Ontology type: schema:ScholarlyArticle Open Access: True
2016-05-31
AUTHORSMahendra P. Raut, Narciso Couto, Trong K. Pham, Caroline Evans, Josselin Noirel, Phillip C. Wright
ABSTRACTBackgroundClostridium acetobutylicum has been a focus of research because of its ability to produce high-value compounds that can be used as biofuels. Lignocellulose is a promising feedstock, but the lignin–cellulose–hemicellulose biomass complex requires chemical pre-treatment to yield fermentable saccharides, including cellulose-derived cellobiose, prior to bioproduction of acetone–butanol–ethanol (ABE) and hydrogen. Fermentation capability is limited by lignin and thus process optimization requires knowledge of lignin inhibition. The effects of lignin on cellular metabolism were evaluated for C. acetobutylicum grown on medium containing either cellobiose only or cellobiose plus lignin. Microscopy, gas chromatography and 8-plex iTRAQ-based quantitative proteomic technologies were applied to interrogate the effect of lignin on cellular morphology, fermentation and the proteome.ResultsOur results demonstrate that C. acetobutylicum has reduced performance for solvent production when lignin is present in the medium. Medium supplemented with 1 g L−1 of lignin led to delay and decreased solvents production (ethanol; 0.47 g L−1 for cellobiose and 0.27 g L−1 for cellobiose plus lignin and butanol; 0.13 g L−1 for cellobiose and 0.04 g L−1 for cellobiose plus lignin) at 20 and 48 h, respectively, resulting in the accumulation of acetic acid and butyric acid. Of 583 identified proteins (FDR < 1 %), 328 proteins were quantified with at least two unique peptides. Up- or down-regulation of protein expression was determined by comparison of exponential and stationary phases of cellobiose in the presence and absence of lignin. Of relevance, glycolysis and fermentative pathways were mostly down-regulated, during exponential and stationary growth phases in presence of lignin. Moreover, proteins involved in DNA repair, transcription/translation and GTP/ATP-dependent activities were also significantly affected and these changes were associated with altered cell morphology.ConclusionsThis is the first comprehensive analysis of the cellular responses of C. acetobutylicum to lignin at metabolic and physiological levels. These data will enable targeted metabolic engineering strategies to optimize biofuel production from biomass by overcoming limitations imposed by the presence of lignin. More... »
PAGES113
http://scigraph.springernature.com/pub.10.1186/s13068-016-0523-0
DOIhttp://dx.doi.org/10.1186/s13068-016-0523-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1019016513
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/27247624
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Technology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1003",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Industrial Biotechnology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK",
"id": "http://www.grid.ac/institutes/grid.11835.3e",
"name": [
"The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK"
],
"type": "Organization"
},
"familyName": "Raut",
"givenName": "Mahendra P.",
"id": "sg:person.01200755421.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200755421.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK",
"id": "http://www.grid.ac/institutes/grid.11835.3e",
"name": [
"The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK"
],
"type": "Organization"
},
"familyName": "Couto",
"givenName": "Narciso",
"id": "sg:person.01352120464.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352120464.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK",
"id": "http://www.grid.ac/institutes/grid.11835.3e",
"name": [
"The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK"
],
"type": "Organization"
},
"familyName": "Pham",
"givenName": "Trong K.",
"id": "sg:person.01260503220.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260503220.66"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK",
"id": "http://www.grid.ac/institutes/grid.11835.3e",
"name": [
"The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK"
],
"type": "Organization"
},
"familyName": "Evans",
"givenName": "Caroline",
"id": "sg:person.014575045247.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014575045247.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Chaire de Bioinformatique, LGBA, Conservatoire National Des Arts Et M\u00e9tiers, 75003, Paris, France",
"id": "http://www.grid.ac/institutes/grid.36823.3c",
"name": [
"The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK",
"Chaire de Bioinformatique, LGBA, Conservatoire National Des Arts Et M\u00e9tiers, 75003, Paris, France"
],
"type": "Organization"
},
"familyName": "Noirel",
"givenName": "Josselin",
"id": "sg:person.01327124212.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327124212.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Chemical Engineering and Advanced Materials, Faculty of Science, Agriculture & Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK",
"id": "http://www.grid.ac/institutes/grid.1006.7",
"name": [
"The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK",
"School of Chemical Engineering and Advanced Materials, Faculty of Science, Agriculture & Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
],
"type": "Organization"
},
"familyName": "Wright",
"givenName": "Phillip C.",
"id": "sg:person.01372352200.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372352200.12"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nrmicro2720",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023908307",
"https://doi.org/10.1038/nrmicro2720"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrmicro1820",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051194311",
"https://doi.org/10.1038/nrmicro1820"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12155-014-9480-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001213818",
"https://doi.org/10.1007/s12155-014-9480-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00250028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045457761",
"https://doi.org/10.1007/bf00250028"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13068-014-0179-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035594727",
"https://doi.org/10.1186/s13068-014-0179-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00690810",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049280755",
"https://doi.org/10.1007/bf00690810"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2008-9-7-r114",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012192441",
"https://doi.org/10.1186/gb-2008-9-7-r114"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00270772",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023892992",
"https://doi.org/10.1007/bf00270772"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00786004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026616776",
"https://doi.org/10.1007/bf00786004"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00409760",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000022321",
"https://doi.org/10.1007/bf00409760"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00253-014-6106-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017969398",
"https://doi.org/10.1007/s00253-014-6106-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13068-015-0260-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012747046",
"https://doi.org/10.1186/s13068-015-0260-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth1019",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009487848",
"https://doi.org/10.1038/nmeth1019"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02092026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018512746",
"https://doi.org/10.1007/bf02092026"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1477-5956-9-66",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006918755",
"https://doi.org/10.1186/1477-5956-9-66"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-05-31",
"datePublishedReg": "2016-05-31",
"description": "BackgroundClostridium acetobutylicum has been a focus of research because of its ability to produce high-value compounds that can be used as biofuels. Lignocellulose is a promising feedstock, but the lignin\u2013cellulose\u2013hemicellulose biomass complex requires chemical pre-treatment to yield fermentable saccharides, including cellulose-derived cellobiose, prior to bioproduction of acetone\u2013butanol\u2013ethanol (ABE) and hydrogen. Fermentation capability is limited by lignin and thus process optimization requires knowledge of lignin inhibition. The effects of lignin on cellular metabolism were evaluated for C. acetobutylicum grown on medium containing either cellobiose only or cellobiose plus lignin. Microscopy, gas chromatography and 8-plex iTRAQ-based quantitative proteomic technologies were applied to interrogate the effect of lignin on cellular morphology, fermentation and the proteome.ResultsOur results demonstrate that C. acetobutylicum has reduced performance for solvent production when lignin is present in the medium. Medium supplemented with 1\u00a0g\u00a0L\u22121 of lignin led to delay and decreased solvents production (ethanol; 0.47\u00a0g\u00a0L\u22121 for cellobiose and 0.27\u00a0g\u00a0L\u22121 for cellobiose plus lignin and butanol; 0.13\u00a0g\u00a0L\u22121 for cellobiose and 0.04\u00a0g\u00a0L\u22121 for cellobiose plus lignin) at 20 and 48\u00a0h, respectively, resulting in the accumulation of acetic acid and butyric acid. Of 583 identified proteins (FDR\u00a0<\u00a01\u00a0%), 328 proteins were quantified with at least two unique peptides. Up- or down-regulation of protein expression was determined by comparison of exponential and stationary phases of cellobiose in the presence and absence of lignin. Of relevance, glycolysis and fermentative pathways were mostly down-regulated, during exponential and stationary growth phases in presence of lignin. Moreover, proteins involved in DNA repair, transcription/translation and GTP/ATP-dependent activities were also significantly affected and these changes were associated with altered cell morphology.ConclusionsThis is the first comprehensive analysis of the cellular responses of C. acetobutylicum to lignin at metabolic and physiological levels. These data will enable targeted metabolic engineering strategies to optimize biofuel production from biomass by overcoming limitations imposed by the presence of lignin.",
"genre": "article",
"id": "sg:pub.10.1186/s13068-016-0523-0",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.3785490",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2765869",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2782727",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1429595",
"issn": [
"2731-3654"
],
"name": "Biotechnology for Biofuels and Bioproducts",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"keywords": [
"C. acetobutylicum",
"quantitative proteomic analysis",
"transcription/translation",
"ATP-dependent activity",
"metabolic engineering strategies",
"Clostridium acetobutylicum ATCC 824",
"quantitative proteomics technology",
"solvent production",
"stationary growth phase",
"acetobutylicum ATCC 824",
"biofuel production",
"altered cell morphology",
"high-value compounds",
"proteomic analysis",
"fermentative pathways",
"DNA repair",
"proteomic technologies",
"cellular metabolism",
"first comprehensive analysis",
"cellular responses",
"ATCC 824",
"fermentation capability",
"absence of lignin",
"unique peptides",
"presence of lignin",
"cellular morphology",
"cell morphology",
"growth phase",
"acetobutylicum",
"protein",
"protein expression",
"engineering strategies",
"physiological levels",
"proteome",
"comprehensive analysis",
"promising feedstock",
"stationary phase",
"ResultsOur results",
"butyric acid",
"production",
"glycolysis",
"bioproduction",
"regulation",
"pathway",
"acid",
"lignin",
"biomass",
"expression",
"cellobiose",
"metabolism",
"fermentation",
"fermentable saccharides",
"lignocellulose",
"accumulation",
"complexes",
"peptides",
"focus of research",
"inhibition",
"translation",
"morphology",
"presence",
"biofuels",
"acetic acid",
"repair",
"medium",
"activity",
"saccharides",
"absence",
"analysis",
"response",
"ability",
"microscopy",
"chromatography",
"levels",
"effect",
"compounds",
"changes",
"lignin inhibition",
"feedstock",
"relevance",
"strategies",
"knowledge",
"ethanol",
"gas chromatography",
"data",
"results",
"comparison",
"limitations",
"phase",
"focus",
"effect of lignin",
"influence",
"ConclusionsThis",
"research",
"influence of lignin",
"technology",
"capability",
"hydrogen",
"delay",
"optimization",
"performance"
],
"name": "Quantitative proteomic analysis of the influence of lignin on biofuel production by Clostridium acetobutylicum ATCC 824",
"pagination": "113",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1019016513"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s13068-016-0523-0"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"27247624"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s13068-016-0523-0",
"https://app.dimensions.ai/details/publication/pub.1019016513"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_685.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s13068-016-0523-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13068-016-0523-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13068-016-0523-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13068-016-0523-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13068-016-0523-0'
This table displays all metadata directly associated to this object as RDF triples.
279 TRIPLES
22 PREDICATES
144 URIs
119 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1186/s13068-016-0523-0 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0904 |
3 | ″ | ″ | anzsrc-for:10 |
4 | ″ | ″ | anzsrc-for:1003 |
5 | ″ | schema:author | N0d7bbb2eaaeb48e88f3d8d19834b144d |
6 | ″ | schema:citation | sg:pub.10.1007/bf00250028 |
7 | ″ | ″ | sg:pub.10.1007/bf00270772 |
8 | ″ | ″ | sg:pub.10.1007/bf00409760 |
9 | ″ | ″ | sg:pub.10.1007/bf00690810 |
10 | ″ | ″ | sg:pub.10.1007/bf00786004 |
11 | ″ | ″ | sg:pub.10.1007/bf02092026 |
12 | ″ | ″ | sg:pub.10.1007/s00253-014-6106-8 |
13 | ″ | ″ | sg:pub.10.1007/s12155-014-9480-2 |
14 | ″ | ″ | sg:pub.10.1038/nmeth1019 |
15 | ″ | ″ | sg:pub.10.1038/nrmicro1820 |
16 | ″ | ″ | sg:pub.10.1038/nrmicro2720 |
17 | ″ | ″ | sg:pub.10.1186/1477-5956-9-66 |
18 | ″ | ″ | sg:pub.10.1186/gb-2008-9-7-r114 |
19 | ″ | ″ | sg:pub.10.1186/s13068-014-0179-6 |
20 | ″ | ″ | sg:pub.10.1186/s13068-015-0260-9 |
21 | ″ | schema:datePublished | 2016-05-31 |
22 | ″ | schema:datePublishedReg | 2016-05-31 |
23 | ″ | schema:description | BackgroundClostridium acetobutylicum has been a focus of research because of its ability to produce high-value compounds that can be used as biofuels. Lignocellulose is a promising feedstock, but the lignin–cellulose–hemicellulose biomass complex requires chemical pre-treatment to yield fermentable saccharides, including cellulose-derived cellobiose, prior to bioproduction of acetone–butanol–ethanol (ABE) and hydrogen. Fermentation capability is limited by lignin and thus process optimization requires knowledge of lignin inhibition. The effects of lignin on cellular metabolism were evaluated for C. acetobutylicum grown on medium containing either cellobiose only or cellobiose plus lignin. Microscopy, gas chromatography and 8-plex iTRAQ-based quantitative proteomic technologies were applied to interrogate the effect of lignin on cellular morphology, fermentation and the proteome.ResultsOur results demonstrate that C. acetobutylicum has reduced performance for solvent production when lignin is present in the medium. Medium supplemented with 1 g L−1 of lignin led to delay and decreased solvents production (ethanol; 0.47 g L−1 for cellobiose and 0.27 g L−1 for cellobiose plus lignin and butanol; 0.13 g L−1 for cellobiose and 0.04 g L−1 for cellobiose plus lignin) at 20 and 48 h, respectively, resulting in the accumulation of acetic acid and butyric acid. Of 583 identified proteins (FDR < 1 %), 328 proteins were quantified with at least two unique peptides. Up- or down-regulation of protein expression was determined by comparison of exponential and stationary phases of cellobiose in the presence and absence of lignin. Of relevance, glycolysis and fermentative pathways were mostly down-regulated, during exponential and stationary growth phases in presence of lignin. Moreover, proteins involved in DNA repair, transcription/translation and GTP/ATP-dependent activities were also significantly affected and these changes were associated with altered cell morphology.ConclusionsThis is the first comprehensive analysis of the cellular responses of C. acetobutylicum to lignin at metabolic and physiological levels. These data will enable targeted metabolic engineering strategies to optimize biofuel production from biomass by overcoming limitations imposed by the presence of lignin. |
24 | ″ | schema:genre | article |
25 | ″ | schema:inLanguage | en |
26 | ″ | schema:isAccessibleForFree | true |
27 | ″ | schema:isPartOf | Nbdb8c6ba985344e8ac3e74868de69e51 |
28 | ″ | ″ | Ndd644f1f2bc645cc94c743fcaff05a65 |
29 | ″ | ″ | sg:journal.1429595 |
30 | ″ | schema:keywords | ATCC 824 |
31 | ″ | ″ | ATP-dependent activity |
32 | ″ | ″ | C. acetobutylicum |
33 | ″ | ″ | Clostridium acetobutylicum ATCC 824 |
34 | ″ | ″ | ConclusionsThis |
35 | ″ | ″ | DNA repair |
36 | ″ | ″ | ResultsOur results |
37 | ″ | ″ | ability |
38 | ″ | ″ | absence |
39 | ″ | ″ | absence of lignin |
40 | ″ | ″ | accumulation |
41 | ″ | ″ | acetic acid |
42 | ″ | ″ | acetobutylicum |
43 | ″ | ″ | acetobutylicum ATCC 824 |
44 | ″ | ″ | acid |
45 | ″ | ″ | activity |
46 | ″ | ″ | altered cell morphology |
47 | ″ | ″ | analysis |
48 | ″ | ″ | biofuel production |
49 | ″ | ″ | biofuels |
50 | ″ | ″ | biomass |
51 | ″ | ″ | bioproduction |
52 | ″ | ″ | butyric acid |
53 | ″ | ″ | capability |
54 | ″ | ″ | cell morphology |
55 | ″ | ″ | cellobiose |
56 | ″ | ″ | cellular metabolism |
57 | ″ | ″ | cellular morphology |
58 | ″ | ″ | cellular responses |
59 | ″ | ″ | changes |
60 | ″ | ″ | chromatography |
61 | ″ | ″ | comparison |
62 | ″ | ″ | complexes |
63 | ″ | ″ | compounds |
64 | ″ | ″ | comprehensive analysis |
65 | ″ | ″ | data |
66 | ″ | ″ | delay |
67 | ″ | ″ | effect |
68 | ″ | ″ | effect of lignin |
69 | ″ | ″ | engineering strategies |
70 | ″ | ″ | ethanol |
71 | ″ | ″ | expression |
72 | ″ | ″ | feedstock |
73 | ″ | ″ | fermentable saccharides |
74 | ″ | ″ | fermentation |
75 | ″ | ″ | fermentation capability |
76 | ″ | ″ | fermentative pathways |
77 | ″ | ″ | first comprehensive analysis |
78 | ″ | ″ | focus |
79 | ″ | ″ | focus of research |
80 | ″ | ″ | gas chromatography |
81 | ″ | ″ | glycolysis |
82 | ″ | ″ | growth phase |
83 | ″ | ″ | high-value compounds |
84 | ″ | ″ | hydrogen |
85 | ″ | ″ | influence |
86 | ″ | ″ | influence of lignin |
87 | ″ | ″ | inhibition |
88 | ″ | ″ | knowledge |
89 | ″ | ″ | levels |
90 | ″ | ″ | lignin |
91 | ″ | ″ | lignin inhibition |
92 | ″ | ″ | lignocellulose |
93 | ″ | ″ | limitations |
94 | ″ | ″ | medium |
95 | ″ | ″ | metabolic engineering strategies |
96 | ″ | ″ | metabolism |
97 | ″ | ″ | microscopy |
98 | ″ | ″ | morphology |
99 | ″ | ″ | optimization |
100 | ″ | ″ | pathway |
101 | ″ | ″ | peptides |
102 | ″ | ″ | performance |
103 | ″ | ″ | phase |
104 | ″ | ″ | physiological levels |
105 | ″ | ″ | presence |
106 | ″ | ″ | presence of lignin |
107 | ″ | ″ | production |
108 | ″ | ″ | promising feedstock |
109 | ″ | ″ | protein |
110 | ″ | ″ | protein expression |
111 | ″ | ″ | proteome |
112 | ″ | ″ | proteomic analysis |
113 | ″ | ″ | proteomic technologies |
114 | ″ | ″ | quantitative proteomic analysis |
115 | ″ | ″ | quantitative proteomics technology |
116 | ″ | ″ | regulation |
117 | ″ | ″ | relevance |
118 | ″ | ″ | repair |
119 | ″ | ″ | research |
120 | ″ | ″ | response |
121 | ″ | ″ | results |
122 | ″ | ″ | saccharides |
123 | ″ | ″ | solvent production |
124 | ″ | ″ | stationary growth phase |
125 | ″ | ″ | stationary phase |
126 | ″ | ″ | strategies |
127 | ″ | ″ | technology |
128 | ″ | ″ | transcription/translation |
129 | ″ | ″ | translation |
130 | ″ | ″ | unique peptides |
131 | ″ | schema:name | Quantitative proteomic analysis of the influence of lignin on biofuel production by Clostridium acetobutylicum ATCC 824 |
132 | ″ | schema:pagination | 113 |
133 | ″ | schema:productId | N66ab22427f4342b98cebc5d2c765e012 |
134 | ″ | ″ | Nbc710606c8954371908086c620d6b324 |
135 | ″ | ″ | Nd482780563454e1e979cce0796e7daba |
136 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019016513 |
137 | ″ | ″ | https://doi.org/10.1186/s13068-016-0523-0 |
138 | ″ | schema:sdDatePublished | 2022-05-20T07:31 |
139 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
140 | ″ | schema:sdPublisher | N3698e980fade4ec5b7b0a16a80c3182b |
141 | ″ | schema:url | https://doi.org/10.1186/s13068-016-0523-0 |
142 | ″ | sgo:license | sg:explorer/license/ |
143 | ″ | sgo:sdDataset | articles |
144 | ″ | rdf:type | schema:ScholarlyArticle |
145 | N06d21707e59148cda3b87262c58ff42c | rdf:first | sg:person.014575045247.68 |
146 | ″ | rdf:rest | N79c04c3da79a4361941b0c8cead729dc |
147 | N0d7bbb2eaaeb48e88f3d8d19834b144d | rdf:first | sg:person.01200755421.54 |
148 | ″ | rdf:rest | N54f87f64121f420fb1381d32fcf4e1c4 |
149 | N2fcb9583772b4543b97927139010eb42 | rdf:first | sg:person.01260503220.66 |
150 | ″ | rdf:rest | N06d21707e59148cda3b87262c58ff42c |
151 | N3698e980fade4ec5b7b0a16a80c3182b | schema:name | Springer Nature - SN SciGraph project |
152 | ″ | rdf:type | schema:Organization |
153 | N54f87f64121f420fb1381d32fcf4e1c4 | rdf:first | sg:person.01352120464.73 |
154 | ″ | rdf:rest | N2fcb9583772b4543b97927139010eb42 |
155 | N66ab22427f4342b98cebc5d2c765e012 | schema:name | pubmed_id |
156 | ″ | schema:value | 27247624 |
157 | ″ | rdf:type | schema:PropertyValue |
158 | N79c04c3da79a4361941b0c8cead729dc | rdf:first | sg:person.01327124212.11 |
159 | ″ | rdf:rest | N86c469206aec43d18145e8662c248584 |
160 | N86c469206aec43d18145e8662c248584 | rdf:first | sg:person.01372352200.12 |
161 | ″ | rdf:rest | rdf:nil |
162 | Nbc710606c8954371908086c620d6b324 | schema:name | dimensions_id |
163 | ″ | schema:value | pub.1019016513 |
164 | ″ | rdf:type | schema:PropertyValue |
165 | Nbdb8c6ba985344e8ac3e74868de69e51 | schema:issueNumber | 1 |
166 | ″ | rdf:type | schema:PublicationIssue |
167 | Nd482780563454e1e979cce0796e7daba | schema:name | doi |
168 | ″ | schema:value | 10.1186/s13068-016-0523-0 |
169 | ″ | rdf:type | schema:PropertyValue |
170 | Ndd644f1f2bc645cc94c743fcaff05a65 | schema:volumeNumber | 9 |
171 | ″ | rdf:type | schema:PublicationVolume |
172 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
173 | ″ | schema:name | Engineering |
174 | ″ | rdf:type | schema:DefinedTerm |
175 | anzsrc-for:0904 | schema:inDefinedTermSet | anzsrc-for: |
176 | ″ | schema:name | Chemical Engineering |
177 | ″ | rdf:type | schema:DefinedTerm |
178 | anzsrc-for:10 | schema:inDefinedTermSet | anzsrc-for: |
179 | ″ | schema:name | Technology |
180 | ″ | rdf:type | schema:DefinedTerm |
181 | anzsrc-for:1003 | schema:inDefinedTermSet | anzsrc-for: |
182 | ″ | schema:name | Industrial Biotechnology |
183 | ″ | rdf:type | schema:DefinedTerm |
184 | sg:grant.2765869 | http://pending.schema.org/fundedItem | sg:pub.10.1186/s13068-016-0523-0 |
185 | ″ | rdf:type | schema:MonetaryGrant |
186 | sg:grant.2782727 | http://pending.schema.org/fundedItem | sg:pub.10.1186/s13068-016-0523-0 |
187 | ″ | rdf:type | schema:MonetaryGrant |
188 | sg:grant.3785490 | http://pending.schema.org/fundedItem | sg:pub.10.1186/s13068-016-0523-0 |
189 | ″ | rdf:type | schema:MonetaryGrant |
190 | sg:journal.1429595 | schema:issn | 2731-3654 |
191 | ″ | schema:name | Biotechnology for Biofuels and Bioproducts |
192 | ″ | schema:publisher | Springer Nature |
193 | ″ | rdf:type | schema:Periodical |
194 | sg:person.01200755421.54 | schema:affiliation | grid-institutes:grid.11835.3e |
195 | ″ | schema:familyName | Raut |
196 | ″ | schema:givenName | Mahendra P. |
197 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200755421.54 |
198 | ″ | rdf:type | schema:Person |
199 | sg:person.01260503220.66 | schema:affiliation | grid-institutes:grid.11835.3e |
200 | ″ | schema:familyName | Pham |
201 | ″ | schema:givenName | Trong K. |
202 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260503220.66 |
203 | ″ | rdf:type | schema:Person |
204 | sg:person.01327124212.11 | schema:affiliation | grid-institutes:grid.36823.3c |
205 | ″ | schema:familyName | Noirel |
206 | ″ | schema:givenName | Josselin |
207 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327124212.11 |
208 | ″ | rdf:type | schema:Person |
209 | sg:person.01352120464.73 | schema:affiliation | grid-institutes:grid.11835.3e |
210 | ″ | schema:familyName | Couto |
211 | ″ | schema:givenName | Narciso |
212 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352120464.73 |
213 | ″ | rdf:type | schema:Person |
214 | sg:person.01372352200.12 | schema:affiliation | grid-institutes:grid.1006.7 |
215 | ″ | schema:familyName | Wright |
216 | ″ | schema:givenName | Phillip C. |
217 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372352200.12 |
218 | ″ | rdf:type | schema:Person |
219 | sg:person.014575045247.68 | schema:affiliation | grid-institutes:grid.11835.3e |
220 | ″ | schema:familyName | Evans |
221 | ″ | schema:givenName | Caroline |
222 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014575045247.68 |
223 | ″ | rdf:type | schema:Person |
224 | sg:pub.10.1007/bf00250028 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045457761 |
225 | ″ | ″ | https://doi.org/10.1007/bf00250028 |
226 | ″ | rdf:type | schema:CreativeWork |
227 | sg:pub.10.1007/bf00270772 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023892992 |
228 | ″ | ″ | https://doi.org/10.1007/bf00270772 |
229 | ″ | rdf:type | schema:CreativeWork |
230 | sg:pub.10.1007/bf00409760 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000022321 |
231 | ″ | ″ | https://doi.org/10.1007/bf00409760 |
232 | ″ | rdf:type | schema:CreativeWork |
233 | sg:pub.10.1007/bf00690810 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049280755 |
234 | ″ | ″ | https://doi.org/10.1007/bf00690810 |
235 | ″ | rdf:type | schema:CreativeWork |
236 | sg:pub.10.1007/bf00786004 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026616776 |
237 | ″ | ″ | https://doi.org/10.1007/bf00786004 |
238 | ″ | rdf:type | schema:CreativeWork |
239 | sg:pub.10.1007/bf02092026 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018512746 |
240 | ″ | ″ | https://doi.org/10.1007/bf02092026 |
241 | ″ | rdf:type | schema:CreativeWork |
242 | sg:pub.10.1007/s00253-014-6106-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017969398 |
243 | ″ | ″ | https://doi.org/10.1007/s00253-014-6106-8 |
244 | ″ | rdf:type | schema:CreativeWork |
245 | sg:pub.10.1007/s12155-014-9480-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001213818 |
246 | ″ | ″ | https://doi.org/10.1007/s12155-014-9480-2 |
247 | ″ | rdf:type | schema:CreativeWork |
248 | sg:pub.10.1038/nmeth1019 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1009487848 |
249 | ″ | ″ | https://doi.org/10.1038/nmeth1019 |
250 | ″ | rdf:type | schema:CreativeWork |
251 | sg:pub.10.1038/nrmicro1820 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051194311 |
252 | ″ | ″ | https://doi.org/10.1038/nrmicro1820 |
253 | ″ | rdf:type | schema:CreativeWork |
254 | sg:pub.10.1038/nrmicro2720 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023908307 |
255 | ″ | ″ | https://doi.org/10.1038/nrmicro2720 |
256 | ″ | rdf:type | schema:CreativeWork |
257 | sg:pub.10.1186/1477-5956-9-66 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006918755 |
258 | ″ | ″ | https://doi.org/10.1186/1477-5956-9-66 |
259 | ″ | rdf:type | schema:CreativeWork |
260 | sg:pub.10.1186/gb-2008-9-7-r114 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012192441 |
261 | ″ | ″ | https://doi.org/10.1186/gb-2008-9-7-r114 |
262 | ″ | rdf:type | schema:CreativeWork |
263 | sg:pub.10.1186/s13068-014-0179-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035594727 |
264 | ″ | ″ | https://doi.org/10.1186/s13068-014-0179-6 |
265 | ″ | rdf:type | schema:CreativeWork |
266 | sg:pub.10.1186/s13068-015-0260-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012747046 |
267 | ″ | ″ | https://doi.org/10.1186/s13068-015-0260-9 |
268 | ″ | rdf:type | schema:CreativeWork |
269 | grid-institutes:grid.1006.7 | schema:alternateName | School of Chemical Engineering and Advanced Materials, Faculty of Science, Agriculture & Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK |
270 | ″ | schema:name | School of Chemical Engineering and Advanced Materials, Faculty of Science, Agriculture & Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK |
271 | ″ | ″ | The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK |
272 | ″ | rdf:type | schema:Organization |
273 | grid-institutes:grid.11835.3e | schema:alternateName | The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK |
274 | ″ | schema:name | The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK |
275 | ″ | rdf:type | schema:Organization |
276 | grid-institutes:grid.36823.3c | schema:alternateName | Chaire de Bioinformatique, LGBA, Conservatoire National Des Arts Et Métiers, 75003, Paris, France |
277 | ″ | schema:name | Chaire de Bioinformatique, LGBA, Conservatoire National Des Arts Et Métiers, 75003, Paris, France |
278 | ″ | ″ | The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK |
279 | ″ | rdf:type | schema:Organization |