Common pathways and functional profiles reveal underlying patterns in Breast, Kidney and Lung cancers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-05-26

AUTHORS

Sergio Romera-Giner, Zoraida Andreu Martínez, Francisco García-García, Marta R. Hidalgo

ABSTRACT

BACKGROUND: Cancer is a major health problem which presents a high heterogeneity. In this work we explore omics data from Breast, Kidney and Lung cancers at different levels as signalling pathways, functions and miRNAs, as part of the CAMDA 2019 Hi-Res Cancer Data Integration Challenge. Our goal is to find common functional patterns which give rise to the generic microenvironment in these cancers and contribute to a better understanding of cancer pathogenesis and a possible clinical translation down further studies. RESULTS: After a tumor versus normal tissue comparison of the signaling pathways and cell functions, we found 828 subpathways, 912 Gene Ontology terms and 91 Uniprot keywords commonly significant to the three studied tumors. Such features interestingly show the power to classify tumor samples into subgroups with different survival times, and predict tumor state and tissue of origin through machine learning techniques. We also found cancer-specific alternative activation subpathways, such as the ones activating STAT5A in ErbB signaling pathway. miRNAs evaluation show the role of miRNAs, such as mir-184 and mir-206, as regulators of many cancer pathways and their value in prognoses. CONCLUSIONS: The study of the common functional and pathway activities of different cancers is an interesting approach to understand molecular mechanisms of the tumoral process regardless of their tissue of origin. The existence of platforms as the CAMDA challenges provide the opportunity to share knowledge and improve future scientific research and clinical practice. More... »

PAGES

9

References to SciGraph publications

  • 2000. Modeling Survival Data: Extending the Cox Model in NONE
  • 2016-12-07. miR-206 inhibits renal cell cancer growth by targeting GAK in CURRENT MEDICAL SCIENCE
  • 2000-05. Gene Ontology: tool for the unification of biology in NATURE GENETICS
  • 2010-11-30. Tumour suppressor microRNA-584 directly targets oncogene Rock-1 and decreases invasion ability in human clear cell renal cell carcinoma in BRITISH JOURNAL OF CANCER
  • 2018-07-27. Hippo Signaling Pathway Dysregulation in Human Huntington’s Disease Brain and Neuronal Stem Cells in SCIENTIFIC REPORTS
  • 2014-10-26. KCNJ1 inhibits tumor proliferation and metastasis and is a prognostic factor in clear cell renal cell carcinoma in TUMOR BIOLOGY
  • 2009. Cross-Validation in ENCYCLOPEDIA OF DATABASE SYSTEMS
  • 2010-05-06. A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy in CELL DEATH & DISEASE
  • 2017-12-08. Ten quick tips for machine learning in computational biology in BIODATA MINING
  • 2006-04. Mechanisms of Disease: signaling pathways and immunobiology of inflammatory myopathies in NATURE REVIEWS RHEUMATOLOGY
  • 2001-10. Random Forests in MACHINE LEARNING
  • 2020-03-25. How cancer genomics is transforming diagnosis and treatment in NATURE
  • 2016-02-02. Identification of the dopamine transporter SLC6A3 as a biomarker for patients with renal cell carcinoma in MOLECULAR CANCER
  • 2010-03-02. A scaling normalization method for differential expression analysis of RNA-seq data in GENOME BIOLOGY
  • 2019-07-17. Multiple signaling pathways in Sertoli cells: recent findings in spermatogenesis in CELL DEATH & DISEASE
  • 2018-09-28. The intracellular signalosome of PD-L1 in cancer cells in SIGNAL TRANSDUCTION AND TARGETED THERAPY
  • 2018-01-02. Perturbation-response genes reveal signaling footprints in cancer gene expression in NATURE COMMUNICATIONS
  • 2014-06-15. Recurrent read-through fusion transcripts in breast cancer in BREAST CANCER RESEARCH AND TREATMENT
  • 2016. ggplot2, Elegant Graphics for Data Analysis in NONE
  • 2020-09-16. Array programming with NumPy in NATURE
  • 2020-02-17. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors in NATURE IMMUNOLOGY
  • 2009. Data Mining in Agriculture in NONE
  • 2019-07-27. microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1 in BMC CANCER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13062-021-00293-8

    DOI

    http://dx.doi.org/10.1186/s13062-021-00293-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1138356560

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34039407


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Neoplastic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kidney Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lung Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MicroRNAs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcriptome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "ATOS Research & Innovation (ARI), 28037 Madrid, Spain", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Bioinformatics & Biostatistics Unit, Principe Felipe Research Center, 46012 Valencia, Spain", 
                "ATOS Research & Innovation (ARI), 28037 Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Romera-Giner", 
            "givenName": "Sergio", 
            "id": "sg:person.012635755137.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012635755137.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Foundation Valencian Institute of Oncology (FIVO), 46009 Valencia, Spain", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Bioinformatics & Biostatistics Unit, Principe Felipe Research Center, 46012 Valencia, Spain", 
                "Foundation Valencian Institute of Oncology (FIVO), 46009 Valencia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mart\u00ednez", 
            "givenName": "Zoraida Andreu", 
            "id": "sg:person.016533123707.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016533123707.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Spanish National Bioinformatics Institute, ELIXIR-Spain (INB, ELIXIR-ES), 46012 Valencia, Spain", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Bioinformatics & Biostatistics Unit, Principe Felipe Research Center, 46012 Valencia, Spain", 
                "Spanish National Bioinformatics Institute, ELIXIR-Spain (INB, ELIXIR-ES), 46012 Valencia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garc\u00eda-Garc\u00eda", 
            "givenName": "Francisco", 
            "id": "sg:person.01107525370.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107525370.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bioinformatics & Biostatistics Unit, Principe Felipe Research Center, 46012 Valencia, Spain", 
              "id": "http://www.grid.ac/institutes/grid.418274.c", 
              "name": [
                "Bioinformatics & Biostatistics Unit, Principe Felipe Research Center, 46012 Valencia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hidalgo", 
            "givenName": "Marta R.", 
            "id": "sg:person.011502442312.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011502442312.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41586-020-2649-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130863323", 
              "https://doi.org/10.1038/s41586-020-2649-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-29319-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105781368", 
              "https://doi.org/10.1038/s41598-018-29319-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/d41586-020-00845-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125894349", 
              "https://doi.org/10.1038/d41586-020-00845-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-014-3019-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029194398", 
              "https://doi.org/10.1007/s10549-014-3019-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41419-019-1782-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1118044894", 
              "https://doi.org/10.1038/s41419-019-1782-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncprheum0140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007448592", 
              "https://doi.org/10.1038/ncprheum0140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-88615-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037069466", 
              "https://doi.org/10.1007/978-0-387-88615-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11596-016-1674-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000880225", 
              "https://doi.org/10.1007/s11596-016-1674-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bjc.6606028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003650073", 
              "https://doi.org/10.1038/sj.bjc.6606028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12885-019-5951-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1119917022", 
              "https://doi.org/10.1186/s12885-019-5951-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-02391-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100092806", 
              "https://doi.org/10.1038/s41467-017-02391-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-3-r25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050509557", 
              "https://doi.org/10.1186/gb-2010-11-3-r25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cddis.2010.18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032328730", 
              "https://doi.org/10.1038/cddis.2010.18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41590-019-0589-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124911865", 
              "https://doi.org/10.1038/s41590-019-0589-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13277-014-2746-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003259222", 
              "https://doi.org/10.1007/s13277-014-2746-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-3294-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023222883", 
              "https://doi.org/10.1007/978-1-4757-3294-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24277-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028525626", 
              "https://doi.org/10.1007/978-3-319-24277-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13040-017-0155-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099596880", 
              "https://doi.org/10.1186/s13040-017-0155-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-39940-9_565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051979687", 
              "https://doi.org/10.1007/978-0-387-39940-9_565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41392-018-0022-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107189116", 
              "https://doi.org/10.1038/s41392-018-0022-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12943-016-0495-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034032727", 
              "https://doi.org/10.1186/s12943-016-0495-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-05-26", 
        "datePublishedReg": "2021-05-26", 
        "description": "BACKGROUND: Cancer is a major health problem which presents a high heterogeneity. In this work we explore omics data from Breast, Kidney and Lung cancers at different levels as signalling pathways, functions and miRNAs, as part of the CAMDA 2019 Hi-Res Cancer Data Integration Challenge. Our goal is to find common functional patterns which give rise to the generic microenvironment in these cancers and contribute to a better understanding of cancer pathogenesis and a possible clinical translation down further studies.\nRESULTS: After a tumor versus normal tissue comparison of the signaling pathways and cell functions, we found 828 subpathways, 912 Gene Ontology terms and 91 Uniprot keywords commonly significant to the three studied tumors. Such features interestingly show the power to classify tumor samples into subgroups with different survival times, and predict tumor state and tissue of origin through machine learning techniques. We also found cancer-specific alternative activation subpathways, such as the ones activating STAT5A in ErbB signaling pathway. miRNAs evaluation show the role of miRNAs, such as mir-184 and mir-206, as regulators of many cancer pathways and their value in prognoses.\nCONCLUSIONS: The study of the common functional and pathway activities of different cancers is an interesting approach to understand molecular mechanisms of the tumoral process regardless of their tissue of origin. The existence of platforms as the CAMDA challenges provide the opportunity to share knowledge and improve future scientific research and clinical practice.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13062-021-00293-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1036001", 
            "issn": [
              "1745-6150"
            ], 
            "name": "Biology Direct", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "tissue of origin", 
          "Gene Ontology terms", 
          "role of miRNAs", 
          "ontology terms", 
          "omics data", 
          "molecular mechanisms", 
          "cancer pathways", 
          "pathway activity", 
          "miR-184", 
          "miR-206", 
          "tissue comparisons", 
          "cancer pathogenesis", 
          "functional profiles", 
          "subpathways", 
          "pathway", 
          "miRNAs", 
          "cell function", 
          "different cancers", 
          "tumor state", 
          "common pathway", 
          "functional patterns", 
          "tumor samples", 
          "STAT5A", 
          "regulator", 
          "ErbB", 
          "tissue", 
          "better understanding", 
          "tumoral process", 
          "future scientific research", 
          "origin", 
          "cancer", 
          "microenvironment", 
          "function", 
          "patterns", 
          "possible clinical translation", 
          "lung cancer", 
          "translation", 
          "high heterogeneity", 
          "Further studies", 
          "different levels", 
          "mechanism", 
          "role", 
          "clinical translation", 
          "major health problem", 
          "different survival times", 
          "activity", 
          "pathogenesis", 
          "interesting approach", 
          "understanding", 
          "heterogeneity", 
          "kidney", 
          "survival time", 
          "clinical practice", 
          "health problems", 
          "tumors", 
          "levels", 
          "study", 
          "profile", 
          "breast", 
          "process", 
          "knowledge", 
          "part", 
          "such features", 
          "existence", 
          "rise", 
          "prognosis", 
          "data", 
          "features", 
          "challenges", 
          "comparison", 
          "opportunities", 
          "subgroups", 
          "platform", 
          "scientific research", 
          "samples", 
          "data integration challenges", 
          "approach", 
          "state", 
          "one", 
          "time", 
          "research", 
          "work", 
          "evaluation", 
          "goal", 
          "keywords", 
          "practice", 
          "technique", 
          "values", 
          "terms", 
          "problem", 
          "machine", 
          "power", 
          "integration challenges", 
          "Hi-Res Cancer Data Integration Challenge", 
          "Cancer Data Integration Challenge", 
          "common functional patterns", 
          "generic microenvironment", 
          "normal tissue comparison", 
          "Uniprot keywords", 
          "cancer-specific alternative activation subpathways", 
          "alternative activation subpathways", 
          "activation subpathways", 
          "miRNAs evaluation", 
          "existence of platforms", 
          "CAMDA challenges"
        ], 
        "name": "Common pathways and functional profiles reveal underlying patterns in Breast, Kidney and Lung cancers", 
        "pagination": "9", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1138356560"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13062-021-00293-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34039407"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13062-021-00293-8", 
          "https://app.dimensions.ai/details/publication/pub.1138356560"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_910.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13062-021-00293-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13062-021-00293-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13062-021-00293-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13062-021-00293-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13062-021-00293-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    323 TRIPLES      22 PREDICATES      163 URIs      132 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13062-021-00293-8 schema:about N05086dc6189047efa34a9d677ed0e352
    2 N1e610b4645d54760aff14e3bbe3e237c
    3 N431ee8b0810548548ad333ae2e65b08a
    4 N4e9789ad688449529dcf1bfe53aa564b
    5 N7572ad0e469a4b4fb02a348384306764
    6 N862450de5bd240e38a450bca530c6973
    7 Nc8d7c3e29375496db116e669fedc99c5
    8 Ncf4187a453764be2989730376e54641c
    9 Nf97ae7120dac4e08a2c28a47f175e8f5
    10 anzsrc-for:11
    11 anzsrc-for:1112
    12 schema:author N7881809b9b1b4b0eb8982ba020ba72e3
    13 schema:citation sg:pub.10.1007/978-0-387-39940-9_565
    14 sg:pub.10.1007/978-0-387-88615-2
    15 sg:pub.10.1007/978-1-4757-3294-8
    16 sg:pub.10.1007/978-3-319-24277-4
    17 sg:pub.10.1007/s10549-014-3019-2
    18 sg:pub.10.1007/s11596-016-1674-8
    19 sg:pub.10.1007/s13277-014-2746-7
    20 sg:pub.10.1023/a:1010933404324
    21 sg:pub.10.1038/75556
    22 sg:pub.10.1038/cddis.2010.18
    23 sg:pub.10.1038/d41586-020-00845-4
    24 sg:pub.10.1038/ncprheum0140
    25 sg:pub.10.1038/s41392-018-0022-9
    26 sg:pub.10.1038/s41419-019-1782-z
    27 sg:pub.10.1038/s41467-017-02391-6
    28 sg:pub.10.1038/s41586-020-2649-2
    29 sg:pub.10.1038/s41590-019-0589-5
    30 sg:pub.10.1038/s41598-018-29319-4
    31 sg:pub.10.1038/sj.bjc.6606028
    32 sg:pub.10.1186/gb-2010-11-3-r25
    33 sg:pub.10.1186/s12885-019-5951-3
    34 sg:pub.10.1186/s12943-016-0495-5
    35 sg:pub.10.1186/s13040-017-0155-3
    36 schema:datePublished 2021-05-26
    37 schema:datePublishedReg 2021-05-26
    38 schema:description BACKGROUND: Cancer is a major health problem which presents a high heterogeneity. In this work we explore omics data from Breast, Kidney and Lung cancers at different levels as signalling pathways, functions and miRNAs, as part of the CAMDA 2019 Hi-Res Cancer Data Integration Challenge. Our goal is to find common functional patterns which give rise to the generic microenvironment in these cancers and contribute to a better understanding of cancer pathogenesis and a possible clinical translation down further studies. RESULTS: After a tumor versus normal tissue comparison of the signaling pathways and cell functions, we found 828 subpathways, 912 Gene Ontology terms and 91 Uniprot keywords commonly significant to the three studied tumors. Such features interestingly show the power to classify tumor samples into subgroups with different survival times, and predict tumor state and tissue of origin through machine learning techniques. We also found cancer-specific alternative activation subpathways, such as the ones activating STAT5A in ErbB signaling pathway. miRNAs evaluation show the role of miRNAs, such as mir-184 and mir-206, as regulators of many cancer pathways and their value in prognoses. CONCLUSIONS: The study of the common functional and pathway activities of different cancers is an interesting approach to understand molecular mechanisms of the tumoral process regardless of their tissue of origin. The existence of platforms as the CAMDA challenges provide the opportunity to share knowledge and improve future scientific research and clinical practice.
    39 schema:genre article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree true
    42 schema:isPartOf Na2af9f92234e483f9f9aa3cfc71a703d
    43 Nb9c8402e9894489db1cc08b70d1962cc
    44 sg:journal.1036001
    45 schema:keywords CAMDA challenges
    46 Cancer Data Integration Challenge
    47 ErbB
    48 Further studies
    49 Gene Ontology terms
    50 Hi-Res Cancer Data Integration Challenge
    51 STAT5A
    52 Uniprot keywords
    53 activation subpathways
    54 activity
    55 alternative activation subpathways
    56 approach
    57 better understanding
    58 breast
    59 cancer
    60 cancer pathogenesis
    61 cancer pathways
    62 cancer-specific alternative activation subpathways
    63 cell function
    64 challenges
    65 clinical practice
    66 clinical translation
    67 common functional patterns
    68 common pathway
    69 comparison
    70 data
    71 data integration challenges
    72 different cancers
    73 different levels
    74 different survival times
    75 evaluation
    76 existence
    77 existence of platforms
    78 features
    79 function
    80 functional patterns
    81 functional profiles
    82 future scientific research
    83 generic microenvironment
    84 goal
    85 health problems
    86 heterogeneity
    87 high heterogeneity
    88 integration challenges
    89 interesting approach
    90 keywords
    91 kidney
    92 knowledge
    93 levels
    94 lung cancer
    95 machine
    96 major health problem
    97 mechanism
    98 miR-184
    99 miR-206
    100 miRNAs
    101 miRNAs evaluation
    102 microenvironment
    103 molecular mechanisms
    104 normal tissue comparison
    105 omics data
    106 one
    107 ontology terms
    108 opportunities
    109 origin
    110 part
    111 pathogenesis
    112 pathway
    113 pathway activity
    114 patterns
    115 platform
    116 possible clinical translation
    117 power
    118 practice
    119 problem
    120 process
    121 profile
    122 prognosis
    123 regulator
    124 research
    125 rise
    126 role
    127 role of miRNAs
    128 samples
    129 scientific research
    130 state
    131 study
    132 subgroups
    133 subpathways
    134 such features
    135 survival time
    136 technique
    137 terms
    138 time
    139 tissue
    140 tissue comparisons
    141 tissue of origin
    142 translation
    143 tumor samples
    144 tumor state
    145 tumoral process
    146 tumors
    147 understanding
    148 values
    149 work
    150 schema:name Common pathways and functional profiles reveal underlying patterns in Breast, Kidney and Lung cancers
    151 schema:pagination 9
    152 schema:productId N14ad5a8089d0482398e7f9bed2822d46
    153 N28165c0f38e546db9e4babc1abefdf04
    154 N28871205fb794320a26e862291ab4b3e
    155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138356560
    156 https://doi.org/10.1186/s13062-021-00293-8
    157 schema:sdDatePublished 2022-01-01T19:02
    158 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    159 schema:sdPublisher N32458df5d7ea4a389d2cf84a67e48298
    160 schema:url https://doi.org/10.1186/s13062-021-00293-8
    161 sgo:license sg:explorer/license/
    162 sgo:sdDataset articles
    163 rdf:type schema:ScholarlyArticle
    164 N05086dc6189047efa34a9d677ed0e352 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Gene Expression Regulation, Neoplastic
    166 rdf:type schema:DefinedTerm
    167 N14ad5a8089d0482398e7f9bed2822d46 schema:name doi
    168 schema:value 10.1186/s13062-021-00293-8
    169 rdf:type schema:PropertyValue
    170 N181034e4a3c34fbebfc908c6b5d408ba rdf:first sg:person.011502442312.20
    171 rdf:rest rdf:nil
    172 N1848fb78d40740a6a18375c4df87f839 rdf:first sg:person.01107525370.07
    173 rdf:rest N181034e4a3c34fbebfc908c6b5d408ba
    174 N1e610b4645d54760aff14e3bbe3e237c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Signal Transduction
    176 rdf:type schema:DefinedTerm
    177 N28165c0f38e546db9e4babc1abefdf04 schema:name dimensions_id
    178 schema:value pub.1138356560
    179 rdf:type schema:PropertyValue
    180 N28871205fb794320a26e862291ab4b3e schema:name pubmed_id
    181 schema:value 34039407
    182 rdf:type schema:PropertyValue
    183 N32458df5d7ea4a389d2cf84a67e48298 schema:name Springer Nature - SN SciGraph project
    184 rdf:type schema:Organization
    185 N431ee8b0810548548ad333ae2e65b08a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Transcriptome
    187 rdf:type schema:DefinedTerm
    188 N4e9789ad688449529dcf1bfe53aa564b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name MicroRNAs
    190 rdf:type schema:DefinedTerm
    191 N7572ad0e469a4b4fb02a348384306764 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Gene Expression Profiling
    193 rdf:type schema:DefinedTerm
    194 N7881809b9b1b4b0eb8982ba020ba72e3 rdf:first sg:person.012635755137.06
    195 rdf:rest Nb914581d71b44ed5adf5212eed18276f
    196 N862450de5bd240e38a450bca530c6973 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Lung Neoplasms
    198 rdf:type schema:DefinedTerm
    199 Na2af9f92234e483f9f9aa3cfc71a703d schema:volumeNumber 16
    200 rdf:type schema:PublicationVolume
    201 Nb914581d71b44ed5adf5212eed18276f rdf:first sg:person.016533123707.20
    202 rdf:rest N1848fb78d40740a6a18375c4df87f839
    203 Nb9c8402e9894489db1cc08b70d1962cc schema:issueNumber 1
    204 rdf:type schema:PublicationIssue
    205 Nc8d7c3e29375496db116e669fedc99c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Kidney Neoplasms
    207 rdf:type schema:DefinedTerm
    208 Ncf4187a453764be2989730376e54641c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Humans
    210 rdf:type schema:DefinedTerm
    211 Nf97ae7120dac4e08a2c28a47f175e8f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Breast Neoplasms
    213 rdf:type schema:DefinedTerm
    214 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    215 schema:name Medical and Health Sciences
    216 rdf:type schema:DefinedTerm
    217 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    218 schema:name Oncology and Carcinogenesis
    219 rdf:type schema:DefinedTerm
    220 sg:journal.1036001 schema:issn 1745-6150
    221 schema:name Biology Direct
    222 schema:publisher Springer Nature
    223 rdf:type schema:Periodical
    224 sg:person.01107525370.07 schema:affiliation grid-institutes:None
    225 schema:familyName García-García
    226 schema:givenName Francisco
    227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107525370.07
    228 rdf:type schema:Person
    229 sg:person.011502442312.20 schema:affiliation grid-institutes:grid.418274.c
    230 schema:familyName Hidalgo
    231 schema:givenName Marta R.
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011502442312.20
    233 rdf:type schema:Person
    234 sg:person.012635755137.06 schema:affiliation grid-institutes:None
    235 schema:familyName Romera-Giner
    236 schema:givenName Sergio
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012635755137.06
    238 rdf:type schema:Person
    239 sg:person.016533123707.20 schema:affiliation grid-institutes:None
    240 schema:familyName Martínez
    241 schema:givenName Zoraida Andreu
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016533123707.20
    243 rdf:type schema:Person
    244 sg:pub.10.1007/978-0-387-39940-9_565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051979687
    245 https://doi.org/10.1007/978-0-387-39940-9_565
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/978-0-387-88615-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037069466
    248 https://doi.org/10.1007/978-0-387-88615-2
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/978-1-4757-3294-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023222883
    251 https://doi.org/10.1007/978-1-4757-3294-8
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/978-3-319-24277-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028525626
    254 https://doi.org/10.1007/978-3-319-24277-4
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/s10549-014-3019-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029194398
    257 https://doi.org/10.1007/s10549-014-3019-2
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1007/s11596-016-1674-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000880225
    260 https://doi.org/10.1007/s11596-016-1674-8
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1007/s13277-014-2746-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003259222
    263 https://doi.org/10.1007/s13277-014-2746-7
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    266 https://doi.org/10.1023/a:1010933404324
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
    269 https://doi.org/10.1038/75556
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/cddis.2010.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032328730
    272 https://doi.org/10.1038/cddis.2010.18
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/d41586-020-00845-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125894349
    275 https://doi.org/10.1038/d41586-020-00845-4
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/ncprheum0140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007448592
    278 https://doi.org/10.1038/ncprheum0140
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/s41392-018-0022-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107189116
    281 https://doi.org/10.1038/s41392-018-0022-9
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/s41419-019-1782-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1118044894
    284 https://doi.org/10.1038/s41419-019-1782-z
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/s41467-017-02391-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100092806
    287 https://doi.org/10.1038/s41467-017-02391-6
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/s41586-020-2649-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130863323
    290 https://doi.org/10.1038/s41586-020-2649-2
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/s41590-019-0589-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124911865
    293 https://doi.org/10.1038/s41590-019-0589-5
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/s41598-018-29319-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105781368
    296 https://doi.org/10.1038/s41598-018-29319-4
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/sj.bjc.6606028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003650073
    299 https://doi.org/10.1038/sj.bjc.6606028
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1186/gb-2010-11-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050509557
    302 https://doi.org/10.1186/gb-2010-11-3-r25
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1186/s12885-019-5951-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119917022
    305 https://doi.org/10.1186/s12885-019-5951-3
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1186/s12943-016-0495-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034032727
    308 https://doi.org/10.1186/s12943-016-0495-5
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1186/s13040-017-0155-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099596880
    311 https://doi.org/10.1186/s13040-017-0155-3
    312 rdf:type schema:CreativeWork
    313 grid-institutes:None schema:alternateName ATOS Research & Innovation (ARI), 28037 Madrid, Spain
    314 Foundation Valencian Institute of Oncology (FIVO), 46009 Valencia, Spain
    315 Spanish National Bioinformatics Institute, ELIXIR-Spain (INB, ELIXIR-ES), 46012 Valencia, Spain
    316 schema:name ATOS Research & Innovation (ARI), 28037 Madrid, Spain
    317 Bioinformatics & Biostatistics Unit, Principe Felipe Research Center, 46012 Valencia, Spain
    318 Foundation Valencian Institute of Oncology (FIVO), 46009 Valencia, Spain
    319 Spanish National Bioinformatics Institute, ELIXIR-Spain (INB, ELIXIR-ES), 46012 Valencia, Spain
    320 rdf:type schema:Organization
    321 grid-institutes:grid.418274.c schema:alternateName Bioinformatics & Biostatistics Unit, Principe Felipe Research Center, 46012 Valencia, Spain
    322 schema:name Bioinformatics & Biostatistics Unit, Principe Felipe Research Center, 46012 Valencia, Spain
    323 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...