LinDA: linear models for differential abundance analysis of microbiome compositional data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-04-14

AUTHORS

Huijuan Zhou, Kejun He, Jun Chen, Xianyang Zhang

ABSTRACT

Differential abundance analysis is at the core of statistical analysis of microbiome data. The compositional nature of microbiome sequencing data makes false positive control challenging. Here, we show that the compositional effects can be addressed by a simple, yet highly flexible and scalable, approach. The proposed method, LinDA, only requires fitting linear regression models on the centered log-ratio transformed data, and correcting the bias due to compositional effects. We show that LinDA enjoys asymptotic FDR control and can be extended to mixed-effect models for correlated microbiome data. Using simulations and real examples, we demonstrate the effectiveness of LinDA. More... »

PAGES

95

References to SciGraph publications

  • 2018-10-01. Qiita: rapid, web-enabled microbiome meta-analysis in NATURE METHODS
  • 2010-10-27. Differential expression analysis for sequence count data in GENOME BIOLOGY
  • 2012-09-26. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment in GENOME BIOLOGY
  • 2013-08-18. UPARSE: highly accurate OTU sequences from microbial amplicon reads in NATURE METHODS
  • 2014-05-05. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis in MICROBIOME
  • 2012-06-10. Metagenomic microbial community profiling using unique clade-specific marker genes in NATURE METHODS
  • 2019-06-20. Establishing microbial composition measurement standards with reference frames in NATURE COMMUNICATIONS
  • 2016-05-23. DADA2: High-resolution sample inference from Illumina amplicon data in NATURE METHODS
  • 2020-07-14. Analysis of compositions of microbiomes with bias correction in NATURE COMMUNICATIONS
  • 2016-11-25. Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies in MICROBIOME
  • 2010-03-02. A scaling normalization method for differential expression analysis of RNA-seq data in GENOME BIOLOGY
  • 2020-09-04. Gut microbiota in human metabolic health and disease in NATURE REVIEWS MICROBIOLOGY
  • 2013-09-29. Differential abundance analysis for microbial marker-gene surveys in NATURE METHODS
  • 1986. The Statistical Analysis of Compositional Data in NONE
  • 2017-03-03. Normalization and microbial differential abundance strategies depend upon data characteristics in MICROBIOME
  • 2014-12-05. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13059-022-02655-5

    DOI

    http://dx.doi.org/10.1186/s13059-022-02655-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147122194

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35421994


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Coleoptera", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Linear Models", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Research Design", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Renmin University of China, 100872, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.24539.39", 
              "name": [
                "Shanghai University of Finance and Economics, 200437, Shanghai, China", 
                "Texas A&M University, 77843, College Station, USA", 
                "Renmin University of China, 100872, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Huijuan", 
            "id": "sg:person.014233741675.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014233741675.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Renmin University of China, 100872, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.24539.39", 
              "name": [
                "Renmin University of China, 100872, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "He", 
            "givenName": "Kejun", 
            "id": "sg:person.011261134331.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011261134331.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mayo Clinic, Rochester, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Mayo Clinic, Rochester, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Jun", 
            "id": "sg:person.01023412627.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Texas A&M University, 77843, College Station, USA", 
              "id": "http://www.grid.ac/institutes/grid.264756.4", 
              "name": [
                "Texas A&M University, 77843, College Station, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Xianyang", 
            "id": "sg:person.013166044574.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166044574.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/gb-2010-11-3-r25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050509557", 
              "https://doi.org/10.1186/gb-2010-11-3-r25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016631324", 
              "https://doi.org/10.1038/nmeth.3869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-020-17041-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129323965", 
              "https://doi.org/10.1038/s41467-020-17041-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2012-13-9-r79", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029450096", 
              "https://doi.org/10.1186/gb-2012-13-9-r79"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002139060", 
              "https://doi.org/10.1038/nmeth.2658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-4109-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109716595", 
              "https://doi.org/10.1007/978-94-009-4109-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-018-0141-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107129414", 
              "https://doi.org/10.1038/s41592-018-0141-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41579-020-0433-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130573371", 
              "https://doi.org/10.1038/s41579-020-0433-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027743851", 
              "https://doi.org/10.1038/nmeth.2604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-10-r106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031289083", 
              "https://doi.org/10.1186/gb-2010-11-10-r106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0550-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015222646", 
              "https://doi.org/10.1186/s13059-014-0550-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010611135", 
              "https://doi.org/10.1038/nmeth.2066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2049-2618-2-15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046874717", 
              "https://doi.org/10.1186/2049-2618-2-15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-10656-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117296456", 
              "https://doi.org/10.1038/s41467-019-10656-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-017-0237-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084252802", 
              "https://doi.org/10.1186/s40168-017-0237-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-016-0208-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019428991", 
              "https://doi.org/10.1186/s40168-016-0208-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-04-14", 
        "datePublishedReg": "2022-04-14", 
        "description": "Differential abundance analysis is at the core of statistical analysis of microbiome data. The compositional nature of microbiome sequencing data makes false positive control challenging. Here, we show that the compositional effects can be addressed by a simple, yet highly flexible and scalable, approach. The proposed method, LinDA, only requires fitting linear regression models on the centered log-ratio transformed data, and correcting the bias due to compositional effects. We show that LinDA enjoys asymptotic FDR control and can be extended to mixed-effect models for correlated microbiome data. Using simulations and real examples, we demonstrate the effectiveness of LinDA.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13059-022-02655-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7705535", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.9743458", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.9743457", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7671746", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023439", 
            "issn": [
              "1474-760X", 
              "1465-6906"
            ], 
            "name": "Genome Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "keywords": [
          "microbiome compositional data", 
          "false positive control", 
          "FDR control", 
          "microbiome data", 
          "real example", 
          "abundance analysis", 
          "linear model", 
          "differential abundance analysis", 
          "linear regression models", 
          "microbiome sequencing data", 
          "compositional nature", 
          "statistical analysis", 
          "compositional data", 
          "model", 
          "mixed-effects models", 
          "simulations", 
          "regression models", 
          "approach", 
          "control", 
          "analysis", 
          "data", 
          "compositional effects", 
          "effectiveness", 
          "core", 
          "bias", 
          "nature", 
          "effect", 
          "sequencing data", 
          "Linda", 
          "example", 
          "method", 
          "positive control"
        ], 
        "name": "LinDA: linear models for differential abundance analysis of microbiome compositional data", 
        "pagination": "95", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147122194"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13059-022-02655-5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35421994"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13059-022-02655-5", 
          "https://app.dimensions.ai/details/publication/pub.1147122194"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_942.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13059-022-02655-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13059-022-02655-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13059-022-02655-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13059-022-02655-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13059-022-02655-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    219 TRIPLES      22 PREDICATES      80 URIs      55 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13059-022-02655-5 schema:about N622fdc8d92224cd788a415915f93dc01
    2 N7e4eba6842924e558cc48a7bd699a037
    3 Nc7e0f14b28c346c98a089d464dec8b04
    4 Nd89cf9a7bd3342208008ffc519e2d264
    5 Nf5097418081d4f578d48342b8524a1db
    6 anzsrc-for:05
    7 anzsrc-for:06
    8 anzsrc-for:08
    9 schema:author N53c127739bf04ea3bedc541e19d80c82
    10 schema:citation sg:pub.10.1007/978-94-009-4109-0
    11 sg:pub.10.1038/nmeth.2066
    12 sg:pub.10.1038/nmeth.2604
    13 sg:pub.10.1038/nmeth.2658
    14 sg:pub.10.1038/nmeth.3869
    15 sg:pub.10.1038/s41467-019-10656-5
    16 sg:pub.10.1038/s41467-020-17041-7
    17 sg:pub.10.1038/s41579-020-0433-9
    18 sg:pub.10.1038/s41592-018-0141-9
    19 sg:pub.10.1186/2049-2618-2-15
    20 sg:pub.10.1186/gb-2010-11-10-r106
    21 sg:pub.10.1186/gb-2010-11-3-r25
    22 sg:pub.10.1186/gb-2012-13-9-r79
    23 sg:pub.10.1186/s13059-014-0550-8
    24 sg:pub.10.1186/s40168-016-0208-8
    25 sg:pub.10.1186/s40168-017-0237-y
    26 schema:datePublished 2022-04-14
    27 schema:datePublishedReg 2022-04-14
    28 schema:description Differential abundance analysis is at the core of statistical analysis of microbiome data. The compositional nature of microbiome sequencing data makes false positive control challenging. Here, we show that the compositional effects can be addressed by a simple, yet highly flexible and scalable, approach. The proposed method, LinDA, only requires fitting linear regression models on the centered log-ratio transformed data, and correcting the bias due to compositional effects. We show that LinDA enjoys asymptotic FDR control and can be extended to mixed-effect models for correlated microbiome data. Using simulations and real examples, we demonstrate the effectiveness of LinDA.
    29 schema:genre article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf Na45989c88c36414d9829fb8251caced0
    33 Nd9e03ee51c9a466d8eb89903c75b2b8a
    34 sg:journal.1023439
    35 schema:keywords FDR control
    36 Linda
    37 abundance analysis
    38 analysis
    39 approach
    40 bias
    41 compositional data
    42 compositional effects
    43 compositional nature
    44 control
    45 core
    46 data
    47 differential abundance analysis
    48 effect
    49 effectiveness
    50 example
    51 false positive control
    52 linear model
    53 linear regression models
    54 method
    55 microbiome compositional data
    56 microbiome data
    57 microbiome sequencing data
    58 mixed-effects models
    59 model
    60 nature
    61 positive control
    62 real example
    63 regression models
    64 sequencing data
    65 simulations
    66 statistical analysis
    67 schema:name LinDA: linear models for differential abundance analysis of microbiome compositional data
    68 schema:pagination 95
    69 schema:productId N8b8c93a39a82426e8bea1a128ac7d687
    70 N8bcc11f54c0942c8b85000a8852a25b4
    71 Necc919fb73134b169b8e8ee2a358b558
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147122194
    73 https://doi.org/10.1186/s13059-022-02655-5
    74 schema:sdDatePublished 2022-06-01T22:25
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher Nfdca3b68a9534676a5e75f168affd2ff
    77 schema:url https://doi.org/10.1186/s13059-022-02655-5
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N53c127739bf04ea3bedc541e19d80c82 rdf:first sg:person.014233741675.23
    82 rdf:rest N6c0fe8e99ed045b48114c61638ea3cea
    83 N622fdc8d92224cd788a415915f93dc01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Linear Models
    85 rdf:type schema:DefinedTerm
    86 N6c0fe8e99ed045b48114c61638ea3cea rdf:first sg:person.011261134331.53
    87 rdf:rest Nb7853ae8d2014b51b7bad11694f6cded
    88 N7e4eba6842924e558cc48a7bd699a037 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Animals
    90 rdf:type schema:DefinedTerm
    91 N8b8c93a39a82426e8bea1a128ac7d687 schema:name pubmed_id
    92 schema:value 35421994
    93 rdf:type schema:PropertyValue
    94 N8bcc11f54c0942c8b85000a8852a25b4 schema:name dimensions_id
    95 schema:value pub.1147122194
    96 rdf:type schema:PropertyValue
    97 Na45989c88c36414d9829fb8251caced0 schema:volumeNumber 23
    98 rdf:type schema:PublicationVolume
    99 Nb7853ae8d2014b51b7bad11694f6cded rdf:first sg:person.01023412627.52
    100 rdf:rest Nc9df8647fb734482894f82a2c37c583a
    101 Nc7e0f14b28c346c98a089d464dec8b04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Research Design
    103 rdf:type schema:DefinedTerm
    104 Nc9df8647fb734482894f82a2c37c583a rdf:first sg:person.013166044574.14
    105 rdf:rest rdf:nil
    106 Nd89cf9a7bd3342208008ffc519e2d264 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Microbiota
    108 rdf:type schema:DefinedTerm
    109 Nd9e03ee51c9a466d8eb89903c75b2b8a schema:issueNumber 1
    110 rdf:type schema:PublicationIssue
    111 Necc919fb73134b169b8e8ee2a358b558 schema:name doi
    112 schema:value 10.1186/s13059-022-02655-5
    113 rdf:type schema:PropertyValue
    114 Nf5097418081d4f578d48342b8524a1db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Coleoptera
    116 rdf:type schema:DefinedTerm
    117 Nfdca3b68a9534676a5e75f168affd2ff schema:name Springer Nature - SN SciGraph project
    118 rdf:type schema:Organization
    119 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Environmental Sciences
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Biological Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Information and Computing Sciences
    127 rdf:type schema:DefinedTerm
    128 sg:grant.7671746 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-022-02655-5
    129 rdf:type schema:MonetaryGrant
    130 sg:grant.7705535 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-022-02655-5
    131 rdf:type schema:MonetaryGrant
    132 sg:grant.9743457 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-022-02655-5
    133 rdf:type schema:MonetaryGrant
    134 sg:grant.9743458 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-022-02655-5
    135 rdf:type schema:MonetaryGrant
    136 sg:journal.1023439 schema:issn 1465-6906
    137 1474-760X
    138 schema:name Genome Biology
    139 schema:publisher Springer Nature
    140 rdf:type schema:Periodical
    141 sg:person.01023412627.52 schema:affiliation grid-institutes:grid.66875.3a
    142 schema:familyName Chen
    143 schema:givenName Jun
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52
    145 rdf:type schema:Person
    146 sg:person.011261134331.53 schema:affiliation grid-institutes:grid.24539.39
    147 schema:familyName He
    148 schema:givenName Kejun
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011261134331.53
    150 rdf:type schema:Person
    151 sg:person.013166044574.14 schema:affiliation grid-institutes:grid.264756.4
    152 schema:familyName Zhang
    153 schema:givenName Xianyang
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166044574.14
    155 rdf:type schema:Person
    156 sg:person.014233741675.23 schema:affiliation grid-institutes:grid.24539.39
    157 schema:familyName Zhou
    158 schema:givenName Huijuan
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014233741675.23
    160 rdf:type schema:Person
    161 sg:pub.10.1007/978-94-009-4109-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716595
    162 https://doi.org/10.1007/978-94-009-4109-0
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/nmeth.2066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010611135
    165 https://doi.org/10.1038/nmeth.2066
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/nmeth.2604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027743851
    168 https://doi.org/10.1038/nmeth.2604
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/nmeth.2658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139060
    171 https://doi.org/10.1038/nmeth.2658
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/nmeth.3869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016631324
    174 https://doi.org/10.1038/nmeth.3869
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/s41467-019-10656-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117296456
    177 https://doi.org/10.1038/s41467-019-10656-5
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/s41467-020-17041-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129323965
    180 https://doi.org/10.1038/s41467-020-17041-7
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/s41579-020-0433-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130573371
    183 https://doi.org/10.1038/s41579-020-0433-9
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/s41592-018-0141-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107129414
    186 https://doi.org/10.1038/s41592-018-0141-9
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1186/2049-2618-2-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046874717
    189 https://doi.org/10.1186/2049-2618-2-15
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1186/gb-2010-11-10-r106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031289083
    192 https://doi.org/10.1186/gb-2010-11-10-r106
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1186/gb-2010-11-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050509557
    195 https://doi.org/10.1186/gb-2010-11-3-r25
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1186/gb-2012-13-9-r79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029450096
    198 https://doi.org/10.1186/gb-2012-13-9-r79
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1186/s13059-014-0550-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015222646
    201 https://doi.org/10.1186/s13059-014-0550-8
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1186/s40168-016-0208-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019428991
    204 https://doi.org/10.1186/s40168-016-0208-8
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1186/s40168-017-0237-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084252802
    207 https://doi.org/10.1186/s40168-017-0237-y
    208 rdf:type schema:CreativeWork
    209 grid-institutes:grid.24539.39 schema:alternateName Renmin University of China, 100872, Beijing, China
    210 schema:name Renmin University of China, 100872, Beijing, China
    211 Shanghai University of Finance and Economics, 200437, Shanghai, China
    212 Texas A&M University, 77843, College Station, USA
    213 rdf:type schema:Organization
    214 grid-institutes:grid.264756.4 schema:alternateName Texas A&M University, 77843, College Station, USA
    215 schema:name Texas A&M University, 77843, College Station, USA
    216 rdf:type schema:Organization
    217 grid-institutes:grid.66875.3a schema:alternateName Mayo Clinic, Rochester, USA
    218 schema:name Mayo Clinic, Rochester, USA
    219 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...