.10.1186/1471-230x-13-20
    19 sg:pub.10.1186/s13068-016-0441-1
    20 sg:pub.10.1186/s13068-016-0534-x
    21 sg:pub.10.1186/s13068-016-0543-9
    22 sg:pub.10.1186/s13068-016-0565-3
    23 https://app.dimensions.ai/details/publication/pub.1083102715
    24 https://doi.org/10.1002/1521-379x(200208)54:8<328::aid-star328>3.0.co;2-7
    25 https://doi.org/10.1016/b978-0-444-59592-8.00017-8
    26 https://doi.org/10.1016/j.bbabio.2012.07.002
    27 https://doi.org/10.1016/j.biortech.2014.09.103
    28 https://doi.org/10.1016/j.biortech.2014.10.126
    29 https://doi.org/10.1016/j.biortech.2017.11.068
    30 https://doi.org/10.1016/j.copbio.2009.10.001
    31 https://doi.org/10.1016/j.copbio.2013.11.004
    32 https://doi.org/10.1016/j.femsre.2004.11.003
    33 https://doi.org/10.1016/j.ijhydene.2007.09.038
    34 https://doi.org/10.1016/j.jbiotec.2012.01.020
    35 https://doi.org/10.1016/j.watres.2017.07.050
    36 https://doi.org/10.1016/j.watres.2017.09.018
    37 https://doi.org/10.1016/s0005-2728(00)00276-0
    38 https://doi.org/10.1021/acs.est.6b00296
    39 https://doi.org/10.1021/bk-2004-0889.ch001
    40 https://doi.org/10.1042/bj20040892
    41 https://doi.org/10.1046/j.1432-1327.1999.00738.x
    42 https://doi.org/10.1073/pnas.1015676108
    43 https://doi.org/10.1079/pns2002207
    44 https://doi.org/10.1093/bioinformatics/14.9.755
    45 https://doi.org/10.1093/bioinformatics/bts174
    46 https://doi.org/10.1093/bioinformatics/btu170
    47 https://doi.org/10.1093/femsec/fiv107
    48 https://doi.org/10.1093/femsec/fiv137
    49 https://doi.org/10.1093/nar/28.1.33
    50 https://doi.org/10.1093/nar/gkg006
    51 https://doi.org/10.1093/nar/gki866
    52 https://doi.org/10.1093/nar/gks479
    53 https://doi.org/10.1093/nar/gkt1076
    54 https://doi.org/10.1093/nar/gkt1178
    55 https://doi.org/10.1093/nar/gku1063
    56 https://doi.org/10.1093/nar/gkv1344
    57 https://doi.org/10.1093/nar/gkv657
    58 https://doi.org/10.1099/00207713-34-2-155
    59 https://doi.org/10.1101/gr.186072.114
    60 https://doi.org/10.1111/1462-2920.12616
    61 https://doi.org/10.1111/1462-2920.13382
    62 https://doi.org/10.1111/2041-210x.12628
    63 https://doi.org/10.1111/j.1365-2486.2007.01382.x
    64 https://doi.org/10.1111/j.1365-2958.2007.05640.x
    65 https://doi.org/10.1111/j.1742-4658.2009.07025.x
    66 https://doi.org/10.1128/aem.00362-07
    67 https://doi.org/10.1128/aem.00789-16
    68 https://doi.org/10.1128/aem.02566-14
    69 https://doi.org/10.1128/aem.03360-15
    70 https://doi.org/10.1128/jb.00385-12
    71 https://doi.org/10.1128/jb.00612-10
    72 https://doi.org/10.1128/jb.00713-12
    73 https://doi.org/10.1128/jb.176.1.70-76.1994
    74 https://doi.org/10.1128/mbio.00889-14
    75 https://doi.org/10.1128/mbio.01208-16
    76 https://doi.org/10.1146/annurev-micro-090110-102844
    77 https://doi.org/10.1146/annurev.micro.57.030502.091022
    78 https://doi.org/10.1159/000091557
    79 https://doi.org/10.1371/journal.pone.0036740
    80 https://doi.org/10.7287/peerj.preprints.1900v1
    81 schema:datePublished 2018-12
    82 schema:datePublishedReg 2018-12-01
    83 schema:description Background: Although anaerobic digestion for biogas production is used worldwide in treatment processes to recover energy from carbon-rich waste such as cellulosic biomass, the activities and interactions among the microbial populations that perform anaerobic digestion deserve further investigations, especially at the population genome level. To understand the cellulosic biomass-degrading potentials in two full-scale digesters, this study examined five methanogenic enrichment cultures derived from the digesters that anaerobically digested cellulose or xylan for more than 2 years under 35 or 55 °C conditions. Results: Metagenomics and metatranscriptomics were used to capture the active microbial populations in each enrichment culture and reconstruct their meta-metabolic network and ecological roles. 107 population genomes were reconstructed from the five enrichment cultures using a differential coverage binning approach, of which only a subset was highly transcribed in the metatranscriptomes. Phylogenetic and functional convergence of communities by enrichment condition and phase of fermentation was observed for the highly transcribed populations in the metatranscriptomes. In the 35 °C cultures grown on cellulose, Clostridium cellulolyticum-related and Ruminococcus-related bacteria were identified as major hydrolyzers and primary fermenters in the early growth phase, while Clostridium leptum-related bacteria were major secondary fermenters and potential fatty acid scavengers in the late growth phase. While the meta-metabolism and trophic roles of the cultures were similar, the bacterial populations performing each function were distinct between the enrichment conditions. Conclusions: Overall, a population genome-centric view of the meta-metabolism and functional roles of key active players in anaerobic digestion of cellulosic biomass was obtained. This study represents a major step forward towards understanding the microbial functions and interactions at population genome level during the microbial conversion of lignocellulosic biomass to methane. The knowledge of this study can facilitate development of potential biomarkers and rational design of the microbiome in anaerobic digesters.
    84 schema:genre research_article
    85 schema:inLanguage en
    86 schema:isAccessibleForFree true
    87 schema:isPartOf N9512d655452947499cbf3858a8bab7df
    88 Nf12bdff9f7674581a5e5782a92b4051d
    89 sg:journal.1039046
    90 schema:name Genome-centric metatranscriptomes and ecological roles of the active microbial populations during cellulosic biomass anaerobic digestion
    91 schema:pagination 117
    92 schema:productId N2f7daafee5254c8198a10f171fe52839
    93 N630cf969630347e3b82117f277a03029
    94 Na873b7b696fa46949ff747b53433cc79
    95 Nb6d41faf06d748fc9456f365b593a8f6
    96 Ndb30b579b5414d7d8a4a24a0293e66e7
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103590209
    98 https://doi.org/10.1186/s13068-018-1121-0
    99 schema:sdDatePublished 2019-04-11T09:57
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher N26fac2542cd64772ae0963fb461f3bb3
    102 schema:url https://link.springer.com/10.1186%2Fs13068-018-1121-0
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N00d59cc92e8a441b8ef881bfecef4972 rdf:first sg:person.0742354213.04
    107 rdf:rest N427fba9b3a4948a590eb6c46be351e4a
    108 N26fac2542cd64772ae0963fb461f3bb3 schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 N2b70981c69c54df69d2b204a81018943 rdf:first sg:person.010047550502.21
    111 rdf:rest rdf:nil
    112 N2f7daafee5254c8198a10f171fe52839 schema:name dimensions_id
    113 schema:value pub.1103590209
    114 rdf:type schema:PropertyValue
    115 N3cb8d69ca0674e0b9ad27ee988b39075 rdf:first sg:person.01124716013.56
    116 rdf:rest N2b70981c69c54df69d2b204a81018943
    117 N427fba9b3a4948a590eb6c46be351e4a rdf:first sg:person.01216552406.43
    118 rdf:rest N49e7ff13df0547a19bdd7d07f6327b54
    119 N49e7ff13df0547a19bdd7d07f6327b54 rdf:first sg:person.01056602613.37
    120 rdf:rest N3cb8d69ca0674e0b9ad27ee988b39075
    121 N630cf969630347e3b82117f277a03029 schema:name readcube_id
    122 schema:value 57b7de263067f1dd204d8441529dfed6e2b618b1f1a7b17aea462ba24d5ed239
    123 rdf:type schema:PropertyValue
    124 N9512d655452947499cbf3858a8bab7df schema:issueNumber 1
    125 rdf:type schema:PublicationIssue
    126 Na873b7b696fa46949ff747b53433cc79 schema:name nlm_unique_id
    127 schema:value 101316935
    128 rdf:type schema:PropertyValue
    129 Nb6d41faf06d748fc9456f365b593a8f6 schema:name doi
    130 schema:value 10.1186/s13068-018-1121-0
    131 rdf:type schema:PropertyValue
    132 Ndb30b579b5414d7d8a4a24a0293e66e7 schema:name pubmed_id
    133 schema:value 29713376
    134 rdf:type schema:PropertyValue
    135 Nf12bdff9f7674581a5e5782a92b4051d schema:volumeNumber 11
    136 rdf:type schema:PublicationVolume
    137 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Biological Sciences
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Microbiology
    142 rdf:type schema:DefinedTerm
    143 sg:grant.7426842 http://pending.schema.org/fundedItem sg:pub.10.1186/s13068-018-1121-0
    144 rdf:type schema:MonetaryGrant
    145 sg:journal.1039046 schema:issn 1754-6834
    146 schema:name Biotechnology for Biofuels
    147 rdf:type schema:Periodical
    148 sg:person.010047550502.21 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
    149 schema:familyName Lee
    150 schema:givenName Patrick K. H.
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010047550502.21
    152 rdf:type schema:Person
    153 sg:person.01056602613.37 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
    154 schema:familyName Lu
    155 schema:givenName Hongyuan
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056602613.37
    157 rdf:type schema:Person
    158 sg:person.01124716013.56 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
    159 schema:familyName Cai
    160 schema:givenName Mingwei
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124716013.56
    162 rdf:type schema:Person
    163 sg:person.01216552406.43 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
    164 schema:familyName Ng
    165 schema:givenName Siu-Kin
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216552406.43
    167 rdf:type schema:Person
    168 sg:person.0742354213.04 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
    169 schema:familyName Jia
    170 schema:givenName Yangyang
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742354213.04
    172 rdf:type schema:Person
    173 sg:pub.10.1007/978-1-4757-0301-6_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032302189
    174 https://doi.org/10.1007/978-1-4757-0301-6_15
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/bf00411351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022885853
    177 https://doi.org/10.1007/bf00411351
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s002530100710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026098619
    180 https://doi.org/10.1007/s002530100710
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s12064-012-0162-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036112334
    183 https://doi.org/10.1007/s12064-012-0162-3
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/ismej.2009.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032031594
    186 https://doi.org/10.1038/ismej.2009.2
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/ismej.2014.256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000906028
    189 https://doi.org/10.1038/ismej.2014.256
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/ismej.2017.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091562384
    192 https://doi.org/10.1038/ismej.2017.143
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nbt.2579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010652073
    195 https://doi.org/10.1038/nbt.2579
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/ncomms3304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040093094
    198 https://doi.org/10.1038/ncomms3304
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nmeth.3176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023901695
    201 https://doi.org/10.1038/nmeth.3176
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/srep06708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017906340
    204 https://doi.org/10.1038/srep06708
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1186/1471-2105-10-421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050579230
    207 https://doi.org/10.1186/1471-2105-10-421
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
    210 https://doi.org/10.1186/1471-2105-11-119
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1186/1471-2105-12-323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021902674
    213 https://doi.org/10.1186/1471-2105-12-323
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1186/1471-230x-13-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052385071
    216 https://doi.org/10.1186/1471-230x-13-20
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1186/s13068-016-0441-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003905845
    219 https://doi.org/10.1186/s13068-016-0441-1
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1186/s13068-016-0534-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045521565
    222 https://doi.org/10.1186/s13068-016-0534-x
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1186/s13068-016-0543-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051056209
    225 https://doi.org/10.1186/s13068-016-0543-9
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1186/s13068-016-0565-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005469448
    228 https://doi.org/10.1186/s13068-016-0565-3
    229 rdf:type schema:CreativeWork
    230 https://app.dimensions.ai/details/publication/pub.1083102715 schema:CreativeWork
    231 https://doi.org/10.1002/1521-379x(200208)54:8<328::aid-star328>3.0.co;2-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017151264
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1016/b978-0-444-59592-8.00017-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046240474
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1016/j.bbabio.2012.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048976480
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1016/j.biortech.2014.09.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025011670
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1016/j.biortech.2014.10.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009857737
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1016/j.biortech.2017.11.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092998058
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1016/j.copbio.2009.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035595097
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1016/j.copbio.2013.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016833963
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1016/j.femsre.2004.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035368773
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1016/j.ijhydene.2007.09.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046850657
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1016/j.jbiotec.2012.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037840747
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1016/j.watres.2017.07.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090835816
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1016/j.watres.2017.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091509181
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1016/s0005-2728(00)00276-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033405268
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1021/acs.est.6b00296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055088823
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1021/bk-2004-0889.ch001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089352694
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1042/bj20040892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000811159
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1046/j.1432-1327.1999.00738.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013113812
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1073/pnas.1015676108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011530180
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1079/pns2002207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046245715
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1093/bioinformatics/14.9.755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024610917
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1093/bioinformatics/bts174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044126939
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1093/bioinformatics/btu170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042720804
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1093/femsec/fiv107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059580324
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1093/femsec/fiv137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059580348
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1093/nar/28.1.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007790653
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1093/nar/gkg006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016135999
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1093/nar/gki866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009961531
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1093/nar/gks479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011540630
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1093/nar/gkt1076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002996628
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1093/nar/gkt1178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035309471
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1093/nar/gku1063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048670772
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1093/nar/gkv1344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022063719
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1093/nar/gkv657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008516055
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1099/00207713-34-2-155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060347783
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1101/gr.186072.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015107573
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1111/1462-2920.12616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052539551
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1111/1462-2920.13382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023061808
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1111/2041-210x.12628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025681872
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1111/j.1365-2486.2007.01382.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016223094
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1111/j.1365-2958.2007.05640.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010548997
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1111/j.1742-4658.2009.07025.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031963458
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1128/aem.00362-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017511249
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1128/aem.00789-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062710127
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1128/aem.02566-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025573412
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1128/aem.03360-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046815181
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1128/jb.00385-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009720837
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1128/jb.00612-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009590926
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1128/jb.00713-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001845614
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1128/jb.176.1.70-76.1994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062722656
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1128/mbio.00889-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014337412
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1128/mbio.01208-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049768614
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1146/annurev-micro-090110-102844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026521400
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1146/annurev.micro.57.030502.091022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024787833
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.1159/000091557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025262188
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.1371/journal.pone.0036740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013954151
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.7287/peerj.preprints.1900v1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107335254
    344 rdf:type schema:CreativeWork
    345 https://www.grid.ac/institutes/grid.35030.35 schema:alternateName City University of Hong Kong
    346 schema:name B5423-AC1, School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
    347 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...