The INVEST project: investigating the use of evidence synthesis in the design and analysis of clinical trials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-05-15

AUTHORS

Gemma L. Clayton, Isabelle L. Smith, Julian P. T. Higgins, Borislava Mihaylova, Benjamin Thorpe, Robert Cicero, Kusal Lokuge, Julia R. Forman, Jayne F. Tierney, Ian R. White, Linda D. Sharples, Hayley E. Jones

ABSTRACT

BACKGROUND: When designing and analysing clinical trials, using previous relevant information, perhaps in the form of evidence syntheses, can reduce research waste. We conducted the INVEST (INVestigating the use of Evidence Synthesis in the design and analysis of clinical Trials) survey to summarise the current use of evidence synthesis in trial design and analysis, to capture opinions of trialists and methodologists on such use, and to understand any barriers. METHODS: Our sampling frame was all delegates attending the International Clinical Trials Methodology Conference in November 2015. Respondents were asked to indicate (1) their views on the use of evidence synthesis in trial design and analysis, (2) their own use during the past 10 years and (3) the three greatest barriers to use in practice. RESULTS: Of approximately 638 attendees of the conference, 106 (17%) completed the survey, half of whom were statisticians. Support was generally high for using a description of previous evidence, a systematic review or a meta-analysis in trial design. Generally, respondents did not seem to be using evidence syntheses as often as they felt they should. For example, only 50% (42/84 relevant respondents) had used a meta-analysis to inform whether a trial is needed compared with 74% (62/84) indicating that this is desirable. Only 6% (5/81 relevant respondents) had used a value of information analysis to inform sample size calculations versus 22% (18/81) indicating support for this. Surprisingly large numbers of participants indicated support for, and previous use of, evidence syntheses in trial analysis. For example, 79% (79/100) of respondents indicated that external information about the treatment effect should be used to inform aspects of the analysis. The greatest perceived barrier to using evidence synthesis methods in trial design or analysis was time constraints, followed by a belief that the new trial was the first in the area. CONCLUSIONS: Evidence syntheses can be resource-intensive, but their use in informing the design, conduct and analysis of clinical trials is widely considered desirable. We advocate additional research, training and investment in resources dedicated to ways in which evidence syntheses can be undertaken more efficiently, offering the potential for cost savings in the long term. More... »

PAGES

219

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13063-017-1955-y

DOI

http://dx.doi.org/10.1186/s13063-017-1955-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085379321

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28506284


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biostatistics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clinical Trials as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Congresses as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evidence-Based Medicine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Meta-Analysis as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Personnel", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Review Literature as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Social and Community Medicine, Faculty of Health Sciences, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS UK", 
          "id": "http://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "School of Social and Community Medicine, Faculty of Health Sciences, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clayton", 
        "givenName": "Gemma L.", 
        "id": "sg:person.0666657327.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666657327.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK", 
          "id": "http://www.grid.ac/institutes/grid.9909.9", 
          "name": [
            "Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Isabelle L.", 
        "id": "sg:person.0577155643.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577155643.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Social and Community Medicine, Faculty of Health Sciences, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS UK", 
          "id": "http://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "School of Social and Community Medicine, Faculty of Health Sciences, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Higgins", 
        "givenName": "Julian P. T.", 
        "id": "sg:person.01164572174.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164572174.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mihaylova", 
        "givenName": "Borislava", 
        "id": "sg:person.0775757667.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775757667.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK", 
          "id": "http://www.grid.ac/institutes/grid.9909.9", 
          "name": [
            "Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thorpe", 
        "givenName": "Benjamin", 
        "id": "sg:person.015053414620.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053414620.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK", 
          "id": "http://www.grid.ac/institutes/grid.9909.9", 
          "name": [
            "Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cicero", 
        "givenName": "Robert", 
        "id": "sg:person.014150433611.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014150433611.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lokuge", 
        "givenName": "Kusal", 
        "id": "sg:person.011464424137.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011464424137.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cambridge Clinical Trials Unit, University of Cambridge, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cambridge Clinical Trials Unit, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forman", 
        "givenName": "Julia R.", 
        "id": "sg:person.01311366651.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311366651.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Clinical Trials Unit, University College London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.415052.7", 
          "name": [
            "MRC Clinical Trials Unit, University College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tierney", 
        "givenName": "Jayne F.", 
        "id": "sg:person.01025333271.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025333271.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.415038.b", 
          "name": [
            "MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "White", 
        "givenName": "Ian R.", 
        "id": "sg:person.013652056262.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013652056262.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London School of Hygiene and Tropical Medicine, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.8991.9", 
          "name": [
            "London School of Hygiene and Tropical Medicine, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharples", 
        "givenName": "Linda D.", 
        "id": "sg:person.010013613077.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010013613077.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Social and Community Medicine, Faculty of Health Sciences, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS UK", 
          "id": "http://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "School of Social and Community Medicine, Faculty of Health Sciences, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "Hayley E.", 
        "id": "sg:person.010270402447.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010270402447.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1748-5908-5-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009194900", 
          "https://doi.org/10.1186/1748-5908-5-10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40273-015-0346-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022262721", 
          "https://doi.org/10.1007/s40273-015-0346-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-5908-5-56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034698726", 
          "https://doi.org/10.1186/1748-5908-5-56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00019053-200624110-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006336042", 
          "https://doi.org/10.2165/00019053-200624110-00003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2046-4053-1-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042840828", 
          "https://doi.org/10.1186/2046-4053-1-10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2288-9-29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028224674", 
          "https://doi.org/10.1186/1471-2288-9-29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2288-13-50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031669542", 
          "https://doi.org/10.1186/1471-2288-13-50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12874-015-0102-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027978976", 
          "https://doi.org/10.1186/s12874-015-0102-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-15", 
    "datePublishedReg": "2017-05-15", 
    "description": "BACKGROUND: When designing and analysing clinical trials, using previous relevant information, perhaps in the form of evidence syntheses, can reduce research waste. We conducted the INVEST (INVestigating the use of Evidence Synthesis in the design and analysis of clinical Trials) survey to summarise the current use of evidence synthesis in trial design and analysis, to capture opinions of trialists and methodologists on such use, and to understand any barriers.\nMETHODS: Our sampling frame was all delegates attending the International Clinical Trials Methodology Conference in November 2015. Respondents were asked to indicate (1) their views on the use of evidence synthesis in trial design and analysis, (2) their own use during the past 10 years and (3) the three greatest barriers to use in practice.\nRESULTS: Of approximately 638 attendees of the conference, 106 (17%) completed the survey, half of whom were statisticians. Support was generally high for using a description of previous evidence, a systematic review or a meta-analysis in trial design. Generally, respondents did not seem to be using evidence syntheses as often as they felt they should. For example, only 50% (42/84 relevant respondents) had used a meta-analysis to inform whether a trial is needed compared with 74% (62/84) indicating that this is desirable. Only 6% (5/81 relevant respondents) had used a value of information analysis to inform sample size calculations versus 22% (18/81) indicating support for this. Surprisingly large numbers of participants indicated support for, and previous use of, evidence syntheses in trial analysis. For example, 79% (79/100) of respondents indicated that external information about the treatment effect should be used to inform aspects of the analysis. The greatest perceived barrier to using evidence synthesis methods in trial design or analysis was time constraints, followed by a belief that the new trial was the first in the area.\nCONCLUSIONS: Evidence syntheses can be resource-intensive, but their use in informing the design, conduct and analysis of clinical trials is widely considered desirable. We advocate additional research, training and investment in resources dedicated to ways in which evidence syntheses can be undertaken more efficiently, offering the potential for cost savings in the long term.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13063-017-1955-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4456482", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3498744", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3864548", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2769264", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3864196", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6945398", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7158040", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3560679", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1297400", 
        "issn": [
          "1468-6708", 
          "1745-6215"
        ], 
        "name": "Trials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "trial design", 
      "clinical trials", 
      "evidence synthesis", 
      "systematic review", 
      "new trials", 
      "previous use", 
      "trials", 
      "sample size calculation", 
      "research waste", 
      "treatment effects", 
      "trial analysis", 
      "current use", 
      "previous evidence", 
      "additional research", 
      "greatest barrier", 
      "size calculation", 
      "evidence synthesis methods", 
      "sampling frame", 
      "long term", 
      "cost savings", 
      "trialists", 
      "respondents", 
      "such use", 
      "use", 
      "barriers", 
      "participants", 
      "review", 
      "survey", 
      "years", 
      "attendees", 
      "support", 
      "evidence", 
      "analysis", 
      "relevant information", 
      "half", 
      "training", 
      "effect", 
      "large number", 
      "methodologists", 
      "practice", 
      "time constraints", 
      "information", 
      "synthesis", 
      "conference", 
      "own use", 
      "number", 
      "opinion", 
      "potential", 
      "area", 
      "beliefs", 
      "aspects", 
      "conduct", 
      "design", 
      "values", 
      "research", 
      "form", 
      "information analysis", 
      "method", 
      "delegates", 
      "statisticians", 
      "view", 
      "terms", 
      "savings", 
      "description", 
      "external information", 
      "resources", 
      "way", 
      "project", 
      "frame", 
      "example", 
      "investment", 
      "calculations", 
      "constraints", 
      "waste", 
      "synthesis method", 
      "previous relevant information", 
      "INVEST (INVestigating the use of Evidence Synthesis in the design and analysis of clinical Trials) survey", 
      "opinions of trialists", 
      "International Clinical Trials Methodology Conference", 
      "Clinical Trials Methodology Conference", 
      "Trials Methodology Conference", 
      "Methodology Conference", 
      "INVEST project"
    ], 
    "name": "The INVEST project: investigating the use of evidence synthesis in the design and analysis of clinical trials", 
    "pagination": "219", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085379321"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13063-017-1955-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28506284"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13063-017-1955-y", 
      "https://app.dimensions.ai/details/publication/pub.1085379321"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_729.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13063-017-1955-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13063-017-1955-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13063-017-1955-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13063-017-1955-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13063-017-1955-y'


 

This table displays all metadata directly associated to this object as RDF triples.

336 TRIPLES      22 PREDICATES      129 URIs      113 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13063-017-1955-y schema:about N509dc6a1e00e466c9197abec89edbcc6
2 N5bb7c9482ae74e8c96f0c11f2865b23d
3 N6f7a3f8df64c4c1d8cf2819fda59a511
4 N917f8c3ae2e940418652646003219e10
5 Nb05873b950c14548bca842df0a05f2e6
6 Nba8c749d9c804fd49fe1bf303b20daf3
7 Ncfa83b9118de4d62b61612e1a2765988
8 Nd0caa84860864aa1a52e7baf3e19c0af
9 Nd6307631c0934717949fea0b78ad7540
10 Ndd9110350804477bbe045975e4830572
11 Ne188301b91a148f68e5e9d1906dcc610
12 Necc0586da4274dc4bd3774b954c4e43c
13 anzsrc-for:11
14 anzsrc-for:1117
15 schema:author Na7d86d9012e847e7b70deeb1c0789508
16 schema:citation sg:pub.10.1007/s40273-015-0346-z
17 sg:pub.10.1186/1471-2288-13-50
18 sg:pub.10.1186/1471-2288-9-29
19 sg:pub.10.1186/1748-5908-5-10
20 sg:pub.10.1186/1748-5908-5-56
21 sg:pub.10.1186/2046-4053-1-10
22 sg:pub.10.1186/s12874-015-0102-2
23 sg:pub.10.2165/00019053-200624110-00003
24 schema:datePublished 2017-05-15
25 schema:datePublishedReg 2017-05-15
26 schema:description BACKGROUND: When designing and analysing clinical trials, using previous relevant information, perhaps in the form of evidence syntheses, can reduce research waste. We conducted the INVEST (INVestigating the use of Evidence Synthesis in the design and analysis of clinical Trials) survey to summarise the current use of evidence synthesis in trial design and analysis, to capture opinions of trialists and methodologists on such use, and to understand any barriers. METHODS: Our sampling frame was all delegates attending the International Clinical Trials Methodology Conference in November 2015. Respondents were asked to indicate (1) their views on the use of evidence synthesis in trial design and analysis, (2) their own use during the past 10 years and (3) the three greatest barriers to use in practice. RESULTS: Of approximately 638 attendees of the conference, 106 (17%) completed the survey, half of whom were statisticians. Support was generally high for using a description of previous evidence, a systematic review or a meta-analysis in trial design. Generally, respondents did not seem to be using evidence syntheses as often as they felt they should. For example, only 50% (42/84 relevant respondents) had used a meta-analysis to inform whether a trial is needed compared with 74% (62/84) indicating that this is desirable. Only 6% (5/81 relevant respondents) had used a value of information analysis to inform sample size calculations versus 22% (18/81) indicating support for this. Surprisingly large numbers of participants indicated support for, and previous use of, evidence syntheses in trial analysis. For example, 79% (79/100) of respondents indicated that external information about the treatment effect should be used to inform aspects of the analysis. The greatest perceived barrier to using evidence synthesis methods in trial design or analysis was time constraints, followed by a belief that the new trial was the first in the area. CONCLUSIONS: Evidence syntheses can be resource-intensive, but their use in informing the design, conduct and analysis of clinical trials is widely considered desirable. We advocate additional research, training and investment in resources dedicated to ways in which evidence syntheses can be undertaken more efficiently, offering the potential for cost savings in the long term.
27 schema:genre article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N9587fd7bc1f04cec89565e6920b17229
31 Ne57b7a0ac22a4ee3bc04a22e1d87af94
32 sg:journal.1297400
33 schema:keywords Clinical Trials Methodology Conference
34 INVEST (INVestigating the use of Evidence Synthesis in the design and analysis of clinical Trials) survey
35 INVEST project
36 International Clinical Trials Methodology Conference
37 Methodology Conference
38 Trials Methodology Conference
39 additional research
40 analysis
41 area
42 aspects
43 attendees
44 barriers
45 beliefs
46 calculations
47 clinical trials
48 conduct
49 conference
50 constraints
51 cost savings
52 current use
53 delegates
54 description
55 design
56 effect
57 evidence
58 evidence synthesis
59 evidence synthesis methods
60 example
61 external information
62 form
63 frame
64 greatest barrier
65 half
66 information
67 information analysis
68 investment
69 large number
70 long term
71 method
72 methodologists
73 new trials
74 number
75 opinion
76 opinions of trialists
77 own use
78 participants
79 potential
80 practice
81 previous evidence
82 previous relevant information
83 previous use
84 project
85 relevant information
86 research
87 research waste
88 resources
89 respondents
90 review
91 sample size calculation
92 sampling frame
93 savings
94 size calculation
95 statisticians
96 such use
97 support
98 survey
99 synthesis
100 synthesis method
101 systematic review
102 terms
103 time constraints
104 training
105 treatment effects
106 trial analysis
107 trial design
108 trialists
109 trials
110 use
111 values
112 view
113 waste
114 way
115 years
116 schema:name The INVEST project: investigating the use of evidence synthesis in the design and analysis of clinical trials
117 schema:pagination 219
118 schema:productId N655468a2b6874a2c841ee8e75e2f36b7
119 N7093ec1847c547dc8b3b524eb551f690
120 N7bda5e3cb541472c8900c8e29e69b485
121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085379321
122 https://doi.org/10.1186/s13063-017-1955-y
123 schema:sdDatePublished 2022-01-01T18:43
124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
125 schema:sdPublisher Nda6c788ac3eb4a4aaf9e97401dd3bac3
126 schema:url https://doi.org/10.1186/s13063-017-1955-y
127 sgo:license sg:explorer/license/
128 sgo:sdDataset articles
129 rdf:type schema:ScholarlyArticle
130 N048ce018324a4ff38ad3a8fc7556f293 rdf:first sg:person.011464424137.54
131 rdf:rest N57a2f9ad01d544e394c0af1eb85c70e6
132 N509dc6a1e00e466c9197abec89edbcc6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Surveys and Questionnaires
134 rdf:type schema:DefinedTerm
135 N51922481116a482db6557160650db07d rdf:first sg:person.0577155643.50
136 rdf:rest N6eb485f20ee54334bb468be4fbedaccf
137 N57a2f9ad01d544e394c0af1eb85c70e6 rdf:first sg:person.01311366651.71
138 rdf:rest N960fd31514c54b08974d22322a8ac238
139 N5bb7c9482ae74e8c96f0c11f2865b23d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Congresses as Topic
141 rdf:type schema:DefinedTerm
142 N655468a2b6874a2c841ee8e75e2f36b7 schema:name doi
143 schema:value 10.1186/s13063-017-1955-y
144 rdf:type schema:PropertyValue
145 N670b4800bdc04bf4812da99883f7b695 rdf:first sg:person.015053414620.47
146 rdf:rest N897c0fe1960548b4b49a349bc18f3ddb
147 N6eb485f20ee54334bb468be4fbedaccf rdf:first sg:person.01164572174.67
148 rdf:rest N940bb434a2c34fff8611fc1c76133376
149 N6f7a3f8df64c4c1d8cf2819fda59a511 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Biostatistics
151 rdf:type schema:DefinedTerm
152 N7093ec1847c547dc8b3b524eb551f690 schema:name pubmed_id
153 schema:value 28506284
154 rdf:type schema:PropertyValue
155 N7bda5e3cb541472c8900c8e29e69b485 schema:name dimensions_id
156 schema:value pub.1085379321
157 rdf:type schema:PropertyValue
158 N897c0fe1960548b4b49a349bc18f3ddb rdf:first sg:person.014150433611.13
159 rdf:rest N048ce018324a4ff38ad3a8fc7556f293
160 N8f662026a33a4f0f9f49657f40d56801 rdf:first sg:person.013652056262.76
161 rdf:rest Nb5922a7fcee24c25a3388d5e4c6baedf
162 N917f8c3ae2e940418652646003219e10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Data Interpretation, Statistical
164 rdf:type schema:DefinedTerm
165 N940bb434a2c34fff8611fc1c76133376 rdf:first sg:person.0775757667.19
166 rdf:rest N670b4800bdc04bf4812da99883f7b695
167 N9587fd7bc1f04cec89565e6920b17229 schema:volumeNumber 18
168 rdf:type schema:PublicationVolume
169 N960fd31514c54b08974d22322a8ac238 rdf:first sg:person.01025333271.38
170 rdf:rest N8f662026a33a4f0f9f49657f40d56801
171 Na7d86d9012e847e7b70deeb1c0789508 rdf:first sg:person.0666657327.25
172 rdf:rest N51922481116a482db6557160650db07d
173 Nada710f3ac214343bb7c9dc7f54a1bbb rdf:first sg:person.010270402447.63
174 rdf:rest rdf:nil
175 Nb05873b950c14548bca842df0a05f2e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Clinical Trials as Topic
177 rdf:type schema:DefinedTerm
178 Nb5922a7fcee24c25a3388d5e4c6baedf rdf:first sg:person.010013613077.96
179 rdf:rest Nada710f3ac214343bb7c9dc7f54a1bbb
180 Nba8c749d9c804fd49fe1bf303b20daf3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Research Design
182 rdf:type schema:DefinedTerm
183 Ncfa83b9118de4d62b61612e1a2765988 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Bayes Theorem
185 rdf:type schema:DefinedTerm
186 Nd0caa84860864aa1a52e7baf3e19c0af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Meta-Analysis as Topic
188 rdf:type schema:DefinedTerm
189 Nd6307631c0934717949fea0b78ad7540 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Research Personnel
191 rdf:type schema:DefinedTerm
192 Nda6c788ac3eb4a4aaf9e97401dd3bac3 schema:name Springer Nature - SN SciGraph project
193 rdf:type schema:Organization
194 Ndd9110350804477bbe045975e4830572 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Evidence-Based Medicine
196 rdf:type schema:DefinedTerm
197 Ne188301b91a148f68e5e9d1906dcc610 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Review Literature as Topic
199 rdf:type schema:DefinedTerm
200 Ne57b7a0ac22a4ee3bc04a22e1d87af94 schema:issueNumber 1
201 rdf:type schema:PublicationIssue
202 Necc0586da4274dc4bd3774b954c4e43c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Humans
204 rdf:type schema:DefinedTerm
205 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
206 schema:name Medical and Health Sciences
207 rdf:type schema:DefinedTerm
208 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
209 schema:name Public Health and Health Services
210 rdf:type schema:DefinedTerm
211 sg:grant.2769264 http://pending.schema.org/fundedItem sg:pub.10.1186/s13063-017-1955-y
212 rdf:type schema:MonetaryGrant
213 sg:grant.3498744 http://pending.schema.org/fundedItem sg:pub.10.1186/s13063-017-1955-y
214 rdf:type schema:MonetaryGrant
215 sg:grant.3560679 http://pending.schema.org/fundedItem sg:pub.10.1186/s13063-017-1955-y
216 rdf:type schema:MonetaryGrant
217 sg:grant.3864196 http://pending.schema.org/fundedItem sg:pub.10.1186/s13063-017-1955-y
218 rdf:type schema:MonetaryGrant
219 sg:grant.3864548 http://pending.schema.org/fundedItem sg:pub.10.1186/s13063-017-1955-y
220 rdf:type schema:MonetaryGrant
221 sg:grant.4456482 http://pending.schema.org/fundedItem sg:pub.10.1186/s13063-017-1955-y
222 rdf:type schema:MonetaryGrant
223 sg:grant.6945398 http://pending.schema.org/fundedItem sg:pub.10.1186/s13063-017-1955-y
224 rdf:type schema:MonetaryGrant
225 sg:grant.7158040 http://pending.schema.org/fundedItem sg:pub.10.1186/s13063-017-1955-y
226 rdf:type schema:MonetaryGrant
227 sg:journal.1297400 schema:issn 1468-6708
228 1745-6215
229 schema:name Trials
230 schema:publisher Springer Nature
231 rdf:type schema:Periodical
232 sg:person.010013613077.96 schema:affiliation grid-institutes:grid.8991.9
233 schema:familyName Sharples
234 schema:givenName Linda D.
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010013613077.96
236 rdf:type schema:Person
237 sg:person.01025333271.38 schema:affiliation grid-institutes:grid.415052.7
238 schema:familyName Tierney
239 schema:givenName Jayne F.
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025333271.38
241 rdf:type schema:Person
242 sg:person.010270402447.63 schema:affiliation grid-institutes:grid.5337.2
243 schema:familyName Jones
244 schema:givenName Hayley E.
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010270402447.63
246 rdf:type schema:Person
247 sg:person.011464424137.54 schema:affiliation grid-institutes:grid.4991.5
248 schema:familyName Lokuge
249 schema:givenName Kusal
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011464424137.54
251 rdf:type schema:Person
252 sg:person.01164572174.67 schema:affiliation grid-institutes:grid.5337.2
253 schema:familyName Higgins
254 schema:givenName Julian P. T.
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164572174.67
256 rdf:type schema:Person
257 sg:person.01311366651.71 schema:affiliation grid-institutes:grid.5335.0
258 schema:familyName Forman
259 schema:givenName Julia R.
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311366651.71
261 rdf:type schema:Person
262 sg:person.013652056262.76 schema:affiliation grid-institutes:grid.415038.b
263 schema:familyName White
264 schema:givenName Ian R.
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013652056262.76
266 rdf:type schema:Person
267 sg:person.014150433611.13 schema:affiliation grid-institutes:grid.9909.9
268 schema:familyName Cicero
269 schema:givenName Robert
270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014150433611.13
271 rdf:type schema:Person
272 sg:person.015053414620.47 schema:affiliation grid-institutes:grid.9909.9
273 schema:familyName Thorpe
274 schema:givenName Benjamin
275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053414620.47
276 rdf:type schema:Person
277 sg:person.0577155643.50 schema:affiliation grid-institutes:grid.9909.9
278 schema:familyName Smith
279 schema:givenName Isabelle L.
280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577155643.50
281 rdf:type schema:Person
282 sg:person.0666657327.25 schema:affiliation grid-institutes:grid.5337.2
283 schema:familyName Clayton
284 schema:givenName Gemma L.
285 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666657327.25
286 rdf:type schema:Person
287 sg:person.0775757667.19 schema:affiliation grid-institutes:grid.4991.5
288 schema:familyName Mihaylova
289 schema:givenName Borislava
290 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775757667.19
291 rdf:type schema:Person
292 sg:pub.10.1007/s40273-015-0346-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022262721
293 https://doi.org/10.1007/s40273-015-0346-z
294 rdf:type schema:CreativeWork
295 sg:pub.10.1186/1471-2288-13-50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031669542
296 https://doi.org/10.1186/1471-2288-13-50
297 rdf:type schema:CreativeWork
298 sg:pub.10.1186/1471-2288-9-29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028224674
299 https://doi.org/10.1186/1471-2288-9-29
300 rdf:type schema:CreativeWork
301 sg:pub.10.1186/1748-5908-5-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009194900
302 https://doi.org/10.1186/1748-5908-5-10
303 rdf:type schema:CreativeWork
304 sg:pub.10.1186/1748-5908-5-56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034698726
305 https://doi.org/10.1186/1748-5908-5-56
306 rdf:type schema:CreativeWork
307 sg:pub.10.1186/2046-4053-1-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042840828
308 https://doi.org/10.1186/2046-4053-1-10
309 rdf:type schema:CreativeWork
310 sg:pub.10.1186/s12874-015-0102-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027978976
311 https://doi.org/10.1186/s12874-015-0102-2
312 rdf:type schema:CreativeWork
313 sg:pub.10.2165/00019053-200624110-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006336042
314 https://doi.org/10.2165/00019053-200624110-00003
315 rdf:type schema:CreativeWork
316 grid-institutes:grid.415038.b schema:alternateName MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
317 schema:name MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
318 rdf:type schema:Organization
319 grid-institutes:grid.415052.7 schema:alternateName MRC Clinical Trials Unit, University College London, London, UK
320 schema:name MRC Clinical Trials Unit, University College London, London, UK
321 rdf:type schema:Organization
322 grid-institutes:grid.4991.5 schema:alternateName Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
323 schema:name Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
324 rdf:type schema:Organization
325 grid-institutes:grid.5335.0 schema:alternateName Cambridge Clinical Trials Unit, University of Cambridge, Cambridge, UK
326 schema:name Cambridge Clinical Trials Unit, University of Cambridge, Cambridge, UK
327 rdf:type schema:Organization
328 grid-institutes:grid.5337.2 schema:alternateName School of Social and Community Medicine, Faculty of Health Sciences, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS UK
329 schema:name School of Social and Community Medicine, Faculty of Health Sciences, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS UK
330 rdf:type schema:Organization
331 grid-institutes:grid.8991.9 schema:alternateName London School of Hygiene and Tropical Medicine, London, UK
332 schema:name London School of Hygiene and Tropical Medicine, London, UK
333 rdf:type schema:Organization
334 grid-institutes:grid.9909.9 schema:alternateName Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
335 schema:name Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
336 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...