A novel gene selection method for gene expression data for the task of cancer type classification View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-02-08

AUTHORS

N. Özlem ÖZCAN ŞİMŞEK, Arzucan ÖZGÜR, Fikret GÜRGEN

ABSTRACT

Cancer is a poligenetic disease with each cancer type having a different mutation profile. Genomic data can be utilized to detect these profiles and to diagnose and differentiate cancer types. Variant calling provide mutation information. Gene expression data reveal the altered cell behaviour. The combination of the mutation and expression information can lead to accurate discrimination of different cancer types. In this study, we utilized and transferred the information of existing mutations for a novel gene selection method for gene expression data. We tested the proposed method in order to diagnose and differentiate cancer types. It is a disease specific method as both the mutations and expressions are filtered according to the selected cancer types. Our experiment results show that the proposed gene selection method leads to similar or improved performance metrics compared to classical feature selection methods and curated gene sets. More... »

PAGES

7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13062-020-00290-3

DOI

http://dx.doi.org/10.1186/s13062-020-00290-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1135194344

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33557857


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Engineering, Bogazici University, Bebek, \u0130stanbul, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.11220.30", 
          "name": [
            "Department of Computer Engineering, Bogazici University, Bebek, \u0130stanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u015e\u0130M\u015eEK", 
        "givenName": "N. \u00d6zlem \u00d6ZCAN", 
        "id": "sg:person.012232656130.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012232656130.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Engineering, Bogazici University, Bebek, \u0130stanbul, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.11220.30", 
          "name": [
            "Department of Computer Engineering, Bogazici University, Bebek, \u0130stanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00d6ZG\u00dcR", 
        "givenName": "Arzucan", 
        "id": "sg:person.01125743776.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125743776.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Engineering, Bogazici University, Bebek, \u0130stanbul, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.11220.30", 
          "name": [
            "Department of Computer Engineering, Bogazici University, Bebek, \u0130stanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00dcRGEN", 
        "givenName": "Fikret", 
        "id": "sg:person.01066054020.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066054020.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-9-319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052298679", 
          "https://doi.org/10.1186/1471-2105-9-319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-019-1689-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122019643", 
          "https://doi.org/10.1038/s41586-019-1689-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-020-1943-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124597030", 
          "https://doi.org/10.1038/s41586-020-1943-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-020-1965-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124590164", 
          "https://doi.org/10.1038/s41586-020-1965-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031327100", 
          "https://doi.org/10.1186/1471-2105-14-198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-019-2868-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1117139859", 
          "https://doi.org/10.1186/s12859-019-2868-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6604207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018865517", 
          "https://doi.org/10.1038/sj.bjc.6604207"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-02-08", 
    "datePublishedReg": "2021-02-08", 
    "description": "Cancer is a poligenetic disease with each cancer type having a different mutation profile. Genomic data can be utilized to detect these profiles and to diagnose and differentiate cancer types. Variant calling provide mutation information. Gene expression data reveal the altered cell behaviour. The combination of the mutation and expression information can lead to accurate discrimination of different cancer types. In this study, we utilized and transferred the information of existing mutations for a novel gene selection method for gene expression data. We tested the proposed method in order to diagnose and differentiate cancer types. It is a disease specific method as both the mutations and expressions are filtered according to the selected cancer types. Our experiment results show that the proposed gene selection method leads to similar or improved performance metrics compared to classical feature selection methods and curated gene sets.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13062-020-00290-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036001", 
        "issn": [
          "1745-6150"
        ], 
        "name": "Biology Direct", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "gene expression data", 
      "gene selection methods", 
      "expression data", 
      "novel gene selection method", 
      "cancer types", 
      "curated gene sets", 
      "altered cell behavior", 
      "gene sets", 
      "genomic data", 
      "expression information", 
      "different cancer types", 
      "cell behavior", 
      "cancer type classification", 
      "mutations", 
      "mutation information", 
      "mutation profiles", 
      "expression", 
      "different mutation profiles", 
      "accurate discrimination", 
      "selection method", 
      "types", 
      "disease-specific methods", 
      "profile", 
      "classical feature selection methods", 
      "cancer", 
      "data", 
      "information", 
      "disease", 
      "type classification", 
      "combination", 
      "study", 
      "specific method", 
      "discrimination", 
      "results", 
      "set", 
      "feature selection method", 
      "method", 
      "classification", 
      "order", 
      "behavior", 
      "metrics", 
      "improved performance metrics", 
      "task", 
      "experiment results", 
      "performance metrics", 
      "poligenetic disease"
    ], 
    "name": "A novel gene selection method for gene expression data for the task of cancer type classification", 
    "pagination": "7", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1135194344"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13062-020-00290-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33557857"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13062-020-00290-3", 
      "https://app.dimensions.ai/details/publication/pub.1135194344"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_890.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13062-020-00290-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13062-020-00290-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13062-020-00290-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13062-020-00290-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13062-020-00290-3'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      22 PREDICATES      84 URIs      69 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13062-020-00290-3 schema:about N190508d68dd24a13a58856d1ad8b4458
2 N2fd2d6da42ce486fbc429df76f079cec
3 N846170186ed34f5eac44feb984f55149
4 N942ba774e60645a690ea12829c6a8800
5 Nbbe4eb910de74dd2b149a04e056913d8
6 anzsrc-for:06
7 anzsrc-for:0604
8 schema:author N227ec71413a146268d9a32a2e6926710
9 schema:citation sg:pub.10.1038/s41586-019-1689-y
10 sg:pub.10.1038/s41586-020-1943-3
11 sg:pub.10.1038/s41586-020-1965-x
12 sg:pub.10.1038/sj.bjc.6604207
13 sg:pub.10.1186/1471-2105-14-198
14 sg:pub.10.1186/1471-2105-9-319
15 sg:pub.10.1186/s12859-019-2868-4
16 schema:datePublished 2021-02-08
17 schema:datePublishedReg 2021-02-08
18 schema:description Cancer is a poligenetic disease with each cancer type having a different mutation profile. Genomic data can be utilized to detect these profiles and to diagnose and differentiate cancer types. Variant calling provide mutation information. Gene expression data reveal the altered cell behaviour. The combination of the mutation and expression information can lead to accurate discrimination of different cancer types. In this study, we utilized and transferred the information of existing mutations for a novel gene selection method for gene expression data. We tested the proposed method in order to diagnose and differentiate cancer types. It is a disease specific method as both the mutations and expressions are filtered according to the selected cancer types. Our experiment results show that the proposed gene selection method leads to similar or improved performance metrics compared to classical feature selection methods and curated gene sets.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf Nce88359d180d4c33b85b30832a31fdcc
23 Nd2eca46ca27e40bd8b9bb2fd2bb111eb
24 sg:journal.1036001
25 schema:keywords accurate discrimination
26 altered cell behavior
27 behavior
28 cancer
29 cancer type classification
30 cancer types
31 cell behavior
32 classical feature selection methods
33 classification
34 combination
35 curated gene sets
36 data
37 different cancer types
38 different mutation profiles
39 discrimination
40 disease
41 disease-specific methods
42 experiment results
43 expression
44 expression data
45 expression information
46 feature selection method
47 gene expression data
48 gene selection methods
49 gene sets
50 genomic data
51 improved performance metrics
52 information
53 method
54 metrics
55 mutation information
56 mutation profiles
57 mutations
58 novel gene selection method
59 order
60 performance metrics
61 poligenetic disease
62 profile
63 results
64 selection method
65 set
66 specific method
67 study
68 task
69 type classification
70 types
71 schema:name A novel gene selection method for gene expression data for the task of cancer type classification
72 schema:pagination 7
73 schema:productId N1f7d5d7ae1d14fbf864a5909d7623abb
74 N93a67163181740b5ae1952a7ef2c504c
75 Nf564d7aaa00a443c8ec7823bb50f53a2
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135194344
77 https://doi.org/10.1186/s13062-020-00290-3
78 schema:sdDatePublished 2022-01-01T18:58
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher Ne0cd69c5b86b4ba6a314d189759745b2
81 schema:url https://doi.org/10.1186/s13062-020-00290-3
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N190508d68dd24a13a58856d1ad8b4458 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Machine Learning
87 rdf:type schema:DefinedTerm
88 N1f7d5d7ae1d14fbf864a5909d7623abb schema:name dimensions_id
89 schema:value pub.1135194344
90 rdf:type schema:PropertyValue
91 N227ec71413a146268d9a32a2e6926710 rdf:first sg:person.012232656130.34
92 rdf:rest N509008b67541473fb6891e6dfb5ad566
93 N25181fd9bd06480abd13827eb0f5468f rdf:first sg:person.01066054020.00
94 rdf:rest rdf:nil
95 N2fd2d6da42ce486fbc429df76f079cec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Gene Expression Profiling
97 rdf:type schema:DefinedTerm
98 N509008b67541473fb6891e6dfb5ad566 rdf:first sg:person.01125743776.35
99 rdf:rest N25181fd9bd06480abd13827eb0f5468f
100 N846170186ed34f5eac44feb984f55149 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Algorithms
102 rdf:type schema:DefinedTerm
103 N93a67163181740b5ae1952a7ef2c504c schema:name doi
104 schema:value 10.1186/s13062-020-00290-3
105 rdf:type schema:PropertyValue
106 N942ba774e60645a690ea12829c6a8800 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Genomics
108 rdf:type schema:DefinedTerm
109 Nbbe4eb910de74dd2b149a04e056913d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Neoplasms
111 rdf:type schema:DefinedTerm
112 Nce88359d180d4c33b85b30832a31fdcc schema:issueNumber 1
113 rdf:type schema:PublicationIssue
114 Nd2eca46ca27e40bd8b9bb2fd2bb111eb schema:volumeNumber 16
115 rdf:type schema:PublicationVolume
116 Ne0cd69c5b86b4ba6a314d189759745b2 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nf564d7aaa00a443c8ec7823bb50f53a2 schema:name pubmed_id
119 schema:value 33557857
120 rdf:type schema:PropertyValue
121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
122 schema:name Biological Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
125 schema:name Genetics
126 rdf:type schema:DefinedTerm
127 sg:journal.1036001 schema:issn 1745-6150
128 schema:name Biology Direct
129 schema:publisher Springer Nature
130 rdf:type schema:Periodical
131 sg:person.01066054020.00 schema:affiliation grid-institutes:grid.11220.30
132 schema:familyName GÜRGEN
133 schema:givenName Fikret
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066054020.00
135 rdf:type schema:Person
136 sg:person.01125743776.35 schema:affiliation grid-institutes:grid.11220.30
137 schema:familyName ÖZGÜR
138 schema:givenName Arzucan
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125743776.35
140 rdf:type schema:Person
141 sg:person.012232656130.34 schema:affiliation grid-institutes:grid.11220.30
142 schema:familyName ŞİMŞEK
143 schema:givenName N. Özlem ÖZCAN
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012232656130.34
145 rdf:type schema:Person
146 sg:pub.10.1038/s41586-019-1689-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1122019643
147 https://doi.org/10.1038/s41586-019-1689-y
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/s41586-020-1943-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124597030
150 https://doi.org/10.1038/s41586-020-1943-3
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/s41586-020-1965-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1124590164
153 https://doi.org/10.1038/s41586-020-1965-x
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/sj.bjc.6604207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018865517
156 https://doi.org/10.1038/sj.bjc.6604207
157 rdf:type schema:CreativeWork
158 sg:pub.10.1186/1471-2105-14-198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031327100
159 https://doi.org/10.1186/1471-2105-14-198
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/1471-2105-9-319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052298679
162 https://doi.org/10.1186/1471-2105-9-319
163 rdf:type schema:CreativeWork
164 sg:pub.10.1186/s12859-019-2868-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117139859
165 https://doi.org/10.1186/s12859-019-2868-4
166 rdf:type schema:CreativeWork
167 grid-institutes:grid.11220.30 schema:alternateName Department of Computer Engineering, Bogazici University, Bebek, İstanbul, Turkey
168 schema:name Department of Computer Engineering, Bogazici University, Bebek, İstanbul, Turkey
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...