Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-10-21

AUTHORS

Stefano Cazzaniga, Luca Dall'Osto, Joanna Szaub, Luca Scibilia, Matteo Ballottari, Saul Purton, Roberto Bassi

ABSTRACT

BackgroundThe utilization of biomass from microalgae for biofuel production is one of the key elements for the development of a sustainable and secure energy supply. Among the different microalgae, Chlorella species are of interest because of their high productivity, high lipid content, and resistance to the high light conditions typical of photobioreactors. However, the economic feasibility of growing algae at an industrial scale is yet to be realized, in part because of biological constraints that limit biomass yield. A key issue is the inefficient use of light due to uneven light distribution, and the dissipation of excess absorbed light as heat. The successful implementation of biofuel production facilities requires the development of algal strains with enhanced light use efficiency in photobioreactors. Such domestication strategies include decreasing the absorption cross section in order to enhance light penetration, increasing the size of metabolic sinks per chlorophyll and minimizing feedback energy dissipation.ResultsIn this work we applied random mutagenesis and phenotypic selection to the thermotolerant, fast-growing Chlorella species, C. sorokiniana. Truncated antenna mutants (TAMs) were selected that exhibited a lower fluorescence yield than the wild-type (WT) strain. Six putatively interesting mutants were selected by high throughput fluorescence video imaging, two of which, TAM-2 and TAM-4, were found to have approximately half the chlorophyll content per cell and LHCII complement per PSII with respect to the WT. In batch culture, TAM-2 showed an increased photon use efficiency, yielding a higher Pmax at saturating irradiances with respect to the WT. Cultivation of TAM-2 in both laboratory-scale and outdoor photobioreactors showed higher productivity than WT, with a 30% higher biomass yield in dense cell suspensions typical of industrial photobioreactors.ConclusionsThese results suggest that generation of mutants with low chlorophyll content can significantly improve the light-to-biomass conversion efficiency of C. sorokiniana under mass culture conditions. However, owing to the lack of sexual reproduction in this species, the presence of additional mutations might affect growth rate, suggesting that selection should include evaluation of multiple independent mutants for each desired phenotype. More... »

PAGES

157

References to SciGraph publications

  • 2003-02-12. tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size in PLANTA
  • 2011-11-02. Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae in MICROBIAL CELL FACTORIES
  • 2011-04-11. Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein in BMC PLANT BIOLOGY
  • 1985-12. Upper limits of temperature for growth inChlorella (Chlorophyceae) in PLANT SYSTEMATICS AND EVOLUTION
  • 1998-05. Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae) in PHOTOSYNTHESIS RESEARCH
  • 2012-07-25. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production in MICROBIAL CELL FACTORIES
  • 1990-09. The use of chlorophyll fluorescence nomenclature in plant stress physiology in PHOTOSYNTHESIS RESEARCH
  • 2013-05-04. Light-harvesting in photosystem I in PHOTOSYNTHESIS RESEARCH
  • 2009-10-08. Theoretical Maximum Algal Oil Production in BIOENERGY RESEARCH
  • 2013-04-18. Light harvesting in photosystem II in PHOTOSYNTHESIS RESEARCH
  • 2008-07-03. Biomass Productivities in Wild Type and Pigment Mutant of Cyclotella sp. (Diatom) in APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
  • 1997-12. Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments in JOURNAL OF APPLIED PHYCOLOGY
  • 2008-12-19. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 1999-02. Photosynthetic control of chloroplast gene expression in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13068-014-0157-z

    DOI

    http://dx.doi.org/10.1186/s13068-014-0157-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013205307

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25352913


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1003", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Industrial Biotechnology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biotecnologie, University di Verona, Strada Le Grazie, 15-37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Dipartimento di Biotecnologie, University di Verona, Strada Le Grazie, 15-37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cazzaniga", 
            "givenName": "Stefano", 
            "id": "sg:person.01372047057.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372047057.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biotecnologie, University di Verona, Strada Le Grazie, 15-37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Dipartimento di Biotecnologie, University di Verona, Strada Le Grazie, 15-37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dall'Osto", 
            "givenName": "Luca", 
            "id": "sg:person.01360021350.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360021350.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Structural and Molecular Biology, University College London, WC1E 6BT, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.509978.a", 
              "name": [
                "Institute of Structural and Molecular Biology, University College London, WC1E 6BT, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Szaub", 
            "givenName": "Joanna", 
            "id": "sg:person.0646010623.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646010623.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biotecnologie, University di Verona, Strada Le Grazie, 15-37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Dipartimento di Biotecnologie, University di Verona, Strada Le Grazie, 15-37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scibilia", 
            "givenName": "Luca", 
            "id": "sg:person.0774207006.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774207006.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biotecnologie, University di Verona, Strada Le Grazie, 15-37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Dipartimento di Biotecnologie, University di Verona, Strada Le Grazie, 15-37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ballottari", 
            "givenName": "Matteo", 
            "id": "sg:person.01260322000.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260322000.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Structural and Molecular Biology, University College London, WC1E 6BT, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.509978.a", 
              "name": [
                "Institute of Structural and Molecular Biology, University College London, WC1E 6BT, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Purton", 
            "givenName": "Saul", 
            "id": "sg:person.0616101216.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616101216.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biotecnologie, University di Verona, Strada Le Grazie, 15-37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Dipartimento di Biotecnologie, University di Verona, Strada Le Grazie, 15-37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bassi", 
            "givenName": "Roberto", 
            "id": "sg:person.0605371157.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2229-11-62", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042496749", 
              "https://doi.org/10.1186/1471-2229-11-62"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-013-9838-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008189356", 
              "https://doi.org/10.1007/s11120-013-9838-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007920025419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047490341", 
              "https://doi.org/10.1023/a:1007920025419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2859-11-96", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038760248", 
              "https://doi.org/10.1186/1475-2859-11-96"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12010-008-8298-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003715128", 
              "https://doi.org/10.1007/s12010-008-8298-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2859-10-91", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002392915", 
              "https://doi.org/10.1186/1475-2859-10-91"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/17624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003014035", 
              "https://doi.org/10.1038/17624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12155-009-9046-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015339498", 
              "https://doi.org/10.1007/s12155-009-9046-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02418020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039066071", 
              "https://doi.org/10.1007/bf02418020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-013-9824-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025197531", 
              "https://doi.org/10.1007/s11120-013-9824-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006024827225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001932607", 
              "https://doi.org/10.1023/a:1006024827225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00033156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004992426", 
              "https://doi.org/10.1007/bf00033156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-008-1811-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030939261", 
              "https://doi.org/10.1007/s00253-008-1811-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-002-0968-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1075277755", 
              "https://doi.org/10.1007/s00425-002-0968-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-10-21", 
        "datePublishedReg": "2014-10-21", 
        "description": "BackgroundThe utilization of biomass from microalgae for biofuel production is one of the key elements for the development of a sustainable and secure energy supply. Among the different microalgae, Chlorella species are of interest because of their high productivity, high lipid content, and resistance to the high light conditions typical of photobioreactors. However, the economic feasibility of growing algae at an industrial scale is yet to be realized, in part because of biological constraints that limit biomass yield. A key issue is the inefficient use of light due to uneven light distribution, and the dissipation of excess absorbed light as heat. The successful implementation of biofuel production facilities requires the development of algal strains with enhanced light use efficiency in photobioreactors. Such domestication strategies include decreasing the absorption cross section in order to enhance light penetration, increasing the size of metabolic sinks per chlorophyll and minimizing feedback energy dissipation.ResultsIn this work we applied random mutagenesis and phenotypic selection to the thermotolerant, fast-growing Chlorella species, C. sorokiniana. Truncated antenna mutants (TAMs) were selected that exhibited a lower fluorescence yield than the wild-type (WT) strain. Six putatively interesting mutants were selected by high throughput fluorescence video imaging, two of which, TAM-2 and TAM-4, were found to have approximately half the chlorophyll content per cell and LHCII complement per PSII with respect to the WT. In batch culture, TAM-2 showed an increased photon use efficiency, yielding a higher Pmax at saturating irradiances with respect to the WT. Cultivation of TAM-2 in both laboratory-scale and outdoor photobioreactors showed higher productivity than WT, with a 30% higher biomass yield in dense cell suspensions typical of industrial photobioreactors.ConclusionsThese results suggest that generation of mutants with low chlorophyll content can significantly improve the light-to-biomass conversion efficiency of C. sorokiniana under mass culture conditions. However, owing to the lack of sexual reproduction in this species, the presence of additional mutations might affect growth rate, suggesting that selection should include evaluation of multiple independent mutants for each desired phenotype.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13068-014-0157-z", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2765451", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3560740", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1429595", 
            "issn": [
              "2731-3654"
            ], 
            "name": "Biotechnology for Biofuels and Bioproducts", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "Chlorella species", 
          "light use efficiency", 
          "chlorophyll content", 
          "photon-use efficiency", 
          "multiple independent mutants", 
          "green alga Chlorella sorokiniana", 
          "high light conditions", 
          "lower chlorophyll content", 
          "C. sorokiniana", 
          "development of algal", 
          "generation of mutants", 
          "wild-type strain", 
          "use efficiency", 
          "biomass yield", 
          "sexual reproduction", 
          "mass culture conditions", 
          "phenotypic selection", 
          "independent mutants", 
          "biomass conversion efficiency", 
          "random mutagenesis", 
          "antenna mutants", 
          "interesting mutants", 
          "dense cell suspensions", 
          "metabolic sink", 
          "mutants", 
          "high biomass yield", 
          "different microalgae", 
          "high lipid content", 
          "domestication strategy", 
          "light conditions", 
          "additional mutations", 
          "Chlorella sorokiniana", 
          "species", 
          "biological constraints", 
          "sorokiniana", 
          "high productivity", 
          "biofuel production", 
          "culture conditions", 
          "batch culture", 
          "light penetration", 
          "TAM 2", 
          "microalgae", 
          "higher Pmax", 
          "industrial photobioreactors", 
          "lipid content", 
          "growth rate", 
          "cell suspensions", 
          "fluorescence video", 
          "uneven light distribution", 
          "antenna size", 
          "outdoor photobioreactors", 
          "fluorescence yield", 
          "low fluorescence yield", 
          "algae", 
          "mutagenesis", 
          "domestication", 
          "PSII", 
          "biofuel production facilities", 
          "algal", 
          "utilization of biomass", 
          "photobioreactor", 
          "conversion efficiency", 
          "thermotolerant", 
          "chlorophyll", 
          "reproduction", 
          "mutations", 
          "phenotype", 
          "industrial scale", 
          "productivity", 
          "selection", 
          "biomass", 
          "cells", 
          "yield", 
          "cultivation", 
          "strains", 
          "efficiency", 
          "light", 
          "economic feasibility", 
          "inefficient use", 
          "development", 
          "ConclusionsThese results", 
          "content", 
          "production", 
          "irradiance", 
          "complement", 
          "light distribution", 
          "wt", 
          "energy supply", 
          "production facilities", 
          "culture", 
          "resistance", 
          "Pmax", 
          "size", 
          "key issues", 
          "sink", 
          "energy dissipation", 
          "absorption cross section", 
          "secure energy supply", 
          "conditions", 
          "key elements", 
          "presence", 
          "dissipation", 
          "generation", 
          "distribution", 
          "elements", 
          "video", 
          "supply", 
          "utilization", 
          "strategies", 
          "suspension", 
          "lack", 
          "part", 
          "respect", 
          "implementation", 
          "feasibility", 
          "successful implementation", 
          "results", 
          "work", 
          "reduction", 
          "interest", 
          "rate", 
          "penetration", 
          "scale", 
          "constraints", 
          "use", 
          "order", 
          "issues", 
          "sections", 
          "cross sections", 
          "ResultsIn", 
          "facilities", 
          "heat", 
          "evaluation"
        ], 
        "name": "Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor", 
        "pagination": "157", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013205307"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13068-014-0157-z"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25352913"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13068-014-0157-z", 
          "https://app.dimensions.ai/details/publication/pub.1013205307"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_618.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13068-014-0157-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13068-014-0157-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13068-014-0157-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13068-014-0157-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13068-014-0157-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    306 TRIPLES      21 PREDICATES      174 URIs      150 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13068-014-0157-z schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 anzsrc-for:10
    4 anzsrc-for:1003
    5 schema:author N7e86b1f1fba44d098a7211bd19c5a7f9
    6 schema:citation sg:pub.10.1007/bf00033156
    7 sg:pub.10.1007/bf02418020
    8 sg:pub.10.1007/s00253-008-1811-9
    9 sg:pub.10.1007/s00425-002-0968-1
    10 sg:pub.10.1007/s11120-013-9824-3
    11 sg:pub.10.1007/s11120-013-9838-x
    12 sg:pub.10.1007/s12010-008-8298-9
    13 sg:pub.10.1007/s12155-009-9046-x
    14 sg:pub.10.1023/a:1006024827225
    15 sg:pub.10.1023/a:1007920025419
    16 sg:pub.10.1038/17624
    17 sg:pub.10.1186/1471-2229-11-62
    18 sg:pub.10.1186/1475-2859-10-91
    19 sg:pub.10.1186/1475-2859-11-96
    20 schema:datePublished 2014-10-21
    21 schema:datePublishedReg 2014-10-21
    22 schema:description BackgroundThe utilization of biomass from microalgae for biofuel production is one of the key elements for the development of a sustainable and secure energy supply. Among the different microalgae, Chlorella species are of interest because of their high productivity, high lipid content, and resistance to the high light conditions typical of photobioreactors. However, the economic feasibility of growing algae at an industrial scale is yet to be realized, in part because of biological constraints that limit biomass yield. A key issue is the inefficient use of light due to uneven light distribution, and the dissipation of excess absorbed light as heat. The successful implementation of biofuel production facilities requires the development of algal strains with enhanced light use efficiency in photobioreactors. Such domestication strategies include decreasing the absorption cross section in order to enhance light penetration, increasing the size of metabolic sinks per chlorophyll and minimizing feedback energy dissipation.ResultsIn this work we applied random mutagenesis and phenotypic selection to the thermotolerant, fast-growing Chlorella species, C. sorokiniana. Truncated antenna mutants (TAMs) were selected that exhibited a lower fluorescence yield than the wild-type (WT) strain. Six putatively interesting mutants were selected by high throughput fluorescence video imaging, two of which, TAM-2 and TAM-4, were found to have approximately half the chlorophyll content per cell and LHCII complement per PSII with respect to the WT. In batch culture, TAM-2 showed an increased photon use efficiency, yielding a higher Pmax at saturating irradiances with respect to the WT. Cultivation of TAM-2 in both laboratory-scale and outdoor photobioreactors showed higher productivity than WT, with a 30% higher biomass yield in dense cell suspensions typical of industrial photobioreactors.ConclusionsThese results suggest that generation of mutants with low chlorophyll content can significantly improve the light-to-biomass conversion efficiency of C. sorokiniana under mass culture conditions. However, owing to the lack of sexual reproduction in this species, the presence of additional mutations might affect growth rate, suggesting that selection should include evaluation of multiple independent mutants for each desired phenotype.
    23 schema:genre article
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N0247eedfb08e4fd09ac0d501e4f7e0d4
    26 N7462dfcd7a0a45439e7eba7ff648ef82
    27 sg:journal.1429595
    28 schema:keywords C. sorokiniana
    29 Chlorella sorokiniana
    30 Chlorella species
    31 ConclusionsThese results
    32 PSII
    33 Pmax
    34 ResultsIn
    35 TAM 2
    36 absorption cross section
    37 additional mutations
    38 algae
    39 algal
    40 antenna mutants
    41 antenna size
    42 batch culture
    43 biofuel production
    44 biofuel production facilities
    45 biological constraints
    46 biomass
    47 biomass conversion efficiency
    48 biomass yield
    49 cell suspensions
    50 cells
    51 chlorophyll
    52 chlorophyll content
    53 complement
    54 conditions
    55 constraints
    56 content
    57 conversion efficiency
    58 cross sections
    59 cultivation
    60 culture
    61 culture conditions
    62 dense cell suspensions
    63 development
    64 development of algal
    65 different microalgae
    66 dissipation
    67 distribution
    68 domestication
    69 domestication strategy
    70 economic feasibility
    71 efficiency
    72 elements
    73 energy dissipation
    74 energy supply
    75 evaluation
    76 facilities
    77 feasibility
    78 fluorescence video
    79 fluorescence yield
    80 generation
    81 generation of mutants
    82 green alga Chlorella sorokiniana
    83 growth rate
    84 heat
    85 high biomass yield
    86 high light conditions
    87 high lipid content
    88 high productivity
    89 higher Pmax
    90 implementation
    91 independent mutants
    92 industrial photobioreactors
    93 industrial scale
    94 inefficient use
    95 interest
    96 interesting mutants
    97 irradiance
    98 issues
    99 key elements
    100 key issues
    101 lack
    102 light
    103 light conditions
    104 light distribution
    105 light penetration
    106 light use efficiency
    107 lipid content
    108 low fluorescence yield
    109 lower chlorophyll content
    110 mass culture conditions
    111 metabolic sink
    112 microalgae
    113 multiple independent mutants
    114 mutagenesis
    115 mutants
    116 mutations
    117 order
    118 outdoor photobioreactors
    119 part
    120 penetration
    121 phenotype
    122 phenotypic selection
    123 photobioreactor
    124 photon-use efficiency
    125 presence
    126 production
    127 production facilities
    128 productivity
    129 random mutagenesis
    130 rate
    131 reduction
    132 reproduction
    133 resistance
    134 respect
    135 results
    136 scale
    137 sections
    138 secure energy supply
    139 selection
    140 sexual reproduction
    141 sink
    142 size
    143 sorokiniana
    144 species
    145 strains
    146 strategies
    147 successful implementation
    148 supply
    149 suspension
    150 thermotolerant
    151 uneven light distribution
    152 use
    153 use efficiency
    154 utilization
    155 utilization of biomass
    156 video
    157 wild-type strain
    158 work
    159 wt
    160 yield
    161 schema:name Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor
    162 schema:pagination 157
    163 schema:productId N646f7eebcefd418f805bf8125e49f174
    164 N7c9f34d610424ffba6d181d183c99e38
    165 N9c8bd5984e204ff3b4ccda1131774f9e
    166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013205307
    167 https://doi.org/10.1186/s13068-014-0157-z
    168 schema:sdDatePublished 2022-10-01T06:39
    169 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    170 schema:sdPublisher N13ffd7e3e7ec414bb501bae5e32eff58
    171 schema:url https://doi.org/10.1186/s13068-014-0157-z
    172 sgo:license sg:explorer/license/
    173 sgo:sdDataset articles
    174 rdf:type schema:ScholarlyArticle
    175 N0247eedfb08e4fd09ac0d501e4f7e0d4 schema:issueNumber 1
    176 rdf:type schema:PublicationIssue
    177 N13ffd7e3e7ec414bb501bae5e32eff58 schema:name Springer Nature - SN SciGraph project
    178 rdf:type schema:Organization
    179 N2736c60e242843e183e36ebb734a662f rdf:first sg:person.0774207006.49
    180 rdf:rest Nd8aa8a3b82604f58be2b34e56f010fc9
    181 N646f7eebcefd418f805bf8125e49f174 schema:name doi
    182 schema:value 10.1186/s13068-014-0157-z
    183 rdf:type schema:PropertyValue
    184 N7462dfcd7a0a45439e7eba7ff648ef82 schema:volumeNumber 7
    185 rdf:type schema:PublicationVolume
    186 N7c9f34d610424ffba6d181d183c99e38 schema:name dimensions_id
    187 schema:value pub.1013205307
    188 rdf:type schema:PropertyValue
    189 N7e86b1f1fba44d098a7211bd19c5a7f9 rdf:first sg:person.01372047057.28
    190 rdf:rest Na905cfeb2c42418bbac9a36922b862ba
    191 N9c8bd5984e204ff3b4ccda1131774f9e schema:name pubmed_id
    192 schema:value 25352913
    193 rdf:type schema:PropertyValue
    194 N9e83e757884d4de29490d901df19ce71 rdf:first sg:person.0646010623.06
    195 rdf:rest N2736c60e242843e183e36ebb734a662f
    196 Na12c29a817a34a358aa1ef11af3ed0d0 rdf:first sg:person.0616101216.76
    197 rdf:rest Ne26d734c9ca84618898042d0f73c7f92
    198 Na905cfeb2c42418bbac9a36922b862ba rdf:first sg:person.01360021350.97
    199 rdf:rest N9e83e757884d4de29490d901df19ce71
    200 Nd8aa8a3b82604f58be2b34e56f010fc9 rdf:first sg:person.01260322000.32
    201 rdf:rest Na12c29a817a34a358aa1ef11af3ed0d0
    202 Ne26d734c9ca84618898042d0f73c7f92 rdf:first sg:person.0605371157.35
    203 rdf:rest rdf:nil
    204 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    205 schema:name Engineering
    206 rdf:type schema:DefinedTerm
    207 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    208 schema:name Chemical Engineering
    209 rdf:type schema:DefinedTerm
    210 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    211 schema:name Technology
    212 rdf:type schema:DefinedTerm
    213 anzsrc-for:1003 schema:inDefinedTermSet anzsrc-for:
    214 schema:name Industrial Biotechnology
    215 rdf:type schema:DefinedTerm
    216 sg:grant.2765451 http://pending.schema.org/fundedItem sg:pub.10.1186/s13068-014-0157-z
    217 rdf:type schema:MonetaryGrant
    218 sg:grant.3560740 http://pending.schema.org/fundedItem sg:pub.10.1186/s13068-014-0157-z
    219 rdf:type schema:MonetaryGrant
    220 sg:journal.1429595 schema:issn 2731-3654
    221 schema:name Biotechnology for Biofuels and Bioproducts
    222 schema:publisher Springer Nature
    223 rdf:type schema:Periodical
    224 sg:person.01260322000.32 schema:affiliation grid-institutes:grid.5611.3
    225 schema:familyName Ballottari
    226 schema:givenName Matteo
    227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260322000.32
    228 rdf:type schema:Person
    229 sg:person.01360021350.97 schema:affiliation grid-institutes:grid.5611.3
    230 schema:familyName Dall'Osto
    231 schema:givenName Luca
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360021350.97
    233 rdf:type schema:Person
    234 sg:person.01372047057.28 schema:affiliation grid-institutes:grid.5611.3
    235 schema:familyName Cazzaniga
    236 schema:givenName Stefano
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372047057.28
    238 rdf:type schema:Person
    239 sg:person.0605371157.35 schema:affiliation grid-institutes:grid.5611.3
    240 schema:familyName Bassi
    241 schema:givenName Roberto
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35
    243 rdf:type schema:Person
    244 sg:person.0616101216.76 schema:affiliation grid-institutes:grid.509978.a
    245 schema:familyName Purton
    246 schema:givenName Saul
    247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616101216.76
    248 rdf:type schema:Person
    249 sg:person.0646010623.06 schema:affiliation grid-institutes:grid.509978.a
    250 schema:familyName Szaub
    251 schema:givenName Joanna
    252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646010623.06
    253 rdf:type schema:Person
    254 sg:person.0774207006.49 schema:affiliation grid-institutes:grid.5611.3
    255 schema:familyName Scibilia
    256 schema:givenName Luca
    257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774207006.49
    258 rdf:type schema:Person
    259 sg:pub.10.1007/bf00033156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004992426
    260 https://doi.org/10.1007/bf00033156
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1007/bf02418020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039066071
    263 https://doi.org/10.1007/bf02418020
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1007/s00253-008-1811-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030939261
    266 https://doi.org/10.1007/s00253-008-1811-9
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1007/s00425-002-0968-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075277755
    269 https://doi.org/10.1007/s00425-002-0968-1
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1007/s11120-013-9824-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025197531
    272 https://doi.org/10.1007/s11120-013-9824-3
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1007/s11120-013-9838-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008189356
    275 https://doi.org/10.1007/s11120-013-9838-x
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1007/s12010-008-8298-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003715128
    278 https://doi.org/10.1007/s12010-008-8298-9
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1007/s12155-009-9046-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015339498
    281 https://doi.org/10.1007/s12155-009-9046-x
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1023/a:1006024827225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001932607
    284 https://doi.org/10.1023/a:1006024827225
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1023/a:1007920025419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047490341
    287 https://doi.org/10.1023/a:1007920025419
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/17624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003014035
    290 https://doi.org/10.1038/17624
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1186/1471-2229-11-62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042496749
    293 https://doi.org/10.1186/1471-2229-11-62
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1186/1475-2859-10-91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002392915
    296 https://doi.org/10.1186/1475-2859-10-91
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1186/1475-2859-11-96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038760248
    299 https://doi.org/10.1186/1475-2859-11-96
    300 rdf:type schema:CreativeWork
    301 grid-institutes:grid.509978.a schema:alternateName Institute of Structural and Molecular Biology, University College London, WC1E 6BT, London, UK
    302 schema:name Institute of Structural and Molecular Biology, University College London, WC1E 6BT, London, UK
    303 rdf:type schema:Organization
    304 grid-institutes:grid.5611.3 schema:alternateName Dipartimento di Biotecnologie, University di Verona, Strada Le Grazie, 15-37134, Verona, Italy
    305 schema:name Dipartimento di Biotecnologie, University di Verona, Strada Le Grazie, 15-37134, Verona, Italy
    306 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...