Ontology type: schema:ScholarlyArticle Open Access: True
2022-04-20
AUTHORSChloe X. Wang, Lin Zhang, Bo Wang
ABSTRACTIntegrative analysis of large-scale single-cell RNA sequencing (scRNA-seq) datasets can aggregate complementary biological information from different datasets. However, most existing methods fail to efficiently integrate multiple large-scale scRNA-seq datasets. We propose OCAT, One Cell At a Time, a machine learning method that sparsely encodes single-cell gene expression to integrate data from multiple sources without highly variable gene selection or explicit batch effect correction. We demonstrate that OCAT efficiently integrates multiple scRNA-seq datasets and achieves the state-of-the-art performance in cell type clustering, especially in challenging scenarios of non-overlapping cell types. In addition, OCAT can efficaciously facilitate a variety of downstream analyses. More... »
PAGES102
http://scigraph.springernature.com/pub.10.1186/s13059-022-02659-1
DOIhttp://dx.doi.org/10.1186/s13059-022-02659-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1147246645
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/35443717
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Algorithms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cluster Analysis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Gene Expression Profiling",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Machine Learning",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "RNA-Seq",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sequence Analysis, RNA",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Single-Cell Analysis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Whole Exome Sequencing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University Health Network, Toronto, Canada",
"id": "http://www.grid.ac/institutes/grid.231844.8",
"name": [
"University Health Network, Toronto, Canada"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Chloe X.",
"id": "sg:person.013340074465.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013340074465.58"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Statistical Sciences, University of Toronto, Toronto, Canada",
"id": "http://www.grid.ac/institutes/grid.17063.33",
"name": [
"University Health Network, Toronto, Canada",
"Department of Statistical Sciences, University of Toronto, Toronto, Canada"
],
"type": "Organization"
},
"familyName": "Zhang",
"givenName": "Lin",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Vector Institute, Toronto, Canada",
"id": "http://www.grid.ac/institutes/grid.494618.6",
"name": [
"University Health Network, Toronto, Canada",
"Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada",
"Department of Computer Science, University of Toronto, Toronto, Canada",
"Vector Institute, Toronto, Canada"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Bo",
"id": "sg:person.011762327072.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011762327072.22"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nn.4462",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020765465",
"https://doi.org/10.1038/nn.4462"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41592-018-0229-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1110105670",
"https://doi.org/10.1038/s41592-018-0229-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt.4091",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101887621",
"https://doi.org/10.1038/nbt.4091"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.4207",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084129300",
"https://doi.org/10.1038/nmeth.4207"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41587-019-0113-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1113946826",
"https://doi.org/10.1038/s41587-019-0113-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.4402",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091282082",
"https://doi.org/10.1038/nmeth.4402"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt1206-1565",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051026888",
"https://doi.org/10.1038/nbt1206-1565"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13059-019-1850-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1124132420",
"https://doi.org/10.1186/s13059-019-1850-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13059-018-1612-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1111097116",
"https://doi.org/10.1186/s13059-018-1612-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41587-019-0071-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1113159520",
"https://doi.org/10.1038/s41587-019-0071-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41598-016-0028-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1079403223",
"https://doi.org/10.1038/s41598-016-0028-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13059-019-1663-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1112873269",
"https://doi.org/10.1186/s13059-019-1663-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41592-019-0619-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1122668169",
"https://doi.org/10.1038/s41592-019-0619-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41586-018-0590-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107377891",
"https://doi.org/10.1038/s41586-018-0590-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12864-017-4368-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100152262",
"https://doi.org/10.1186/s12864-017-4368-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12864-018-4772-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1104906426",
"https://doi.org/10.1186/s12864-018-4772-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-016-0009-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083776852",
"https://doi.org/10.1038/s41467-016-0009-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2013-14-9-r95",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036803445",
"https://doi.org/10.1186/gb-2013-14-9-r95"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt.2859",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018546171",
"https://doi.org/10.1038/nbt.2859"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-04-20",
"datePublishedReg": "2022-04-20",
"description": "Integrative analysis of large-scale single-cell RNA sequencing (scRNA-seq) datasets can aggregate complementary biological information from different datasets. However, most existing methods fail to efficiently integrate multiple large-scale scRNA-seq datasets. We propose OCAT, One Cell At a Time, a machine learning method that sparsely encodes single-cell gene expression to integrate data from multiple sources without highly variable gene selection or explicit batch effect correction. We demonstrate that OCAT efficiently integrates multiple scRNA-seq datasets and achieves the state-of-the-art performance in cell type clustering, especially in challenging scenarios of non-overlapping cell types. In addition, OCAT can efficaciously facilitate a variety of downstream analyses.",
"genre": "article",
"id": "sg:pub.10.1186/s13059-022-02659-1",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1023439",
"issn": [
"1474-760X",
"1465-6906"
],
"name": "Genome Biology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "23"
}
],
"keywords": [
"scRNA-seq datasets",
"multiple scRNA-seq datasets",
"single-cell gene expression",
"single-cell RNA sequencing datasets",
"variable gene selection",
"cell type clustering",
"single-cell RNA-seq data",
"RNA sequencing datasets",
"RNA-seq data",
"complementary biological information",
"batch effect correction",
"sequencing datasets",
"gene expression",
"integrative analysis",
"large-scale scRNA-seq datasets",
"biological information",
"cell types",
"downstream analysis",
"gene selection",
"type clustering",
"OCAT",
"cells",
"expression",
"selection",
"analysis",
"variety",
"dataset",
"clustering",
"addition",
"data",
"types",
"machine learning methods",
"source",
"different datasets",
"multiple sources",
"information",
"time",
"effect correction",
"state",
"method",
"scenarios",
"framework",
"unified framework",
"learning methods",
"correction",
"performance",
"art performance"
],
"name": "One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data",
"pagination": "102",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1147246645"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s13059-022-02659-1"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"35443717"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s13059-022-02659-1",
"https://app.dimensions.ai/details/publication/pub.1147246645"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_924.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s13059-022-02659-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13059-022-02659-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13059-022-02659-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13059-022-02659-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13059-022-02659-1'
This table displays all metadata directly associated to this object as RDF triples.
248 TRIPLES
22 PREDICATES
102 URIs
73 LITERALS
15 BLANK NODES