Anisotropic Müller glial scaffolding supports a multiplex lattice mosaic of photoreceptors in zebrafish retina View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11-15

AUTHORS

Mikiko Nagashima, Jeremy Hadidjojo, Linda K. Barthel, David K. Lubensky, Pamela A. Raymond

ABSTRACT

BackgroundThe multiplex, lattice mosaic of cone photoreceptors in the adult fish retina is a compelling example of a highly ordered epithelial cell pattern, with single cell width rows and columns of cones and precisely defined neighbor relationships among different cone types. Cellular mechanisms patterning this multiplex mosaic are not understood. Physical models can provide new insights into fundamental mechanisms of biological patterning. In earlier work, we developed a mathematical model of photoreceptor cell packing in the zebrafish retina, which predicted that anisotropic mechanical tension in the retinal epithelium orients planar polarized adhesive interfaces to align the columns as cone photoreceptors are generated at the retinal margin during post-embryonic growth.MethodsWith cell-specific fluorescent reporters and in vivo imaging of the growing retinal margin in transparent juvenile zebrafish we provide the first view of how cell packing, spatial arrangement, and cell identity are coordinated to build the lattice mosaic. With targeted laser ablation we probed the tissue mechanics of the retinal epithelium.ResultsWithin the lattice mosaic, planar polarized Crumbs adhesion proteins pack cones into a single cell width column; between columns, N-cadherin-mediated adherens junctions stabilize Müller glial apical processes. The concentration of activated pMyosin II at these punctate adherens junctions suggests that these glial bands are under tension, forming a physical barrier between cone columns and contributing to mechanical stress anisotropies in the epithelial sheet. Unexpectedly, we discovered that the appearance of such parallel bands of Müller glial apical processes precedes the packing of cones into single cell width columns, hinting at a possible role for glia in the initial organization of the lattice mosaic. Targeted laser ablation of Müller glia directly demonstrates that these glial processes support anisotropic mechanical tension in the planar dimension of the retinal epithelium.ConclusionsThese findings uncovered a novel structural feature of Müller glia associated with alignment of photoreceptors into a lattice mosaic in the zebrafish retina. This is the first demonstration, to our knowledge, of planar, anisotropic mechanical forces mediated by glial cells. More... »

PAGES

20

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13064-017-0096-z

DOI

http://dx.doi.org/10.1186/s13064-017-0096-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092709528

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29141686


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ependymoglial Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retina", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retinal Cone Photoreceptor Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Zebrafish", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, 48109-1048, Ann Arbor, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, 48109-1048, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagashima", 
        "givenName": "Mikiko", 
        "id": "sg:person.01003426765.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003426765.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Michigan, 450 Church Street, 48109-1040, Ann Arbor, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Physics, University of Michigan, 450 Church Street, 48109-1040, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hadidjojo", 
        "givenName": "Jeremy", 
        "id": "sg:person.01263732042.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263732042.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microscopy and Image Analysis Laboratory, University of Michigan, Ann Arbor, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Microscopy and Image Analysis Laboratory, University of Michigan, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barthel", 
        "givenName": "Linda K.", 
        "id": "sg:person.0772771015.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772771015.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Michigan, 450 Church Street, 48109-1040, Ann Arbor, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Physics, University of Michigan, 450 Church Street, 48109-1040, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lubensky", 
        "givenName": "David K.", 
        "id": "sg:person.0657407055.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657407055.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, 48109-1048, Ann Arbor, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, 48109-1048, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raymond", 
        "givenName": "Pamela A.", 
        "id": "sg:person.0772236112.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772236112.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00018-013-1329-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021854172", 
          "https://doi.org/10.1007/s00018-013-1329-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn2880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044782055", 
          "https://doi.org/10.1038/nrn2880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm3802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011457385", 
          "https://doi.org/10.1038/nrm3802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-011-0668-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051601252", 
          "https://doi.org/10.1007/s00018-011-0668-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00441-012-1445-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007143942", 
          "https://doi.org/10.1007/s00441-012-1445-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-213x-6-36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028335167", 
          "https://doi.org/10.1186/1471-213x-6-36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012100742", 
          "https://doi.org/10.1038/nature05014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-6371-3_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051969000", 
          "https://doi.org/10.1007/978-1-4939-6371-3_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm2927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021211659", 
          "https://doi.org/10.1038/nrm2927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/351397a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051927593", 
          "https://doi.org/10.1038/351397a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1749-8104-2-26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015268351", 
          "https://doi.org/10.1186/1749-8104-2-26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2121-11-60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026020788", 
          "https://doi.org/10.1186/1471-2121-11-60"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11-15", 
    "datePublishedReg": "2017-11-15", 
    "description": "BackgroundThe multiplex, lattice mosaic of cone photoreceptors in the adult fish retina is a compelling example of a highly ordered epithelial cell pattern, with single cell width rows and columns of cones and precisely defined neighbor relationships among different cone types. Cellular mechanisms patterning this multiplex mosaic are not understood. Physical models can provide new insights into fundamental mechanisms of biological patterning. In earlier work, we developed a mathematical model of photoreceptor cell packing in the zebrafish retina, which predicted that anisotropic mechanical tension in the retinal epithelium orients planar polarized adhesive interfaces to align the columns as cone photoreceptors are generated at the retinal margin during post-embryonic growth.MethodsWith cell-specific fluorescent reporters and in vivo imaging of the growing retinal margin in transparent juvenile zebrafish we provide the first view of how cell packing, spatial arrangement, and cell identity are coordinated to build the lattice mosaic. With targeted laser ablation we probed the tissue mechanics of the retinal epithelium.ResultsWithin the lattice mosaic, planar polarized Crumbs adhesion proteins pack cones into a single cell width column; between columns, N-cadherin-mediated adherens junctions stabilize M\u00fcller glial apical processes. The concentration of activated pMyosin II at these punctate adherens junctions suggests that these glial bands are under tension, forming a physical barrier between cone columns and contributing to mechanical stress anisotropies in the epithelial sheet. Unexpectedly, we discovered that the appearance of such parallel bands of M\u00fcller glial apical processes precedes the packing of cones into single cell width columns, hinting at a possible role for glia in the initial organization of the lattice mosaic. Targeted laser ablation of M\u00fcller glia directly demonstrates that these glial processes support anisotropic mechanical tension in the planar dimension of the retinal epithelium.ConclusionsThese findings uncovered a novel structural feature of M\u00fcller glia associated with alignment of photoreceptors into a lattice mosaic in the zebrafish retina. This is the first demonstration, to our knowledge, of planar, anisotropic mechanical forces mediated by glial cells.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13064-017-0096-z", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3000203", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3850472", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037699", 
        "issn": [
          "1749-8104"
        ], 
        "name": "Neural Development", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "zebrafish retina", 
      "adherens junctions", 
      "punctate adherens junctions", 
      "post-embryonic growth", 
      "cell-specific fluorescent reporters", 
      "cell packing", 
      "M\u00fcller glia", 
      "Targeted laser ablation", 
      "mechanical tension", 
      "cell identity", 
      "retinal epithelium", 
      "apical processes", 
      "cone photoreceptors", 
      "juvenile zebrafish", 
      "novel structural features", 
      "adhesion proteins", 
      "fluorescent reporters", 
      "adult fish retina", 
      "biological patterning", 
      "cellular mechanisms", 
      "retinal margin", 
      "epithelial sheets", 
      "photoreceptors", 
      "glial scaffolding", 
      "mechanical forces", 
      "mosaic", 
      "new insights", 
      "glial cells", 
      "fish retina", 
      "compelling example", 
      "tissue mechanics", 
      "physical barrier", 
      "fundamental mechanisms", 
      "possible role", 
      "different cone types", 
      "structural features", 
      "first demonstration", 
      "glia", 
      "spatial arrangement", 
      "first view", 
      "zebrafish", 
      "cell pattern", 
      "reporter", 
      "protein", 
      "cone types", 
      "glial processes", 
      "patterning", 
      "epithelium", 
      "mechanism", 
      "initial organization", 
      "cells", 
      "vivo", 
      "junction", 
      "retina", 
      "growth", 
      "neighbor relationships", 
      "insights", 
      "role", 
      "identity", 
      "scaffolding", 
      "process", 
      "patterns", 
      "cone", 
      "multiplex", 
      "alignment", 
      "column", 
      "packing", 
      "ConclusionsThese findings", 
      "rows", 
      "types", 
      "ablation", 
      "organization", 
      "arrangement", 
      "concentration", 
      "knowledge", 
      "findings", 
      "demonstration", 
      "relationship", 
      "earlier work", 
      "appearance", 
      "band", 
      "features", 
      "model", 
      "barriers", 
      "example", 
      "margin", 
      "view", 
      "cone columns", 
      "work", 
      "adhesive interface", 
      "force", 
      "interface", 
      "mathematical model", 
      "tension", 
      "laser ablation", 
      "parallel bands", 
      "mechanics", 
      "sheets", 
      "ResultsWithin", 
      "physical model", 
      "dimensions", 
      "lattice", 
      "planar dimensions", 
      "planar", 
      "stress anisotropy", 
      "anisotropy"
    ], 
    "name": "Anisotropic M\u00fcller glial scaffolding supports a multiplex lattice mosaic of photoreceptors in zebrafish retina", 
    "pagination": "20", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092709528"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13064-017-0096-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29141686"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13064-017-0096-z", 
      "https://app.dimensions.ai/details/publication/pub.1092709528"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_756.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13064-017-0096-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13064-017-0096-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13064-017-0096-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13064-017-0096-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13064-017-0096-z'


 

This table displays all metadata directly associated to this object as RDF triples.

274 TRIPLES      21 PREDICATES      149 URIs      129 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13064-017-0096-z schema:about N1dc6c48c2bbc485fa6ee4ab4601a87a2
2 N202cfb4d9dc34a87817ea987d0daa2df
3 N73f1e319e8d84b18b223a9dbfd6c21d0
4 N99b6a7b11fec480da3dcec34d7fba48d
5 N9d985fe9054649b893f175fc6376ba03
6 Ne703e34ae8c54102a3587b25976c3cd7
7 anzsrc-for:06
8 anzsrc-for:0601
9 schema:author N3dfd16bf3a38444e9932dc8cff32db2e
10 schema:citation sg:pub.10.1007/978-1-4939-6371-3_14
11 sg:pub.10.1007/s00018-011-0668-8
12 sg:pub.10.1007/s00018-013-1329-x
13 sg:pub.10.1007/s00441-012-1445-1
14 sg:pub.10.1038/351397a0
15 sg:pub.10.1038/nature05014
16 sg:pub.10.1038/nrm2927
17 sg:pub.10.1038/nrm3802
18 sg:pub.10.1038/nrn2880
19 sg:pub.10.1186/1471-2121-11-60
20 sg:pub.10.1186/1471-213x-6-36
21 sg:pub.10.1186/1749-8104-2-26
22 schema:datePublished 2017-11-15
23 schema:datePublishedReg 2017-11-15
24 schema:description BackgroundThe multiplex, lattice mosaic of cone photoreceptors in the adult fish retina is a compelling example of a highly ordered epithelial cell pattern, with single cell width rows and columns of cones and precisely defined neighbor relationships among different cone types. Cellular mechanisms patterning this multiplex mosaic are not understood. Physical models can provide new insights into fundamental mechanisms of biological patterning. In earlier work, we developed a mathematical model of photoreceptor cell packing in the zebrafish retina, which predicted that anisotropic mechanical tension in the retinal epithelium orients planar polarized adhesive interfaces to align the columns as cone photoreceptors are generated at the retinal margin during post-embryonic growth.MethodsWith cell-specific fluorescent reporters and in vivo imaging of the growing retinal margin in transparent juvenile zebrafish we provide the first view of how cell packing, spatial arrangement, and cell identity are coordinated to build the lattice mosaic. With targeted laser ablation we probed the tissue mechanics of the retinal epithelium.ResultsWithin the lattice mosaic, planar polarized Crumbs adhesion proteins pack cones into a single cell width column; between columns, N-cadherin-mediated adherens junctions stabilize Müller glial apical processes. The concentration of activated pMyosin II at these punctate adherens junctions suggests that these glial bands are under tension, forming a physical barrier between cone columns and contributing to mechanical stress anisotropies in the epithelial sheet. Unexpectedly, we discovered that the appearance of such parallel bands of Müller glial apical processes precedes the packing of cones into single cell width columns, hinting at a possible role for glia in the initial organization of the lattice mosaic. Targeted laser ablation of Müller glia directly demonstrates that these glial processes support anisotropic mechanical tension in the planar dimension of the retinal epithelium.ConclusionsThese findings uncovered a novel structural feature of Müller glia associated with alignment of photoreceptors into a lattice mosaic in the zebrafish retina. This is the first demonstration, to our knowledge, of planar, anisotropic mechanical forces mediated by glial cells.
25 schema:genre article
26 schema:isAccessibleForFree true
27 schema:isPartOf N9f7a34dac98e40c39f9ae237aa305d3c
28 Nfd9917cf308c49e590b7b71e56867398
29 sg:journal.1037699
30 schema:keywords ConclusionsThese findings
31 Müller glia
32 ResultsWithin
33 Targeted laser ablation
34 ablation
35 adherens junctions
36 adhesion proteins
37 adhesive interface
38 adult fish retina
39 alignment
40 anisotropy
41 apical processes
42 appearance
43 arrangement
44 band
45 barriers
46 biological patterning
47 cell identity
48 cell packing
49 cell pattern
50 cell-specific fluorescent reporters
51 cells
52 cellular mechanisms
53 column
54 compelling example
55 concentration
56 cone
57 cone columns
58 cone photoreceptors
59 cone types
60 demonstration
61 different cone types
62 dimensions
63 earlier work
64 epithelial sheets
65 epithelium
66 example
67 features
68 findings
69 first demonstration
70 first view
71 fish retina
72 fluorescent reporters
73 force
74 fundamental mechanisms
75 glia
76 glial cells
77 glial processes
78 glial scaffolding
79 growth
80 identity
81 initial organization
82 insights
83 interface
84 junction
85 juvenile zebrafish
86 knowledge
87 laser ablation
88 lattice
89 margin
90 mathematical model
91 mechanical forces
92 mechanical tension
93 mechanics
94 mechanism
95 model
96 mosaic
97 multiplex
98 neighbor relationships
99 new insights
100 novel structural features
101 organization
102 packing
103 parallel bands
104 patterning
105 patterns
106 photoreceptors
107 physical barrier
108 physical model
109 planar
110 planar dimensions
111 possible role
112 post-embryonic growth
113 process
114 protein
115 punctate adherens junctions
116 relationship
117 reporter
118 retina
119 retinal epithelium
120 retinal margin
121 role
122 rows
123 scaffolding
124 sheets
125 spatial arrangement
126 stress anisotropy
127 structural features
128 tension
129 tissue mechanics
130 types
131 view
132 vivo
133 work
134 zebrafish
135 zebrafish retina
136 schema:name Anisotropic Müller glial scaffolding supports a multiplex lattice mosaic of photoreceptors in zebrafish retina
137 schema:pagination 20
138 schema:productId N0c292c3dd03446bbaf7c299cd161a8d3
139 N84fc4e88a51641be94bc320e2ad278e6
140 Nb2b2cbff9abd4b5ab0742c2bc01da659
141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092709528
142 https://doi.org/10.1186/s13064-017-0096-z
143 schema:sdDatePublished 2022-09-02T16:02
144 schema:sdLicense https://scigraph.springernature.com/explorer/license/
145 schema:sdPublisher Nc7637a1df8ab4310b26da258257205e7
146 schema:url https://doi.org/10.1186/s13064-017-0096-z
147 sgo:license sg:explorer/license/
148 sgo:sdDataset articles
149 rdf:type schema:ScholarlyArticle
150 N050f8d7c3a2d401796d7fed52a0ec699 rdf:first sg:person.0772771015.51
151 rdf:rest N0b6cc5dbb9ea42ee8e98f3da15386369
152 N0b6cc5dbb9ea42ee8e98f3da15386369 rdf:first sg:person.0657407055.80
153 rdf:rest N7c1ca41e493d4644b96ef2c1f6bb9f4b
154 N0c292c3dd03446bbaf7c299cd161a8d3 schema:name pubmed_id
155 schema:value 29141686
156 rdf:type schema:PropertyValue
157 N1dc6c48c2bbc485fa6ee4ab4601a87a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Retina
159 rdf:type schema:DefinedTerm
160 N202cfb4d9dc34a87817ea987d0daa2df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Neurogenesis
162 rdf:type schema:DefinedTerm
163 N3dfd16bf3a38444e9932dc8cff32db2e rdf:first sg:person.01003426765.76
164 rdf:rest Ne50b3164a4de4e8ebf81beff915187f8
165 N73f1e319e8d84b18b223a9dbfd6c21d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Ependymoglial Cells
167 rdf:type schema:DefinedTerm
168 N7c1ca41e493d4644b96ef2c1f6bb9f4b rdf:first sg:person.0772236112.67
169 rdf:rest rdf:nil
170 N84fc4e88a51641be94bc320e2ad278e6 schema:name dimensions_id
171 schema:value pub.1092709528
172 rdf:type schema:PropertyValue
173 N99b6a7b11fec480da3dcec34d7fba48d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Animals
175 rdf:type schema:DefinedTerm
176 N9d985fe9054649b893f175fc6376ba03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Retinal Cone Photoreceptor Cells
178 rdf:type schema:DefinedTerm
179 N9f7a34dac98e40c39f9ae237aa305d3c schema:volumeNumber 12
180 rdf:type schema:PublicationVolume
181 Nb2b2cbff9abd4b5ab0742c2bc01da659 schema:name doi
182 schema:value 10.1186/s13064-017-0096-z
183 rdf:type schema:PropertyValue
184 Nc7637a1df8ab4310b26da258257205e7 schema:name Springer Nature - SN SciGraph project
185 rdf:type schema:Organization
186 Ne50b3164a4de4e8ebf81beff915187f8 rdf:first sg:person.01263732042.13
187 rdf:rest N050f8d7c3a2d401796d7fed52a0ec699
188 Ne703e34ae8c54102a3587b25976c3cd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Zebrafish
190 rdf:type schema:DefinedTerm
191 Nfd9917cf308c49e590b7b71e56867398 schema:issueNumber 1
192 rdf:type schema:PublicationIssue
193 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
194 schema:name Biological Sciences
195 rdf:type schema:DefinedTerm
196 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
197 schema:name Biochemistry and Cell Biology
198 rdf:type schema:DefinedTerm
199 sg:grant.3000203 http://pending.schema.org/fundedItem sg:pub.10.1186/s13064-017-0096-z
200 rdf:type schema:MonetaryGrant
201 sg:grant.3850472 http://pending.schema.org/fundedItem sg:pub.10.1186/s13064-017-0096-z
202 rdf:type schema:MonetaryGrant
203 sg:journal.1037699 schema:issn 1749-8104
204 schema:name Neural Development
205 schema:publisher Springer Nature
206 rdf:type schema:Periodical
207 sg:person.01003426765.76 schema:affiliation grid-institutes:grid.214458.e
208 schema:familyName Nagashima
209 schema:givenName Mikiko
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003426765.76
211 rdf:type schema:Person
212 sg:person.01263732042.13 schema:affiliation grid-institutes:grid.214458.e
213 schema:familyName Hadidjojo
214 schema:givenName Jeremy
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263732042.13
216 rdf:type schema:Person
217 sg:person.0657407055.80 schema:affiliation grid-institutes:grid.214458.e
218 schema:familyName Lubensky
219 schema:givenName David K.
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657407055.80
221 rdf:type schema:Person
222 sg:person.0772236112.67 schema:affiliation grid-institutes:grid.214458.e
223 schema:familyName Raymond
224 schema:givenName Pamela A.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772236112.67
226 rdf:type schema:Person
227 sg:person.0772771015.51 schema:affiliation grid-institutes:grid.214458.e
228 schema:familyName Barthel
229 schema:givenName Linda K.
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772771015.51
231 rdf:type schema:Person
232 sg:pub.10.1007/978-1-4939-6371-3_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051969000
233 https://doi.org/10.1007/978-1-4939-6371-3_14
234 rdf:type schema:CreativeWork
235 sg:pub.10.1007/s00018-011-0668-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051601252
236 https://doi.org/10.1007/s00018-011-0668-8
237 rdf:type schema:CreativeWork
238 sg:pub.10.1007/s00018-013-1329-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021854172
239 https://doi.org/10.1007/s00018-013-1329-x
240 rdf:type schema:CreativeWork
241 sg:pub.10.1007/s00441-012-1445-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007143942
242 https://doi.org/10.1007/s00441-012-1445-1
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/351397a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051927593
245 https://doi.org/10.1038/351397a0
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/nature05014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012100742
248 https://doi.org/10.1038/nature05014
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/nrm2927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021211659
251 https://doi.org/10.1038/nrm2927
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/nrm3802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011457385
254 https://doi.org/10.1038/nrm3802
255 rdf:type schema:CreativeWork
256 sg:pub.10.1038/nrn2880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044782055
257 https://doi.org/10.1038/nrn2880
258 rdf:type schema:CreativeWork
259 sg:pub.10.1186/1471-2121-11-60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026020788
260 https://doi.org/10.1186/1471-2121-11-60
261 rdf:type schema:CreativeWork
262 sg:pub.10.1186/1471-213x-6-36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028335167
263 https://doi.org/10.1186/1471-213x-6-36
264 rdf:type schema:CreativeWork
265 sg:pub.10.1186/1749-8104-2-26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015268351
266 https://doi.org/10.1186/1749-8104-2-26
267 rdf:type schema:CreativeWork
268 grid-institutes:grid.214458.e schema:alternateName Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, 48109-1048, Ann Arbor, MI, USA
269 Department of Physics, University of Michigan, 450 Church Street, 48109-1040, Ann Arbor, MI, USA
270 Microscopy and Image Analysis Laboratory, University of Michigan, Ann Arbor, MI, USA
271 schema:name Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, 48109-1048, Ann Arbor, MI, USA
272 Department of Physics, University of Michigan, 450 Church Street, 48109-1040, Ann Arbor, MI, USA
273 Microscopy and Image Analysis Laboratory, University of Michigan, Ann Arbor, MI, USA
274 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...