Anaerobic detoxification of acetic acid in a thermophilic ethanologen View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

A Joe Shaw, Bethany B Miller, Stephen R Rogers, William R Kenealy, Alex Meola, Ashwini Bhandiwad, W Ryan Sillers, Indraneel Shikhare, David A Hogsett, Christopher D Herring

ABSTRACT

BACKGROUND: The liberation of acetate from hemicellulose negatively impacts fermentations of cellulosic biomass, limiting the concentrations of substrate that can be effectively processed. Solvent-producing bacteria have the capacity to convert acetate to the less toxic product acetone, but to the best of our knowledge, this trait has not been transferred to an organism that produces ethanol at high yield. RESULTS: We have engineered a five-step metabolic pathway to convert acetic acid to acetone in the thermophilic anaerobe Thermoanaerobacterium saccharolyticum. The first steps of the pathway, a reversible conversion of acetate to acetyl-CoA, are catalyzed by the native T. saccharolyticum enzymes acetate kinase and phosphotransacetylase. ack and pta normally divert 30% of catabolic carbon flux to acetic acid; however, their re-introduction in evolved ethanologen strains resulted in virtually no acetic acid production. Conversion between acetic acid and acetyl-CoA remained active, as evidenced by rapid (13)C label transfer from exogenous acetate to ethanol. Genomic re-sequencing of six independently evolved ethanologen strains showed convergent mutations in the hfs hydrogenase gene cluster, which when transferred to wildtype T. saccharolyticum conferred a low acid production phenotype. Thus, the mutated hfs genes effectively separate acetic acid production and consumption from central metabolism, despite their intersecting at the common intermediate acetyl-CoA. To drive acetic acid conversion to a less inhibitory product, the enzymes thiolase, acetoacetate:acetate CoA-transferase, and acetoacetate decarboxylase were assembled in T. saccharolyticum with genes from thermophilic donor organisms that do not natively produce acetone. The resultant strain converted acetic acid to acetone and ethanol while maintaining a metabolic yield of 0.50 g ethanol per gram carbohydrate. CONCLUSIONS: Conversion of acetic acid to acetone results in improved ethanol productivity and titer and is an attractive low-cost solution to acetic acid inhibition. More... »

PAGES

75

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13068-015-0257-4

DOI

http://dx.doi.org/10.1186/s13068-015-0257-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008095604

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27279899


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Mascoma Corporation, 03766, Lebanon, NH, USA", 
            "Novogy Inc., 85 Bolton St, 02140, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaw", 
        "givenName": "A Joe", 
        "id": "sg:person.01071155011.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071155011.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mascoma Corporation, 03766, Lebanon, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Bethany B", 
        "id": "sg:person.01214340007.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214340007.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mascoma Corporation, 03766, Lebanon, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rogers", 
        "givenName": "Stephen R", 
        "id": "sg:person.01321632011.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321632011.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Verdezyne (United States)", 
          "id": "https://www.grid.ac/institutes/grid.439009.7", 
          "name": [
            "Mascoma Corporation, 03766, Lebanon, NH, USA", 
            "Verdezyne Inc., 2715 Loker Avenue West, 92010, Carlsbad, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kenealy", 
        "givenName": "William R", 
        "id": "sg:person.01210075714.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210075714.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mascoma Corporation, 03766, Lebanon, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meola", 
        "givenName": "Alex", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Energy Biosciences Institute", 
          "id": "https://www.grid.ac/institutes/grid.468452.9", 
          "name": [
            "Thayer School of Engineering, Dartmouth College, 03755, Hanover, NH, USA", 
            "Energy Biosciences Institute, 2151 Berkeley Way, 94704, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhandiwad", 
        "givenName": "Ashwini", 
        "id": "sg:person.0613225712.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613225712.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mascoma Corporation, 03766, Lebanon, NH, USA", 
            "Myriant Corporation, 66 Cummings Park, 01801, Woburn, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sillers", 
        "givenName": "W Ryan", 
        "id": "sg:person.0754547217.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754547217.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mascoma Corporation, 03766, Lebanon, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shikhare", 
        "givenName": "Indraneel", 
        "id": "sg:person.01020312057.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020312057.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mascoma Corporation, 03766, Lebanon, NH, USA", 
            "OPX Biotechnologies Inc., 2425 55th Street, 80301, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hogsett", 
        "givenName": "David A", 
        "id": "sg:person.0726774666.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726774666.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dartmouth College", 
          "id": "https://www.grid.ac/institutes/grid.254880.3", 
          "name": [
            "Mascoma Corporation, 03766, Lebanon, NH, USA", 
            "Thayer School of Engineering, Dartmouth College, 03755, Hanover, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herring", 
        "givenName": "Christopher D", 
        "id": "sg:person.0625500004.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625500004.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00253-004-1575-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001160178", 
          "https://doi.org/10.1007/s00253-004-1575-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.plasmid.2009.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002342734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0141-0229(98)00101-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005685902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.00497-09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008672964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.00402-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009516792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-8524(99)00161-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013857207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0801266105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014549313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.01731-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019546806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1102444108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020659715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02788797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020920366", 
          "https://doi.org/10.1007/bf02788797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02788797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020920366", 
          "https://doi.org/10.1007/bf02788797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10295-010-0932-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022338238", 
          "https://doi.org/10.1007/s10295-010-0932-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2003.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023574453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-8524(99)00113-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024086169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01026107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026002727", 
          "https://doi.org/10.1007/bf01026107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2012.09.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028377220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2011.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028856760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-0229(95)00241-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031128016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp9901062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033215922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02920133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036069107", 
          "https://doi.org/10.1007/bf02920133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02920133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036069107", 
          "https://doi.org/10.1007/bf02920133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.1986.tb01194.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036791738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.1986.tb01194.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036791738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.01382-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039943422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00248-011-9922-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045369498", 
          "https://doi.org/10.1007/s00248-011-9922-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tim.2006.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047249579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/16.9.2179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047820265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2509(97)00080-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048611831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mmbr.69.1.12-50.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049605303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie0201056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055596106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie0201056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055596106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-130-1-103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060365095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.032771-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060394676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.032771-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060394676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.177.10.2878-2886.1995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062723760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079810421", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080030228", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083024126", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: The liberation of acetate from hemicellulose negatively impacts fermentations of cellulosic biomass, limiting the concentrations of substrate that can be effectively processed. Solvent-producing bacteria have the capacity to convert acetate to the less toxic product acetone, but to the best of our knowledge, this trait has not been transferred to an organism that produces ethanol at high yield.\nRESULTS: We have engineered a five-step metabolic pathway to convert acetic acid to acetone in the thermophilic anaerobe Thermoanaerobacterium saccharolyticum. The first steps of the pathway, a reversible conversion of acetate to acetyl-CoA, are catalyzed by the native T. saccharolyticum enzymes acetate kinase and phosphotransacetylase. ack and pta normally divert 30% of catabolic carbon flux to acetic acid; however, their re-introduction in evolved ethanologen strains resulted in virtually no acetic acid production. Conversion between acetic acid and acetyl-CoA remained active, as evidenced by rapid (13)C label transfer from exogenous acetate to ethanol. Genomic re-sequencing of six independently evolved ethanologen strains showed convergent mutations in the hfs hydrogenase gene cluster, which when transferred to wildtype T. saccharolyticum conferred a low acid production phenotype. Thus, the mutated hfs genes effectively separate acetic acid production and consumption from central metabolism, despite their intersecting at the common intermediate acetyl-CoA. To drive acetic acid conversion to a less inhibitory product, the enzymes thiolase, acetoacetate:acetate CoA-transferase, and acetoacetate decarboxylase were assembled in T. saccharolyticum with genes from thermophilic donor organisms that do not natively produce acetone. The resultant strain converted acetic acid to acetone and ethanol while maintaining a metabolic yield of 0.50\u00a0g ethanol per gram carbohydrate.\nCONCLUSIONS: Conversion of acetic acid to acetone results in improved ethanol productivity and titer and is an attractive low-cost solution to acetic acid inhibition.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13068-015-0257-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039046", 
        "issn": [
          "1754-6834"
        ], 
        "name": "Biotechnology for Biofuels", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Anaerobic detoxification of acetic acid in a thermophilic ethanologen", 
    "pagination": "75", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "26915e72047e46f475c4cc00dedcbf8b8feaa0405b49febafd0187ab8a37860c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27279899"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101316935"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13068-015-0257-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008095604"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13068-015-0257-4", 
      "https://app.dimensions.ai/details/publication/pub.1008095604"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88251_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs13068-015-0257-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13068-015-0257-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13068-015-0257-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13068-015-0257-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13068-015-0257-4'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13068-015-0257-4 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N088418d537de451da4a89e5447444114
4 schema:citation sg:pub.10.1007/bf01026107
5 sg:pub.10.1007/bf02788797
6 sg:pub.10.1007/bf02920133
7 sg:pub.10.1007/s00248-011-9922-8
8 sg:pub.10.1007/s00253-004-1575-9
9 sg:pub.10.1007/s10295-010-0932-1
10 https://app.dimensions.ai/details/publication/pub.1079810421
11 https://app.dimensions.ai/details/publication/pub.1080030228
12 https://app.dimensions.ai/details/publication/pub.1083024126
13 https://doi.org/10.1016/0141-0229(95)00241-3
14 https://doi.org/10.1016/j.biortech.2003.10.005
15 https://doi.org/10.1016/j.biortech.2012.09.109
16 https://doi.org/10.1016/j.copbio.2011.01.011
17 https://doi.org/10.1016/j.plasmid.2009.05.002
18 https://doi.org/10.1016/j.tim.2006.04.001
19 https://doi.org/10.1016/s0009-2509(97)00080-8
20 https://doi.org/10.1016/s0141-0229(98)00101-x
21 https://doi.org/10.1016/s0960-8524(99)00113-3
22 https://doi.org/10.1016/s0960-8524(99)00161-3
23 https://doi.org/10.1021/bp9901062
24 https://doi.org/10.1021/ie0201056
25 https://doi.org/10.1073/pnas.0801266105
26 https://doi.org/10.1073/pnas.1102444108
27 https://doi.org/10.1093/emboj/16.9.2179
28 https://doi.org/10.1099/00221287-130-1-103
29 https://doi.org/10.1099/mic.0.032771-0
30 https://doi.org/10.1111/j.1574-6968.1986.tb01194.x
31 https://doi.org/10.1128/aem.00402-10
32 https://doi.org/10.1128/aem.01731-10
33 https://doi.org/10.1128/jb.00497-09
34 https://doi.org/10.1128/jb.01382-07
35 https://doi.org/10.1128/jb.177.10.2878-2886.1995
36 https://doi.org/10.1128/mmbr.69.1.12-50.2005
37 schema:datePublished 2015-12
38 schema:datePublishedReg 2015-12-01
39 schema:description BACKGROUND: The liberation of acetate from hemicellulose negatively impacts fermentations of cellulosic biomass, limiting the concentrations of substrate that can be effectively processed. Solvent-producing bacteria have the capacity to convert acetate to the less toxic product acetone, but to the best of our knowledge, this trait has not been transferred to an organism that produces ethanol at high yield. RESULTS: We have engineered a five-step metabolic pathway to convert acetic acid to acetone in the thermophilic anaerobe Thermoanaerobacterium saccharolyticum. The first steps of the pathway, a reversible conversion of acetate to acetyl-CoA, are catalyzed by the native T. saccharolyticum enzymes acetate kinase and phosphotransacetylase. ack and pta normally divert 30% of catabolic carbon flux to acetic acid; however, their re-introduction in evolved ethanologen strains resulted in virtually no acetic acid production. Conversion between acetic acid and acetyl-CoA remained active, as evidenced by rapid (13)C label transfer from exogenous acetate to ethanol. Genomic re-sequencing of six independently evolved ethanologen strains showed convergent mutations in the hfs hydrogenase gene cluster, which when transferred to wildtype T. saccharolyticum conferred a low acid production phenotype. Thus, the mutated hfs genes effectively separate acetic acid production and consumption from central metabolism, despite their intersecting at the common intermediate acetyl-CoA. To drive acetic acid conversion to a less inhibitory product, the enzymes thiolase, acetoacetate:acetate CoA-transferase, and acetoacetate decarboxylase were assembled in T. saccharolyticum with genes from thermophilic donor organisms that do not natively produce acetone. The resultant strain converted acetic acid to acetone and ethanol while maintaining a metabolic yield of 0.50 g ethanol per gram carbohydrate. CONCLUSIONS: Conversion of acetic acid to acetone results in improved ethanol productivity and titer and is an attractive low-cost solution to acetic acid inhibition.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf Ncb92e04df8184442a4267d55d16da687
44 Nd914b898faff4f3eb8b359fbe373f2a2
45 sg:journal.1039046
46 schema:name Anaerobic detoxification of acetic acid in a thermophilic ethanologen
47 schema:pagination 75
48 schema:productId N53ffcc9ee5394fc5ba62e19a346d2dd5
49 N96eb294932a64826ac1b58b20b701235
50 Nc14b3b5021354a74871c886d18536e26
51 Nd3be257ba6d743f88f1b46f41e037676
52 Neae869feee2445c7ad17d6625cf555cb
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008095604
54 https://doi.org/10.1186/s13068-015-0257-4
55 schema:sdDatePublished 2019-04-11T13:11
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N1530f18e215b4e84b5a8a8330fe62b03
58 schema:url http://link.springer.com/10.1186%2Fs13068-015-0257-4
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N088418d537de451da4a89e5447444114 rdf:first sg:person.01071155011.05
63 rdf:rest Nc8aaefc84f0a4ca299d299eba893b94d
64 N10e0e3f9e6174a67a799a0ca319c0200 schema:affiliation Nc578d6fe48084ce79dcf999fa1d56483
65 schema:familyName Meola
66 schema:givenName Alex
67 rdf:type schema:Person
68 N11f181b399f44d5c979b406549f11d92 rdf:first sg:person.0726774666.91
69 rdf:rest N81141f1b4a514d12b2e69931cb66be7a
70 N1530f18e215b4e84b5a8a8330fe62b03 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N1a46bd997e0f4c479d51bd27b1f9a003 rdf:first sg:person.01321632011.42
73 rdf:rest Nbe3ab46dda9f4f4597d3d63bac650439
74 N25500a5b3deb45dfb82e4f77a649797f schema:name Mascoma Corporation, 03766, Lebanon, NH, USA
75 OPX Biotechnologies Inc., 2425 55th Street, 80301, Boulder, CO, USA
76 rdf:type schema:Organization
77 N53ffcc9ee5394fc5ba62e19a346d2dd5 schema:name dimensions_id
78 schema:value pub.1008095604
79 rdf:type schema:PropertyValue
80 N5bff09e5844a4834bbb10336236c639d schema:name Mascoma Corporation, 03766, Lebanon, NH, USA
81 Myriant Corporation, 66 Cummings Park, 01801, Woburn, MA, USA
82 rdf:type schema:Organization
83 N663c7c51d2ae47e0b1ec1c25d54a6c4d rdf:first sg:person.01020312057.35
84 rdf:rest N11f181b399f44d5c979b406549f11d92
85 N78deca6435394215b39076f3ba1a209b rdf:first sg:person.0613225712.68
86 rdf:rest Nce720d4d54444f72abe4d874073b641e
87 N81141f1b4a514d12b2e69931cb66be7a rdf:first sg:person.0625500004.75
88 rdf:rest rdf:nil
89 N8b443e081d8d439c9f6708419e18a2ab schema:name Mascoma Corporation, 03766, Lebanon, NH, USA
90 rdf:type schema:Organization
91 N9079aee840984e29999b8eaa0770b89c schema:name Mascoma Corporation, 03766, Lebanon, NH, USA
92 rdf:type schema:Organization
93 N96eb294932a64826ac1b58b20b701235 schema:name doi
94 schema:value 10.1186/s13068-015-0257-4
95 rdf:type schema:PropertyValue
96 Nb71410849cda4b6bbe6ad607d6e27714 schema:name Mascoma Corporation, 03766, Lebanon, NH, USA
97 rdf:type schema:Organization
98 Nbe3ab46dda9f4f4597d3d63bac650439 rdf:first sg:person.01210075714.49
99 rdf:rest Nc064ec98d87e477ab9267be75cf4026f
100 Nc064ec98d87e477ab9267be75cf4026f rdf:first N10e0e3f9e6174a67a799a0ca319c0200
101 rdf:rest N78deca6435394215b39076f3ba1a209b
102 Nc14b3b5021354a74871c886d18536e26 schema:name readcube_id
103 schema:value 26915e72047e46f475c4cc00dedcbf8b8feaa0405b49febafd0187ab8a37860c
104 rdf:type schema:PropertyValue
105 Nc578d6fe48084ce79dcf999fa1d56483 schema:name Mascoma Corporation, 03766, Lebanon, NH, USA
106 rdf:type schema:Organization
107 Nc8aaefc84f0a4ca299d299eba893b94d rdf:first sg:person.01214340007.29
108 rdf:rest N1a46bd997e0f4c479d51bd27b1f9a003
109 Ncb92e04df8184442a4267d55d16da687 schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 Nce720d4d54444f72abe4d874073b641e rdf:first sg:person.0754547217.38
112 rdf:rest N663c7c51d2ae47e0b1ec1c25d54a6c4d
113 Nd3be257ba6d743f88f1b46f41e037676 schema:name nlm_unique_id
114 schema:value 101316935
115 rdf:type schema:PropertyValue
116 Nd914b898faff4f3eb8b359fbe373f2a2 schema:volumeNumber 8
117 rdf:type schema:PublicationVolume
118 Neae869feee2445c7ad17d6625cf555cb schema:name pubmed_id
119 schema:value 27279899
120 rdf:type schema:PropertyValue
121 Nf9cb14b95bc447a4acd236f30ec403a4 schema:name Mascoma Corporation, 03766, Lebanon, NH, USA
122 Novogy Inc., 85 Bolton St, 02140, Cambridge, MA, USA
123 rdf:type schema:Organization
124 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
125 schema:name Biological Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
128 schema:name Genetics
129 rdf:type schema:DefinedTerm
130 sg:journal.1039046 schema:issn 1754-6834
131 schema:name Biotechnology for Biofuels
132 rdf:type schema:Periodical
133 sg:person.01020312057.35 schema:affiliation N9079aee840984e29999b8eaa0770b89c
134 schema:familyName Shikhare
135 schema:givenName Indraneel
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020312057.35
137 rdf:type schema:Person
138 sg:person.01071155011.05 schema:affiliation Nf9cb14b95bc447a4acd236f30ec403a4
139 schema:familyName Shaw
140 schema:givenName A Joe
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071155011.05
142 rdf:type schema:Person
143 sg:person.01210075714.49 schema:affiliation https://www.grid.ac/institutes/grid.439009.7
144 schema:familyName Kenealy
145 schema:givenName William R
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210075714.49
147 rdf:type schema:Person
148 sg:person.01214340007.29 schema:affiliation N8b443e081d8d439c9f6708419e18a2ab
149 schema:familyName Miller
150 schema:givenName Bethany B
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214340007.29
152 rdf:type schema:Person
153 sg:person.01321632011.42 schema:affiliation Nb71410849cda4b6bbe6ad607d6e27714
154 schema:familyName Rogers
155 schema:givenName Stephen R
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321632011.42
157 rdf:type schema:Person
158 sg:person.0613225712.68 schema:affiliation https://www.grid.ac/institutes/grid.468452.9
159 schema:familyName Bhandiwad
160 schema:givenName Ashwini
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613225712.68
162 rdf:type schema:Person
163 sg:person.0625500004.75 schema:affiliation https://www.grid.ac/institutes/grid.254880.3
164 schema:familyName Herring
165 schema:givenName Christopher D
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625500004.75
167 rdf:type schema:Person
168 sg:person.0726774666.91 schema:affiliation N25500a5b3deb45dfb82e4f77a649797f
169 schema:familyName Hogsett
170 schema:givenName David A
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726774666.91
172 rdf:type schema:Person
173 sg:person.0754547217.38 schema:affiliation N5bff09e5844a4834bbb10336236c639d
174 schema:familyName Sillers
175 schema:givenName W Ryan
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754547217.38
177 rdf:type schema:Person
178 sg:pub.10.1007/bf01026107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026002727
179 https://doi.org/10.1007/bf01026107
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/bf02788797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020920366
182 https://doi.org/10.1007/bf02788797
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/bf02920133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036069107
185 https://doi.org/10.1007/bf02920133
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s00248-011-9922-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045369498
188 https://doi.org/10.1007/s00248-011-9922-8
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s00253-004-1575-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001160178
191 https://doi.org/10.1007/s00253-004-1575-9
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s10295-010-0932-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022338238
194 https://doi.org/10.1007/s10295-010-0932-1
195 rdf:type schema:CreativeWork
196 https://app.dimensions.ai/details/publication/pub.1079810421 schema:CreativeWork
197 https://app.dimensions.ai/details/publication/pub.1080030228 schema:CreativeWork
198 https://app.dimensions.ai/details/publication/pub.1083024126 schema:CreativeWork
199 https://doi.org/10.1016/0141-0229(95)00241-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031128016
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.biortech.2003.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023574453
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.biortech.2012.09.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028377220
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.copbio.2011.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028856760
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.plasmid.2009.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002342734
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.tim.2006.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047249579
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/s0009-2509(97)00080-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048611831
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/s0141-0229(98)00101-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005685902
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0960-8524(99)00113-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024086169
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/s0960-8524(99)00161-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013857207
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1021/bp9901062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033215922
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1021/ie0201056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055596106
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1073/pnas.0801266105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014549313
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1073/pnas.1102444108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020659715
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/emboj/16.9.2179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047820265
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1099/00221287-130-1-103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060365095
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1099/mic.0.032771-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060394676
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1111/j.1574-6968.1986.tb01194.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036791738
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1128/aem.00402-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009516792
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1128/aem.01731-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019546806
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1128/jb.00497-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008672964
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1128/jb.01382-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039943422
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1128/jb.177.10.2878-2886.1995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062723760
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1128/mmbr.69.1.12-50.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049605303
246 rdf:type schema:CreativeWork
247 https://www.grid.ac/institutes/grid.254880.3 schema:alternateName Dartmouth College
248 schema:name Mascoma Corporation, 03766, Lebanon, NH, USA
249 Thayer School of Engineering, Dartmouth College, 03755, Hanover, NH, USA
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.439009.7 schema:alternateName Verdezyne (United States)
252 schema:name Mascoma Corporation, 03766, Lebanon, NH, USA
253 Verdezyne Inc., 2715 Loker Avenue West, 92010, Carlsbad, CA, USA
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.468452.9 schema:alternateName Energy Biosciences Institute
256 schema:name Energy Biosciences Institute, 2151 Berkeley Way, 94704, Berkeley, CA, USA
257 Thayer School of Engineering, Dartmouth College, 03755, Hanover, NH, USA
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...