Ontology type: schema:ScholarlyArticle Open Access: True
2022-04-15
AUTHORSAmmar Tareen, Mahdi Kooshkbaghi, Anna Posfai, William T. Ireland, David M. McCandlish, Justin B. Kinney
ABSTRACTMultiplex assays of variant effect (MAVEs) are a family of methods that includes deep mutational scanning experiments on proteins and massively parallel reporter assays on gene regulatory sequences. Despite their increasing popularity, a general strategy for inferring quantitative models of genotype-phenotype maps from MAVE data is lacking. Here we introduce MAVE-NN, a neural-network-based Python package that implements a broadly applicable information-theoretic framework for learning genotype-phenotype maps—including biophysically interpretable models—from MAVE datasets. We demonstrate MAVE-NN in multiple biological contexts, and highlight the ability of our approach to deconvolve mutational effects from otherwise confounding experimental nonlinearities and noise. More... »
PAGES98
http://scigraph.springernature.com/pub.10.1186/s13059-022-02661-7
DOIhttp://dx.doi.org/10.1186/s13059-022-02661-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1147152140
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/35428271
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Environmental Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Biological Assay",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Genotype",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mutation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Neural Networks, Computer",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Phenotype",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Regeneron Pharmaceuticals, Inc., 10591, Tarrytown, NY, USA",
"id": "http://www.grid.ac/institutes/grid.418961.3",
"name": [
"Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, 11724, Cold Spring Harbor, NY, USA",
"Regeneron Pharmaceuticals, Inc., 10591, Tarrytown, NY, USA"
],
"type": "Organization"
},
"familyName": "Tareen",
"givenName": "Ammar",
"id": "sg:person.013251564270.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013251564270.26"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, 11724, Cold Spring Harbor, NY, USA",
"id": "http://www.grid.ac/institutes/grid.225279.9",
"name": [
"Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, 11724, Cold Spring Harbor, NY, USA"
],
"type": "Organization"
},
"familyName": "Kooshkbaghi",
"givenName": "Mahdi",
"id": "sg:person.01350413630.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350413630.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, 11724, Cold Spring Harbor, NY, USA",
"id": "http://www.grid.ac/institutes/grid.225279.9",
"name": [
"Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, 11724, Cold Spring Harbor, NY, USA"
],
"type": "Organization"
},
"familyName": "Posfai",
"givenName": "Anna",
"id": "sg:person.013640327023.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640327023.51"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Applied Physics, Harvard University, 02134, Cambridge, MA, USA",
"id": "http://www.grid.ac/institutes/grid.38142.3c",
"name": [
"Department of Physics, California Institute of Technology, 91125, Pasadena, CA, USA",
"Department of Applied Physics, Harvard University, 02134, Cambridge, MA, USA"
],
"type": "Organization"
},
"familyName": "Ireland",
"givenName": "William T.",
"id": "sg:person.010142655153.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010142655153.01"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, 11724, Cold Spring Harbor, NY, USA",
"id": "http://www.grid.ac/institutes/grid.225279.9",
"name": [
"Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, 11724, Cold Spring Harbor, NY, USA"
],
"type": "Organization"
},
"familyName": "McCandlish",
"givenName": "David M.",
"id": "sg:person.01101744274.75",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101744274.75"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, 11724, Cold Spring Harbor, NY, USA",
"id": "http://www.grid.ac/institutes/grid.225279.9",
"name": [
"Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, 11724, Cold Spring Harbor, NY, USA"
],
"type": "Organization"
},
"familyName": "Kinney",
"givenName": "Justin B.",
"id": "sg:person.01070345415.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070345415.05"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1186/s13059-017-1272-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091081281",
"https://doi.org/10.1186/s13059-017-1272-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-30499-9_83",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023523458",
"https://doi.org/10.1007/978-3-540-30499-9_83"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt.2137",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004566758",
"https://doi.org/10.1038/nbt.2137"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature17995",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008147636",
"https://doi.org/10.1038/nature17995"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12859-015-0590-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038764045",
"https://doi.org/10.1186/s12859-015-0590-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.3027",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031324326",
"https://doi.org/10.1038/nmeth.3027"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13059-020-02091-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1130150025",
"https://doi.org/10.1186/s13059-020-02091-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10955-015-1398-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023749949",
"https://doi.org/10.1007/s10955-015-1398-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-019-12101-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1121003562",
"https://doi.org/10.1038/s41467-019-12101-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12864-016-2533-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049252653",
"https://doi.org/10.1186/s12864-016-2533-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg3684",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025954650",
"https://doi.org/10.1038/nrg3684"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13059-019-1787-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1120775259",
"https://doi.org/10.1186/s13059-019-1787-z"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-04-15",
"datePublishedReg": "2022-04-15",
"description": "Multiplex assays of variant effect (MAVEs) are a family of methods that includes deep mutational scanning experiments on proteins and massively parallel reporter assays on gene regulatory sequences. Despite their increasing popularity, a general strategy for inferring quantitative models of genotype-phenotype maps from MAVE data is lacking. Here we introduce MAVE-NN, a neural-network-based Python package that implements a broadly applicable information-theoretic framework for learning genotype-phenotype maps\u2014including biophysically interpretable models\u2014from MAVE datasets. We demonstrate MAVE-NN in multiple biological contexts, and highlight the ability of our approach to deconvolve mutational effects from otherwise confounding experimental nonlinearities and noise.",
"genre": "article",
"id": "sg:pub.10.1186/s13059-022-02661-7",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.8632182",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.8633987",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1023439",
"issn": [
"1474-760X",
"1465-6906"
],
"name": "Genome Biology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "23"
}
],
"keywords": [
"genotype-phenotype map",
"deep mutational scanning experiments",
"variant effects",
"gene regulatory sequences",
"multiple biological contexts",
"parallel reporter",
"regulatory sequences",
"mutational effects",
"biological context",
"multiplex assay",
"assays",
"reporter",
"protein",
"scanning experiments",
"general strategy",
"Python package",
"sequence",
"family",
"experimental nonlinearity",
"information-theoretic framework",
"quantitative model",
"maps",
"ability",
"effect",
"experiments",
"strategies",
"dataset",
"data",
"model",
"approach",
"context",
"interpretable models",
"package",
"method",
"family of methods",
"framework",
"popularity",
"noise",
"nonlinearity"
],
"name": "MAVE-NN: learning genotype-phenotype maps from multiplex assays of variant effect",
"pagination": "98",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1147152140"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s13059-022-02661-7"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"35428271"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s13059-022-02661-7",
"https://app.dimensions.ai/details/publication/pub.1147152140"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_934.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s13059-022-02661-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13059-022-02661-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13059-022-02661-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13059-022-02661-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13059-022-02661-7'
This table displays all metadata directly associated to this object as RDF triples.
220 TRIPLES
22 PREDICATES
83 URIs
62 LITERALS
12 BLANK NODES