Consolidated bioprocessing performance of Thermoanaerobacterium thermosaccharolyticum M18 on fungal pretreated cornstalk for enhanced hydrogen production View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Lei Zhao, Guang-Li Cao, Ai-Jie Wang, Hong-Yu Ren, Kun Zhang, Nan-Qi Ren

ABSTRACT

BACKGROUND: Biological hydrogen production from lignocellulosic biomass shows great potential as a promising alternative to conventional hydrogen production methods, such as electrolysis of water and coal gasification. Currently, most researches on biohydrogen production from lignocellulose concentrate on consolidated bioprocessing, which has the advantages of simpler operation and lower cost over processes featuring dedicated cellulase production. However, the recalcitrance of the lignin structure induces a low cellulase activity, making the carbohydrates in the hetero-matrix more unapproachable. Pretreatment of lignocellulosic biomass is consequently an extremely important step in the commercialization of biohydrogen, and for massive realization of lignocellulosic biomass as alternative fuel feedstock. Thus, development of a pretreatment method which is cost efficient, environmentally benign, and highly efficient for enhanced consolidated bioprocessing of lignocellulosic biomass to hydrogen is essential. RESULTS: In this research, fungal pretreatment was adopted for enhanced hydrogen production by consolidated bioprocessing performance. To confirm the fungal pretreatment efficiency, two typical thermochemical pretreatments were also compared side by side. Results showed that the fungal pretreatment was superior to the other pretreatments in terms of high lignin reduction of up to 35.3% with least holocellulose loss (the value was only 9.5%). Microscopic structure observation combined with Fourier transform infrared spectroscopy (FTIR) analysis further demonstrated that the lignin and crystallinity of lignocellulose were decreased with better holocellulose reservation. Upon fungal pretreatment, the hydrogen yield and hydrogen production rate were 6.8 mmol H2 g(-1) pretreated substrate and 0.89 mmol L(-1) h(-1), respectively, which were 2.9 and 4 times higher than the values obtained for the untreated sample. CONCLUSIONS: Results revealed that although all pretreatments could contribute to the enhancement of hydrogen production from cornstalk, fungal pretreatment proved to be the optimal method. It is apparent that besides high hydrogen production efficiency, fungal pretreatment also offered several advantages over other pretreatments such as being environmentally benign and energy efficient. This pretreatment method thus has great potential for application in consolidated bioprocessing performance of hydrogen production. More... »

PAGES

178

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13068-014-0178-7

DOI

http://dx.doi.org/10.1186/s13068-014-0178-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013557297

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25648837


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Lei", 
        "id": "sg:person.01017637411.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017637411.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China", 
            "School of Life Science and Technology, Harbin Institute of Technology, 150090, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Guang-Li", 
        "id": "sg:person.01171176051.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171176051.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Ai-Jie", 
        "id": "sg:person.01073100727.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073100727.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Hong-Yu", 
        "id": "sg:person.01254045130.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254045130.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Engineering University", 
          "id": "https://www.grid.ac/institutes/grid.33764.35", 
          "name": [
            "College of Power and Energy Engineering, Harbin Engineering University, 150001, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Kun", 
        "id": "sg:person.01304344473.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304344473.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Nan-Qi", 
        "id": "sg:person.01272236422.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272236422.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.biortech.2010.02.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002346108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1754-6834-6-144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003672055", 
          "https://doi.org/10.1186/1754-6834-6-144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2011.11.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006220801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcbb.12022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007553060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1754-6834-6-85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008690415", 
          "https://doi.org/10.1186/1754-6834-6-85"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2013.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009298619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1754-6834-7-82", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010487939", 
          "https://doi.org/10.1186/1754-6834-7-82"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.22423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.22423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1351/pac198759020257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012162143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2010.12.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013499334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2012.02.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015560637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-37861-4_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016684541", 
          "https://doi.org/10.1007/978-3-642-37861-4_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2012.12.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017100605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2012.03.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018291456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2013.09.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018939544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijms9091621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020437962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2012.12.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022726329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2009.11.093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024630230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2009.05.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026231287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enzmictec.2011.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026776690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2008.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027569649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(98)00483-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034060833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2011.03.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034628439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biombioe.2014.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035483896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2011.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036253095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2005.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037800397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2011.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039349678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pola.20071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039592916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2012.10.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043604972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2013.04.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043990675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2010.01.129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044986406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mmbr.66.3.506-577.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046000620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2009.04.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048799203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.21329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050034096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2012.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050311077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/10_2007_070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050481122", 
          "https://doi.org/10.1007/10_2007_070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/10_2007_070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050481122", 
          "https://doi.org/10.1007/10_2007_070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2013.01.144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050513256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-9942-7_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051611386", 
          "https://doi.org/10.1007/978-1-4020-9942-7_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-9942-7_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051611386", 
          "https://doi.org/10.1007/978-1-4020-9942-7_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es402863v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055506668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf1021187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055908464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf1021187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055908464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076226938", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Biological hydrogen production from lignocellulosic biomass shows great potential as a promising alternative to conventional hydrogen production methods, such as electrolysis of water and coal gasification. Currently, most researches on biohydrogen production from lignocellulose concentrate on consolidated bioprocessing, which has the advantages of simpler operation and lower cost over processes featuring dedicated cellulase production. However, the recalcitrance of the lignin structure induces a low cellulase activity, making the carbohydrates in the hetero-matrix more unapproachable. Pretreatment of lignocellulosic biomass is consequently an extremely important step in the commercialization of biohydrogen, and for massive realization of lignocellulosic biomass as alternative fuel feedstock. Thus, development of a pretreatment method which is cost efficient, environmentally benign, and highly efficient for enhanced consolidated bioprocessing of lignocellulosic biomass to hydrogen is essential.\nRESULTS: In this research, fungal pretreatment was adopted for enhanced hydrogen production by consolidated bioprocessing performance. To confirm the fungal pretreatment efficiency, two typical thermochemical pretreatments were also compared side by side. Results showed that the fungal pretreatment was superior to the other pretreatments in terms of high lignin reduction of up to 35.3% with least holocellulose loss (the value was only 9.5%). Microscopic structure observation combined with Fourier transform infrared spectroscopy (FTIR) analysis further demonstrated that the lignin and crystallinity of lignocellulose were decreased with better holocellulose reservation. Upon fungal pretreatment, the hydrogen yield and hydrogen production rate were 6.8 mmol H2 g(-1) pretreated substrate and 0.89 mmol L(-1) h(-1), respectively, which were 2.9 and 4 times higher than the values obtained for the untreated sample.\nCONCLUSIONS: Results revealed that although all pretreatments could contribute to the enhancement of hydrogen production from cornstalk, fungal pretreatment proved to be the optimal method. It is apparent that besides high hydrogen production efficiency, fungal pretreatment also offered several advantages over other pretreatments such as being environmentally benign and energy efficient. This pretreatment method thus has great potential for application in consolidated bioprocessing performance of hydrogen production.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13068-014-0178-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7016637", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7008339", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4980396", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039046", 
        "issn": [
          "1754-6834"
        ], 
        "name": "Biotechnology for Biofuels", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Consolidated bioprocessing performance of Thermoanaerobacterium thermosaccharolyticum M18 on fungal pretreated cornstalk for enhanced hydrogen production", 
    "pagination": "178", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "40954602adb6ae51c1c5cd1394df033909834c85913ba4bc87ed6f65bb57671f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25648837"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101316935"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13068-014-0178-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013557297"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13068-014-0178-7", 
      "https://app.dimensions.ai/details/publication/pub.1013557297"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88236_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs13068-014-0178-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13068-014-0178-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13068-014-0178-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13068-014-0178-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13068-014-0178-7'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13068-014-0178-7 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Nbc35aacb167944dba4679f338612e616
4 schema:citation sg:pub.10.1007/10_2007_070
5 sg:pub.10.1007/978-1-4020-9942-7_10
6 sg:pub.10.1007/978-3-642-37861-4_1
7 sg:pub.10.1186/1754-6834-6-144
8 sg:pub.10.1186/1754-6834-6-85
9 sg:pub.10.1186/1754-6834-7-82
10 https://app.dimensions.ai/details/publication/pub.1076226938
11 https://doi.org/10.1002/bit.21329
12 https://doi.org/10.1002/bit.22423
13 https://doi.org/10.1002/pola.20071
14 https://doi.org/10.1016/j.apenergy.2012.10.060
15 https://doi.org/10.1016/j.biombioe.2014.03.002
16 https://doi.org/10.1016/j.biortech.2008.05.027
17 https://doi.org/10.1016/j.biortech.2009.05.045
18 https://doi.org/10.1016/j.biortech.2009.11.093
19 https://doi.org/10.1016/j.biortech.2010.01.129
20 https://doi.org/10.1016/j.biortech.2010.02.110
21 https://doi.org/10.1016/j.biortech.2010.12.031
22 https://doi.org/10.1016/j.biortech.2012.02.034
23 https://doi.org/10.1016/j.biortech.2012.03.076
24 https://doi.org/10.1016/j.biortech.2012.12.029
25 https://doi.org/10.1016/j.biortech.2012.12.151
26 https://doi.org/10.1016/j.biortech.2013.01.144
27 https://doi.org/10.1016/j.biortech.2013.04.005
28 https://doi.org/10.1016/j.biotechadv.2011.05.005
29 https://doi.org/10.1016/j.biotechadv.2011.10.011
30 https://doi.org/10.1016/j.biotechadv.2012.03.003
31 https://doi.org/10.1016/j.copbio.2005.08.009
32 https://doi.org/10.1016/j.copbio.2011.11.026
33 https://doi.org/10.1016/j.enzmictec.2011.01.007
34 https://doi.org/10.1016/j.fuel.2013.04.063
35 https://doi.org/10.1016/j.ijhydene.2011.03.100
36 https://doi.org/10.1016/j.ijhydene.2013.09.100
37 https://doi.org/10.1016/j.jhazmat.2009.04.086
38 https://doi.org/10.1016/s0043-1354(98)00483-7
39 https://doi.org/10.1021/es402863v
40 https://doi.org/10.1021/jf1021187
41 https://doi.org/10.1111/gcbb.12022
42 https://doi.org/10.1128/mmbr.66.3.506-577.2002
43 https://doi.org/10.1351/pac198759020257
44 https://doi.org/10.3390/ijms9091621
45 schema:datePublished 2014-12
46 schema:datePublishedReg 2014-12-01
47 schema:description BACKGROUND: Biological hydrogen production from lignocellulosic biomass shows great potential as a promising alternative to conventional hydrogen production methods, such as electrolysis of water and coal gasification. Currently, most researches on biohydrogen production from lignocellulose concentrate on consolidated bioprocessing, which has the advantages of simpler operation and lower cost over processes featuring dedicated cellulase production. However, the recalcitrance of the lignin structure induces a low cellulase activity, making the carbohydrates in the hetero-matrix more unapproachable. Pretreatment of lignocellulosic biomass is consequently an extremely important step in the commercialization of biohydrogen, and for massive realization of lignocellulosic biomass as alternative fuel feedstock. Thus, development of a pretreatment method which is cost efficient, environmentally benign, and highly efficient for enhanced consolidated bioprocessing of lignocellulosic biomass to hydrogen is essential. RESULTS: In this research, fungal pretreatment was adopted for enhanced hydrogen production by consolidated bioprocessing performance. To confirm the fungal pretreatment efficiency, two typical thermochemical pretreatments were also compared side by side. Results showed that the fungal pretreatment was superior to the other pretreatments in terms of high lignin reduction of up to 35.3% with least holocellulose loss (the value was only 9.5%). Microscopic structure observation combined with Fourier transform infrared spectroscopy (FTIR) analysis further demonstrated that the lignin and crystallinity of lignocellulose were decreased with better holocellulose reservation. Upon fungal pretreatment, the hydrogen yield and hydrogen production rate were 6.8 mmol H2 g(-1) pretreated substrate and 0.89 mmol L(-1) h(-1), respectively, which were 2.9 and 4 times higher than the values obtained for the untreated sample. CONCLUSIONS: Results revealed that although all pretreatments could contribute to the enhancement of hydrogen production from cornstalk, fungal pretreatment proved to be the optimal method. It is apparent that besides high hydrogen production efficiency, fungal pretreatment also offered several advantages over other pretreatments such as being environmentally benign and energy efficient. This pretreatment method thus has great potential for application in consolidated bioprocessing performance of hydrogen production.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf Nd359661769964418b0be906e9d2cb44e
52 Ned491033adfe49a4bf661b354963424f
53 sg:journal.1039046
54 schema:name Consolidated bioprocessing performance of Thermoanaerobacterium thermosaccharolyticum M18 on fungal pretreated cornstalk for enhanced hydrogen production
55 schema:pagination 178
56 schema:productId N323ebacfecc4418e92f04558c98fde79
57 N356881e66337499e89ef2320c5555e3a
58 N3e85727a000244399436a2e71cc2b396
59 N968473d95b6f4d01a5194326cbdad8f0
60 Nff9756ebe8974a8d88c9cad28364415e
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013557297
62 https://doi.org/10.1186/s13068-014-0178-7
63 schema:sdDatePublished 2019-04-11T13:09
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N15a00a3d9747498c91819cd0a0187fb6
66 schema:url http://link.springer.com/10.1186%2Fs13068-014-0178-7
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N0c51c40f8ebd4004954b9c89416f723c rdf:first sg:person.01304344473.91
71 rdf:rest N2fcd4dc5ea9945a2872e62810f47d34c
72 N100812fe39394c61b4e964b9194227da rdf:first sg:person.01171176051.35
73 rdf:rest N658a17ef09b24551bdb53bac20714ce3
74 N15a00a3d9747498c91819cd0a0187fb6 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N2fcd4dc5ea9945a2872e62810f47d34c rdf:first sg:person.01272236422.80
77 rdf:rest rdf:nil
78 N323ebacfecc4418e92f04558c98fde79 schema:name readcube_id
79 schema:value 40954602adb6ae51c1c5cd1394df033909834c85913ba4bc87ed6f65bb57671f
80 rdf:type schema:PropertyValue
81 N356881e66337499e89ef2320c5555e3a schema:name dimensions_id
82 schema:value pub.1013557297
83 rdf:type schema:PropertyValue
84 N3e85727a000244399436a2e71cc2b396 schema:name pubmed_id
85 schema:value 25648837
86 rdf:type schema:PropertyValue
87 N658a17ef09b24551bdb53bac20714ce3 rdf:first sg:person.01073100727.90
88 rdf:rest Na7798d36d6414daab8add977cb996863
89 N968473d95b6f4d01a5194326cbdad8f0 schema:name nlm_unique_id
90 schema:value 101316935
91 rdf:type schema:PropertyValue
92 Na7798d36d6414daab8add977cb996863 rdf:first sg:person.01254045130.25
93 rdf:rest N0c51c40f8ebd4004954b9c89416f723c
94 Nbc35aacb167944dba4679f338612e616 rdf:first sg:person.01017637411.67
95 rdf:rest N100812fe39394c61b4e964b9194227da
96 Nd359661769964418b0be906e9d2cb44e schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 Ned491033adfe49a4bf661b354963424f schema:volumeNumber 7
99 rdf:type schema:PublicationVolume
100 Nff9756ebe8974a8d88c9cad28364415e schema:name doi
101 schema:value 10.1186/s13068-014-0178-7
102 rdf:type schema:PropertyValue
103 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
104 schema:name Engineering
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
107 schema:name Chemical Engineering
108 rdf:type schema:DefinedTerm
109 sg:grant.4980396 http://pending.schema.org/fundedItem sg:pub.10.1186/s13068-014-0178-7
110 rdf:type schema:MonetaryGrant
111 sg:grant.7008339 http://pending.schema.org/fundedItem sg:pub.10.1186/s13068-014-0178-7
112 rdf:type schema:MonetaryGrant
113 sg:grant.7016637 http://pending.schema.org/fundedItem sg:pub.10.1186/s13068-014-0178-7
114 rdf:type schema:MonetaryGrant
115 sg:journal.1039046 schema:issn 1754-6834
116 schema:name Biotechnology for Biofuels
117 rdf:type schema:Periodical
118 sg:person.01017637411.67 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
119 schema:familyName Zhao
120 schema:givenName Lei
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017637411.67
122 rdf:type schema:Person
123 sg:person.01073100727.90 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
124 schema:familyName Wang
125 schema:givenName Ai-Jie
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073100727.90
127 rdf:type schema:Person
128 sg:person.01171176051.35 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
129 schema:familyName Cao
130 schema:givenName Guang-Li
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171176051.35
132 rdf:type schema:Person
133 sg:person.01254045130.25 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
134 schema:familyName Ren
135 schema:givenName Hong-Yu
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254045130.25
137 rdf:type schema:Person
138 sg:person.01272236422.80 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
139 schema:familyName Ren
140 schema:givenName Nan-Qi
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272236422.80
142 rdf:type schema:Person
143 sg:person.01304344473.91 schema:affiliation https://www.grid.ac/institutes/grid.33764.35
144 schema:familyName Zhang
145 schema:givenName Kun
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304344473.91
147 rdf:type schema:Person
148 sg:pub.10.1007/10_2007_070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050481122
149 https://doi.org/10.1007/10_2007_070
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/978-1-4020-9942-7_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051611386
152 https://doi.org/10.1007/978-1-4020-9942-7_10
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/978-3-642-37861-4_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016684541
155 https://doi.org/10.1007/978-3-642-37861-4_1
156 rdf:type schema:CreativeWork
157 sg:pub.10.1186/1754-6834-6-144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003672055
158 https://doi.org/10.1186/1754-6834-6-144
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1754-6834-6-85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008690415
161 https://doi.org/10.1186/1754-6834-6-85
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/1754-6834-7-82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010487939
164 https://doi.org/10.1186/1754-6834-7-82
165 rdf:type schema:CreativeWork
166 https://app.dimensions.ai/details/publication/pub.1076226938 schema:CreativeWork
167 https://doi.org/10.1002/bit.21329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050034096
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/bit.22423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011407289
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/pola.20071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039592916
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.apenergy.2012.10.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043604972
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.biombioe.2014.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035483896
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.biortech.2008.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027569649
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.biortech.2009.05.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026231287
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.biortech.2009.11.093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024630230
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.biortech.2010.01.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044986406
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.biortech.2010.02.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002346108
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.biortech.2010.12.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013499334
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.biortech.2012.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015560637
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.biortech.2012.03.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018291456
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.biortech.2012.12.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017100605
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.biortech.2012.12.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022726329
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.biortech.2013.01.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050513256
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.biortech.2013.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009298619
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.biotechadv.2011.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039349678
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.biotechadv.2011.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036253095
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.biotechadv.2012.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050311077
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.copbio.2005.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037800397
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.copbio.2011.11.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006220801
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.enzmictec.2011.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026776690
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.fuel.2013.04.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043990675
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.ijhydene.2011.03.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034628439
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.ijhydene.2013.09.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018939544
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.jhazmat.2009.04.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048799203
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/s0043-1354(98)00483-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034060833
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1021/es402863v schema:sameAs https://app.dimensions.ai/details/publication/pub.1055506668
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1021/jf1021187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055908464
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1111/gcbb.12022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007553060
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1128/mmbr.66.3.506-577.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046000620
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1351/pac198759020257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012162143
232 rdf:type schema:CreativeWork
233 https://doi.org/10.3390/ijms9091621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020437962
234 rdf:type schema:CreativeWork
235 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
236 schema:name School of Life Science and Technology, Harbin Institute of Technology, 150090, Harbin, China
237 State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.33764.35 schema:alternateName Harbin Engineering University
240 schema:name College of Power and Energy Engineering, Harbin Engineering University, 150001, Harbin, China
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...