TT-Mars: structural variants assessment based on haplotype-resolved assemblies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-05-06

AUTHORS

Jianzhi Yang, Mark J.P. Chaisson

ABSTRACT

Variant benchmarking is often performed by comparing a test callset to a gold standard set of variants. In repetitive regions of the genome, it may be difficult to establish what is the truth for a call, for example, when different alignment scoring metrics provide equally supported but different variant calls on the same data. Here, we provide an alternative approach, TT-Mars, that takes advantage of the recent production of high-quality haplotype-resolved genome assemblies by providing false discovery rates for variant calls based on how well their call reflects the content of the assembly, rather than comparing calls themselves. More... »

PAGES

110

References to SciGraph publications

  • 2018-09-26. Common genetic variants contribute to risk of rare severe neurodevelopmental disorders in NATURE
  • 2019-08-12. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome in NATURE BIOTECHNOLOGY
  • 2009-02-22. Continuous base identification for single-molecule nanopore DNA sequencing in NATURE NANOTECHNOLOGY
  • 2020-06-15. A robust benchmark for detection of germline large deletions and insertions in NATURE BIOTECHNOLOGY
  • 2019-11-20. Structural variant calling: the long and the short of it in GENOME BIOLOGY
  • 2020-09-22. A diploid assembly-based benchmark for variants in the major histocompatibility complex in NATURE COMMUNICATIONS
  • 2017-02-23. In situ click chemistry generation of cyclooxygenase-2 inhibitors in NATURE COMMUNICATIONS
  • 2014-06-26. LUMPY: a probabilistic framework for structural variant discovery in GENOME BIOLOGY
  • 2021-01-04. Genome-wide association study implicates novel loci and reveals candidate effector genes for longitudinal pediatric bone accrual in GENOME BIOLOGY
  • 2015-04-11. Assessing structural variation in a personal genome—towards a human reference diploid genome in BMC GENOMICS
  • 2010-01-04. Genomic characterization of the Yersinia genus in GENOME BIOLOGY
  • 2015-09-30. An integrated map of structural variation in 2,504 human genomes in NATURE
  • 2020-05-27. Mapping and characterization of structural variation in 17,795 human genomes in NATURE
  • 2011-01-01. Integrative genomics viewer in NATURE BIOTECHNOLOGY
  • 2021-05-25. Samplot: a platform for structural variant visual validation and automated filtering in GENOME BIOLOGY
  • 2018-01-04. Modeling psychiatric disorders using patient stem cell-derived neurons: a way forward in GENOME MEDICINE
  • 2020-05-27. A structural variation reference for medical and population genetics in NATURE
  • 2021-02-01. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm in NATURE METHODS
  • 2018-12-07. Complex structural variants in Mendelian disorders: identification and breakpoint resolution using short- and long-read genome sequencing in GENOME MEDICINE
  • 2019-01-03. The Network of Cancer Genes (NCG): a comprehensive catalogue of known and candidate cancer genes from cancer sequencing screens in GENOME BIOLOGY
  • 2019-04-16. Multi-platform discovery of haplotype-resolved structural variation in human genomes in NATURE COMMUNICATIONS
  • 2015-09-14. The UK10K project identifies rare variants in health and disease in NATURE
  • 2018-07-16. A synthetic-diploid benchmark for accurate variant-calling evaluation in NATURE METHODS
  • 2020-01-07. U1 snRNP regulates cancer cell migration and invasion in vitro in NATURE COMMUNICATIONS
  • 2016-01-16. svclassify: a method to establish benchmark structural variant calls in BMC GENOMICS
  • 2017-06-22. Long-read genome sequencing identifies causal structural variation in a Mendelian disease in GENETICS IN MEDICINE
  • 2018-04-30. Accurate detection of complex structural variations using single-molecule sequencing in NATURE METHODS
  • 2019-01-02. Double-slit photoelectron interference in strong-field ionization of the neon dimer in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13059-022-02666-2

    DOI

    http://dx.doi.org/10.1186/s13059-022-02666-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147714464

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35524317


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Benchmarking", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Haplotypes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Single Nucleotide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Jianzhi", 
            "id": "sg:person.012264014074.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012264014074.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chaisson", 
            "givenName": "Mark J.P.", 
            "id": "sg:person.012610254333.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012610254333.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s13059-021-02380-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1138323905", 
              "https://doi.org/10.1186/s13059-021-02380-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2371-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127898772", 
              "https://doi.org/10.1038/s41586-020-2371-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-019-1828-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122758449", 
              "https://doi.org/10.1186/s13059-019-1828-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0566-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107222820", 
              "https://doi.org/10.1038/s41586-018-0566-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019307928", 
              "https://doi.org/10.1038/nbt.1754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-1479-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052180130", 
              "https://doi.org/10.1186/s12864-015-1479-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-018-0054-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105534003", 
              "https://doi.org/10.1038/s41592-018-0054-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-08148-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113482416", 
              "https://doi.org/10.1038/s41467-018-08148-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-018-0001-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103690602", 
              "https://doi.org/10.1038/s41592-018-0001-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2366-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026798286", 
              "https://doi.org/10.1186/s12864-016-2366-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-020-18564-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131073477", 
              "https://doi.org/10.1038/s41467-020-18564-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-019-0217-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120285368", 
              "https://doi.org/10.1038/s41587-019-0217-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2014-15-6-r84", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019478599", 
              "https://doi.org/10.1186/gb-2014-15-6-r84"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-1-r1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012784779", 
              "https://doi.org/10.1186/gb-2010-11-1-r1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-13993-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123915232", 
              "https://doi.org/10.1038/s41467-019-13993-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14962", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049666571", 
              "https://doi.org/10.1038/nature14962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-016-0009-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083776852", 
              "https://doi.org/10.1038/s41467-016-0009-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-020-02207-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134304494", 
              "https://doi.org/10.1186/s13059-020-02207-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-020-01056-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135019727", 
              "https://doi.org/10.1038/s41592-020-01056-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2017.86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086112279", 
              "https://doi.org/10.1038/gim.2017.86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2287-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127888051", 
              "https://doi.org/10.1038/s41586-020-2287-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-018-1612-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111097116", 
              "https://doi.org/10.1186/s13059-018-1612-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-07882-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110929190", 
              "https://doi.org/10.1038/s41467-018-07882-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-020-0538-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128479298", 
              "https://doi.org/10.1038/s41587-020-0538-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2009.12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006588299", 
              "https://doi.org/10.1038/nnano.2009.12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031274231", 
              "https://doi.org/10.1038/nature15394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13073-017-0512-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100201473", 
              "https://doi.org/10.1186/s13073-017-0512-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13073-018-0606-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110465224", 
              "https://doi.org/10.1186/s13073-018-0606-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-05-06", 
        "datePublishedReg": "2022-05-06", 
        "description": "Variant benchmarking is often performed by comparing a test callset to a gold standard set of variants. In repetitive regions of the genome, it may be difficult to establish what is the truth for a call, for example, when different alignment scoring metrics provide equally supported but different variant calls on the same data. Here, we provide an alternative approach, TT-Mars, that takes advantage of the recent production of high-quality haplotype-resolved genome assemblies by providing false discovery rates for variant calls based on how well their call reflects the content of the assembly, rather than comparing calls themselves.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13059-022-02666-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8557065", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.9753435", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023439", 
            "issn": [
              "1474-760X", 
              "1465-6906"
            ], 
            "name": "Genome Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "keywords": [
          "gold standard set", 
          "variant calls", 
          "same data", 
          "standard set", 
          "calls", 
          "metrics", 
          "variant assessment", 
          "benchmarking", 
          "callsets", 
          "set", 
          "different alignments", 
          "alternative approach", 
          "truth", 
          "alignment", 
          "advantages", 
          "false discovery rate", 
          "discovery rate", 
          "example", 
          "data", 
          "genome assembly", 
          "variants", 
          "content", 
          "haplotype-resolved assemblies", 
          "repetitive regions", 
          "assembly", 
          "recent production", 
          "assessment", 
          "rate", 
          "region", 
          "genome", 
          "production", 
          "approach", 
          "haplotype-resolved genome assemblies"
        ], 
        "name": "TT-Mars: structural variants assessment based on haplotype-resolved assemblies", 
        "pagination": "110", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147714464"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13059-022-02666-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35524317"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13059-022-02666-2", 
          "https://app.dimensions.ai/details/publication/pub.1147714464"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_927.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13059-022-02666-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13059-022-02666-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13059-022-02666-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13059-022-02666-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13059-022-02666-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    242 TRIPLES      22 PREDICATES      93 URIs      57 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13059-022-02666-2 schema:about N29dfe184975544caaf6bc4bd850c270a
    2 N4a3f71c3fdda40e78252e98e8338290e
    3 N4de80fd360884b57a5212a6f9306d5a7
    4 N65a122448dc548b590b4d755886fee31
    5 N817899ef7a63451ab3efcca8e2b2da02
    6 Naf030a6eaa1c4f0b98b90209c2606f19
    7 anzsrc-for:08
    8 anzsrc-for:0806
    9 schema:author N51ec2a8263cd4786b10c686c35eeb72c
    10 schema:citation sg:pub.10.1038/gim.2017.86
    11 sg:pub.10.1038/nature14962
    12 sg:pub.10.1038/nature15394
    13 sg:pub.10.1038/nbt.1754
    14 sg:pub.10.1038/nnano.2009.12
    15 sg:pub.10.1038/s41467-016-0009-6
    16 sg:pub.10.1038/s41467-018-07882-8
    17 sg:pub.10.1038/s41467-018-08148-z
    18 sg:pub.10.1038/s41467-019-13993-7
    19 sg:pub.10.1038/s41467-020-18564-9
    20 sg:pub.10.1038/s41586-018-0566-4
    21 sg:pub.10.1038/s41586-020-2287-8
    22 sg:pub.10.1038/s41586-020-2371-0
    23 sg:pub.10.1038/s41587-019-0217-9
    24 sg:pub.10.1038/s41587-020-0538-8
    25 sg:pub.10.1038/s41592-018-0001-7
    26 sg:pub.10.1038/s41592-018-0054-7
    27 sg:pub.10.1038/s41592-020-01056-5
    28 sg:pub.10.1186/gb-2010-11-1-r1
    29 sg:pub.10.1186/gb-2014-15-6-r84
    30 sg:pub.10.1186/s12864-015-1479-3
    31 sg:pub.10.1186/s12864-016-2366-2
    32 sg:pub.10.1186/s13059-018-1612-0
    33 sg:pub.10.1186/s13059-019-1828-7
    34 sg:pub.10.1186/s13059-020-02207-9
    35 sg:pub.10.1186/s13059-021-02380-5
    36 sg:pub.10.1186/s13073-017-0512-3
    37 sg:pub.10.1186/s13073-018-0606-6
    38 schema:datePublished 2022-05-06
    39 schema:datePublishedReg 2022-05-06
    40 schema:description Variant benchmarking is often performed by comparing a test callset to a gold standard set of variants. In repetitive regions of the genome, it may be difficult to establish what is the truth for a call, for example, when different alignment scoring metrics provide equally supported but different variant calls on the same data. Here, we provide an alternative approach, TT-Mars, that takes advantage of the recent production of high-quality haplotype-resolved genome assemblies by providing false discovery rates for variant calls based on how well their call reflects the content of the assembly, rather than comparing calls themselves.
    41 schema:genre article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree true
    44 schema:isPartOf N7c9e4a2c100544968a034771694dd467
    45 Ne700f117f39143d496166d4655d81240
    46 sg:journal.1023439
    47 schema:keywords advantages
    48 alignment
    49 alternative approach
    50 approach
    51 assembly
    52 assessment
    53 benchmarking
    54 calls
    55 callsets
    56 content
    57 data
    58 different alignments
    59 discovery rate
    60 example
    61 false discovery rate
    62 genome
    63 genome assembly
    64 gold standard set
    65 haplotype-resolved assemblies
    66 haplotype-resolved genome assemblies
    67 metrics
    68 production
    69 rate
    70 recent production
    71 region
    72 repetitive regions
    73 same data
    74 set
    75 standard set
    76 truth
    77 variant assessment
    78 variant calls
    79 variants
    80 schema:name TT-Mars: structural variants assessment based on haplotype-resolved assemblies
    81 schema:pagination 110
    82 schema:productId N61af7d9adc6943fd8ad7f68c7617e97d
    83 N7819843e73a444718c5efc5660edf9bf
    84 Nc8140c6c510d49ae83d7e766af28f2ec
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147714464
    86 https://doi.org/10.1186/s13059-022-02666-2
    87 schema:sdDatePublished 2022-06-01T22:25
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher Ncacf0d7160ea4006b5fdb5e21525e405
    90 schema:url https://doi.org/10.1186/s13059-022-02666-2
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N29dfe184975544caaf6bc4bd850c270a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Software
    96 rdf:type schema:DefinedTerm
    97 N4a3f71c3fdda40e78252e98e8338290e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Genome
    99 rdf:type schema:DefinedTerm
    100 N4de80fd360884b57a5212a6f9306d5a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Haplotypes
    102 rdf:type schema:DefinedTerm
    103 N51ec2a8263cd4786b10c686c35eeb72c rdf:first sg:person.012264014074.17
    104 rdf:rest N85515d35a2f64e4bb6ef57bf3824a2f6
    105 N61af7d9adc6943fd8ad7f68c7617e97d schema:name pubmed_id
    106 schema:value 35524317
    107 rdf:type schema:PropertyValue
    108 N65a122448dc548b590b4d755886fee31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name High-Throughput Nucleotide Sequencing
    110 rdf:type schema:DefinedTerm
    111 N7819843e73a444718c5efc5660edf9bf schema:name doi
    112 schema:value 10.1186/s13059-022-02666-2
    113 rdf:type schema:PropertyValue
    114 N7c9e4a2c100544968a034771694dd467 schema:issueNumber 1
    115 rdf:type schema:PublicationIssue
    116 N817899ef7a63451ab3efcca8e2b2da02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Polymorphism, Single Nucleotide
    118 rdf:type schema:DefinedTerm
    119 N85515d35a2f64e4bb6ef57bf3824a2f6 rdf:first sg:person.012610254333.24
    120 rdf:rest rdf:nil
    121 Naf030a6eaa1c4f0b98b90209c2606f19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Benchmarking
    123 rdf:type schema:DefinedTerm
    124 Nc8140c6c510d49ae83d7e766af28f2ec schema:name dimensions_id
    125 schema:value pub.1147714464
    126 rdf:type schema:PropertyValue
    127 Ncacf0d7160ea4006b5fdb5e21525e405 schema:name Springer Nature - SN SciGraph project
    128 rdf:type schema:Organization
    129 Ne700f117f39143d496166d4655d81240 schema:volumeNumber 23
    130 rdf:type schema:PublicationVolume
    131 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Information and Computing Sciences
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Information Systems
    136 rdf:type schema:DefinedTerm
    137 sg:grant.8557065 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-022-02666-2
    138 rdf:type schema:MonetaryGrant
    139 sg:grant.9753435 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-022-02666-2
    140 rdf:type schema:MonetaryGrant
    141 sg:journal.1023439 schema:issn 1465-6906
    142 1474-760X
    143 schema:name Genome Biology
    144 schema:publisher Springer Nature
    145 rdf:type schema:Periodical
    146 sg:person.012264014074.17 schema:affiliation grid-institutes:grid.42505.36
    147 schema:familyName Yang
    148 schema:givenName Jianzhi
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012264014074.17
    150 rdf:type schema:Person
    151 sg:person.012610254333.24 schema:affiliation grid-institutes:grid.42505.36
    152 schema:familyName Chaisson
    153 schema:givenName Mark J.P.
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012610254333.24
    155 rdf:type schema:Person
    156 sg:pub.10.1038/gim.2017.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086112279
    157 https://doi.org/10.1038/gim.2017.86
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/nature14962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049666571
    160 https://doi.org/10.1038/nature14962
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/nature15394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031274231
    163 https://doi.org/10.1038/nature15394
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/nbt.1754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019307928
    166 https://doi.org/10.1038/nbt.1754
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/nnano.2009.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006588299
    169 https://doi.org/10.1038/nnano.2009.12
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/s41467-016-0009-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083776852
    172 https://doi.org/10.1038/s41467-016-0009-6
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/s41467-018-07882-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110929190
    175 https://doi.org/10.1038/s41467-018-07882-8
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/s41467-018-08148-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1113482416
    178 https://doi.org/10.1038/s41467-018-08148-z
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/s41467-019-13993-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123915232
    181 https://doi.org/10.1038/s41467-019-13993-7
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/s41467-020-18564-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131073477
    184 https://doi.org/10.1038/s41467-020-18564-9
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/s41586-018-0566-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107222820
    187 https://doi.org/10.1038/s41586-018-0566-4
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/s41586-020-2287-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127888051
    190 https://doi.org/10.1038/s41586-020-2287-8
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/s41586-020-2371-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127898772
    193 https://doi.org/10.1038/s41586-020-2371-0
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/s41587-019-0217-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120285368
    196 https://doi.org/10.1038/s41587-019-0217-9
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/s41587-020-0538-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128479298
    199 https://doi.org/10.1038/s41587-020-0538-8
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/s41592-018-0001-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103690602
    202 https://doi.org/10.1038/s41592-018-0001-7
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/s41592-018-0054-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105534003
    205 https://doi.org/10.1038/s41592-018-0054-7
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/s41592-020-01056-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135019727
    208 https://doi.org/10.1038/s41592-020-01056-5
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1186/gb-2010-11-1-r1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012784779
    211 https://doi.org/10.1186/gb-2010-11-1-r1
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1186/gb-2014-15-6-r84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019478599
    214 https://doi.org/10.1186/gb-2014-15-6-r84
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1186/s12864-015-1479-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052180130
    217 https://doi.org/10.1186/s12864-015-1479-3
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1186/s12864-016-2366-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026798286
    220 https://doi.org/10.1186/s12864-016-2366-2
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1186/s13059-018-1612-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111097116
    223 https://doi.org/10.1186/s13059-018-1612-0
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1186/s13059-019-1828-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122758449
    226 https://doi.org/10.1186/s13059-019-1828-7
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1186/s13059-020-02207-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134304494
    229 https://doi.org/10.1186/s13059-020-02207-9
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1186/s13059-021-02380-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138323905
    232 https://doi.org/10.1186/s13059-021-02380-5
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1186/s13073-017-0512-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100201473
    235 https://doi.org/10.1186/s13073-017-0512-3
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1186/s13073-018-0606-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110465224
    238 https://doi.org/10.1186/s13073-018-0606-6
    239 rdf:type schema:CreativeWork
    240 grid-institutes:grid.42505.36 schema:alternateName Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
    241 schema:name Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
    242 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...