The influence of the gut microbiome on BCG-induced trained immunity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-09-22

AUTHORS

Martin Stražar, Vera P. Mourits, Valerie A. C. M. Koeken, L. Charlotte J. de Bree, Simone J. C. F. M. Moorlag, Leo A. B. Joosten, Reinout van Crevel, Hera Vlamakis, Mihai G. Netea, Ramnik J. Xavier

ABSTRACT

BackgroundThe bacillus Calmette-Guérin (BCG) vaccine protects against tuberculosis and heterologous infections but elicits high inter-individual variation in specific and nonspecific, or trained, immune responses. While the gut microbiome is increasingly recognized as an important modulator of vaccine responses and immunity in general, its potential role in BCG-induced protection is largely unknown.ResultsStool and blood were collected from 321 healthy adults before BCG vaccination, followed by blood sampling after 2 weeks and 3 months. Metagenomics based on de novo genome assembly reveals 43 immunomodulatory taxa. The nonspecific, trained immune response is detected by altered production of cytokines IL-6, IL-1β, and TNF-α upon ex vivo blood restimulation with Staphylococcus aureus and negatively correlates with abundance of Roseburia. The specific response, measured by IFN-γ production upon Mycobacterium tuberculosis stimulation, is associated positively with Ruminococcus and Eggerthella lenta. The identified immunomodulatory taxa also have the strongest effects on circulating metabolites, with Roseburia affecting phenylalanine metabolism. This is corroborated by abundances of relevant enzymes, suggesting alternate phenylalanine metabolism modules are activated in a Roseburia species-dependent manner.ConclusionsVariability in cytokine production after BCG vaccination is associated with the abundance of microbial genomes, which in turn affect or produce metabolites in circulation. Roseburia is found to alter both trained immune responses and phenylalanine metabolism, revealing microbes and microbial products that may alter BCG-induced immunity. Together, our findings contribute to the understanding of specific and trained immune responses after BCG vaccination. More... »

PAGES

275

References to SciGraph publications

  • 2020-09-23. Gut microbial metabolites as multi-kingdom intermediates in NATURE REVIEWS MICROBIOLOGY
  • 2019-01-28. Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males in SCIENTIFIC REPORTS
  • 2016-04-21. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis in GENOME MEDICINE
  • 2012-06-10. Metagenomic microbial community profiling using unique clade-specific marker genes in NATURE METHODS
  • 2010-03-08. Prodigal: prokaryotic gene recognition and translation initiation site identification in BMC BIOINFORMATICS
  • 2017-10-20. Hippurate as a metabolomic marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome in SCIENTIFIC REPORTS
  • 2020-05-19. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0 in NATURE COMMUNICATIONS
  • 2017-03-06. Dysbiosis and the immune system in NATURE REVIEWS IMMUNOLOGY
  • 2019-06-10. Dynamic construction of gut microbiota may influence allergic diseases of infants in Southwest China in BMC MICROBIOLOGY
  • 2014-07-06. An integrated catalog of reference genes in the human gut microbiome in NATURE BIOTECHNOLOGY
  • 2020-03-04. Defining trained immunity and its role in health and disease in NATURE REVIEWS IMMUNOLOGY
  • 2021-07-14. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome in NATURE
  • 2018-11-05. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model in NATURE MICROBIOLOGY
  • 2017-12-18. Enterotypes in the landscape of gut microbial community composition in NATURE MICROBIOLOGY
  • 2018-08-17. Microbial tryptophan catabolites in health and disease in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13059-021-02482-0

    DOI

    http://dx.doi.org/10.1186/s13059-021-02482-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141296212

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34551799


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adolescent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "BCG Vaccine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cohort Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cytokines", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Firmicutes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gastrointestinal Microbiome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenylalanine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Young Adult", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of MIT and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stra\u017ear", 
            "givenName": "Martin", 
            "id": "sg:person.01245376514.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245376514.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.10417.33", 
              "name": [
                "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mourits", 
            "givenName": "Vera P.", 
            "id": "sg:person.016453744652.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016453744652.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany", 
              "id": "http://www.grid.ac/institutes/grid.512472.7", 
              "name": [
                "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands", 
                "Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koeken", 
            "givenName": "Valerie A. C. M.", 
            "id": "sg:person.013057565225.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013057565225.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.7143.1", 
              "name": [
                "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands", 
                "Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark", 
                "Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Bree", 
            "givenName": "L. Charlotte J.", 
            "id": "sg:person.0754604770.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754604770.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.10417.33", 
              "name": [
                "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moorlag", 
            "givenName": "Simone J. C. F. M.", 
            "id": "sg:person.011531344314.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011531344314.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Genetics, Iuliu Ha\u021bieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania", 
              "id": "http://www.grid.ac/institutes/grid.411040.0", 
              "name": [
                "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands", 
                "Department of Medical Genetics, Iuliu Ha\u021bieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Joosten", 
            "givenName": "Leo A. B.", 
            "id": "sg:person.014645240657.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014645240657.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.10417.33", 
              "name": [
                "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van Crevel", 
            "givenName": "Reinout", 
            "id": "sg:person.01021435034.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021435034.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of MIT and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vlamakis", 
            "givenName": "Hera", 
            "id": "sg:person.0773476547.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773476547.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany", 
              "id": "http://www.grid.ac/institutes/grid.10388.32", 
              "name": [
                "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands", 
                "Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Netea", 
            "givenName": "Mihai G.", 
            "id": "sg:person.01263677437.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263677437.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
                "Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA", 
                "Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xavier", 
            "givenName": "Ramnik J.", 
            "id": "sg:person.0717130066.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717130066.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41564-017-0072-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099697363", 
              "https://doi.org/10.1038/s41564-017-0072-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41579-020-0438-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131097431", 
              "https://doi.org/10.1038/s41579-020-0438-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-13722-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092252273", 
              "https://doi.org/10.1038/s41598-017-13722-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-021-03707-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139689244", 
              "https://doi.org/10.1038/s41586-021-03707-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2942", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006520065", 
              "https://doi.org/10.1038/nbt.2942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-37246-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111670375", 
              "https://doi.org/10.1038/s41598-018-37246-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13073-016-0299-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009016129", 
              "https://doi.org/10.1186/s13073-016-0299-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-018-0272-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107912948", 
              "https://doi.org/10.1038/s41564-018-0272-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05470-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106133438", 
              "https://doi.org/10.1038/s41467-018-05470-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12866-019-1489-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117022654", 
              "https://doi.org/10.1186/s12866-019-1489-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-020-16366-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127705453", 
              "https://doi.org/10.1038/s41467-020-16366-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423599", 
              "https://doi.org/10.1186/1471-2105-11-119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41577-020-0285-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125343614", 
              "https://doi.org/10.1038/s41577-020-0285-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010611135", 
              "https://doi.org/10.1038/nmeth.2066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nri.2017.7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129725", 
              "https://doi.org/10.1038/nri.2017.7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-22", 
        "datePublishedReg": "2021-09-22", 
        "description": "BackgroundThe bacillus Calmette-Gu\u00e9rin (BCG) vaccine protects against tuberculosis and heterologous infections but elicits high inter-individual variation in specific and nonspecific, or trained, immune responses. While the gut microbiome is increasingly recognized as an important modulator of vaccine responses and immunity in general, its potential role in BCG-induced protection is largely unknown.ResultsStool and blood were collected from 321 healthy adults before BCG vaccination, followed by blood sampling after 2 weeks and 3 months. Metagenomics based on de novo genome assembly reveals 43 immunomodulatory taxa. The nonspecific, trained immune response is detected by altered production of cytokines IL-6, IL-1\u03b2, and TNF-\u03b1 upon ex vivo blood restimulation with Staphylococcus aureus and negatively correlates with abundance of Roseburia. The specific response, measured by IFN-\u03b3 production upon Mycobacterium tuberculosis stimulation, is associated positively with Ruminococcus and Eggerthella lenta. The identified immunomodulatory taxa also have the strongest effects on circulating metabolites, with Roseburia affecting phenylalanine metabolism. This is corroborated by abundances of relevant enzymes, suggesting alternate phenylalanine metabolism modules are activated in a Roseburia species-dependent manner.ConclusionsVariability in cytokine production after BCG vaccination is associated with the abundance of microbial genomes, which in turn affect or produce metabolites in circulation. Roseburia is found to alter both trained immune responses and phenylalanine metabolism, revealing microbes and microbial products that may alter BCG-induced immunity. Together, our findings contribute to the understanding of specific and trained immune responses after BCG vaccination.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13059-021-02482-0", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8709837", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2439002", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023439", 
            "issn": [
              "1474-760X", 
              "1465-6906"
            ], 
            "name": "Genome Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "keywords": [
          "BCG vaccination", 
          "immune response", 
          "gut microbiome", 
          "Bacillus Calmette-Gu\u00e9rin (BCG) vaccine", 
          "abundance of Roseburia", 
          "Mycobacterium tuberculosis stimulation", 
          "BCG-induced immunity", 
          "Calmette-Gu\u00e9rin vaccine", 
          "IFN-\u03b3 production", 
          "cytokines IL-6", 
          "phenylalanine metabolism", 
          "vaccine responses", 
          "IL-6", 
          "IL-1\u03b2", 
          "cytokine production", 
          "heterologous infections", 
          "altered production", 
          "healthy adults", 
          "vaccination", 
          "inter-individual variation", 
          "high inter-individual variation", 
          "important modulator", 
          "Roseburia", 
          "immunity", 
          "potential role", 
          "Staphylococcus aureus", 
          "BCG", 
          "blood", 
          "species-dependent manner", 
          "metabolism", 
          "response", 
          "specific responses", 
          "microbiome", 
          "metabolites", 
          "microbial products", 
          "TNF", 
          "restimulation", 
          "vaccine", 
          "tuberculosis", 
          "infection", 
          "weeks", 
          "months", 
          "stimulation", 
          "Eggerthella", 
          "adults", 
          "nonspecific", 
          "metabolism modules", 
          "Ruminococcus", 
          "aureus", 
          "ConclusionsVariability", 
          "findings", 
          "circulation", 
          "modulator", 
          "relevant enzymes", 
          "role", 
          "production", 
          "effect", 
          "enzyme", 
          "strong effect", 
          "protection", 
          "manner", 
          "microbes", 
          "understanding", 
          "metagenomics", 
          "abundance", 
          "turn", 
          "influence", 
          "genome", 
          "products", 
          "variation", 
          "microbial genomes", 
          "assembly", 
          "module", 
          "de novo genome assembly", 
          "novo genome assembly", 
          "taxa", 
          "genome assembly"
        ], 
        "name": "The influence of the gut microbiome on BCG-induced trained immunity", 
        "pagination": "275", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141296212"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13059-021-02482-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34551799"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13059-021-02482-0", 
          "https://app.dimensions.ai/details/publication/pub.1141296212"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_914.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13059-021-02482-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13059-021-02482-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13059-021-02482-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13059-021-02482-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13059-021-02482-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    354 TRIPLES      21 PREDICATES      133 URIs      109 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13059-021-02482-0 schema:about N10f8349530c04ce89db8171c939b1de2
    2 N1b78a2bf455f4142b73011133264dd39
    3 N2290c63b061c423bb16f4063e7d7cd1b
    4 N777c75f2ffeb4a7d86fe925704f620c7
    5 N8d24340d979843aabfdd34bcfaf0a5ef
    6 N9e634bba08d04023a5b2449d31ad8d68
    7 Nb2ede664251848cf9f81c2894a3d51d1
    8 Nb8b7b261ebf643bd9420da2ab9eb432f
    9 Nbe6d56e014724a4d82d99248443bcb97
    10 Nc3cdfcbc51ee409d815efcb33c8d84f1
    11 Nc8aefe0a3d894c698102173eaf67ab84
    12 Nd571ff44e46c4bc18cbe834507a49147
    13 Ndb23f41e8e7c4da4b0bea3d5d7960582
    14 Ndf77c993352b4000bff82a7656cf7b1b
    15 Ne0f5d35ed0974a21b9291a316b399202
    16 anzsrc-for:05
    17 anzsrc-for:06
    18 anzsrc-for:08
    19 schema:author N7559f363cd51492091fa6b28b7b86150
    20 schema:citation sg:pub.10.1038/nbt.2942
    21 sg:pub.10.1038/nmeth.2066
    22 sg:pub.10.1038/nri.2017.7
    23 sg:pub.10.1038/s41467-018-05470-4
    24 sg:pub.10.1038/s41467-020-16366-7
    25 sg:pub.10.1038/s41564-017-0072-8
    26 sg:pub.10.1038/s41564-018-0272-x
    27 sg:pub.10.1038/s41577-020-0285-6
    28 sg:pub.10.1038/s41579-020-0438-4
    29 sg:pub.10.1038/s41586-021-03707-9
    30 sg:pub.10.1038/s41598-017-13722-4
    31 sg:pub.10.1038/s41598-018-37246-7
    32 sg:pub.10.1186/1471-2105-11-119
    33 sg:pub.10.1186/s12866-019-1489-4
    34 sg:pub.10.1186/s13073-016-0299-7
    35 schema:datePublished 2021-09-22
    36 schema:datePublishedReg 2021-09-22
    37 schema:description BackgroundThe bacillus Calmette-Guérin (BCG) vaccine protects against tuberculosis and heterologous infections but elicits high inter-individual variation in specific and nonspecific, or trained, immune responses. While the gut microbiome is increasingly recognized as an important modulator of vaccine responses and immunity in general, its potential role in BCG-induced protection is largely unknown.ResultsStool and blood were collected from 321 healthy adults before BCG vaccination, followed by blood sampling after 2 weeks and 3 months. Metagenomics based on de novo genome assembly reveals 43 immunomodulatory taxa. The nonspecific, trained immune response is detected by altered production of cytokines IL-6, IL-1β, and TNF-α upon ex vivo blood restimulation with Staphylococcus aureus and negatively correlates with abundance of Roseburia. The specific response, measured by IFN-γ production upon Mycobacterium tuberculosis stimulation, is associated positively with Ruminococcus and Eggerthella lenta. The identified immunomodulatory taxa also have the strongest effects on circulating metabolites, with Roseburia affecting phenylalanine metabolism. This is corroborated by abundances of relevant enzymes, suggesting alternate phenylalanine metabolism modules are activated in a Roseburia species-dependent manner.ConclusionsVariability in cytokine production after BCG vaccination is associated with the abundance of microbial genomes, which in turn affect or produce metabolites in circulation. Roseburia is found to alter both trained immune responses and phenylalanine metabolism, revealing microbes and microbial products that may alter BCG-induced immunity. Together, our findings contribute to the understanding of specific and trained immune responses after BCG vaccination.
    38 schema:genre article
    39 schema:isAccessibleForFree true
    40 schema:isPartOf N833086e103a549c897b0e80f58309586
    41 Nc7ce58f146ac4336b1549fbcd5590fe0
    42 sg:journal.1023439
    43 schema:keywords BCG
    44 BCG vaccination
    45 BCG-induced immunity
    46 Bacillus Calmette-Guérin (BCG) vaccine
    47 Calmette-Guérin vaccine
    48 ConclusionsVariability
    49 Eggerthella
    50 IFN-γ production
    51 IL-1β
    52 IL-6
    53 Mycobacterium tuberculosis stimulation
    54 Roseburia
    55 Ruminococcus
    56 Staphylococcus aureus
    57 TNF
    58 abundance
    59 abundance of Roseburia
    60 adults
    61 altered production
    62 assembly
    63 aureus
    64 blood
    65 circulation
    66 cytokine production
    67 cytokines IL-6
    68 de novo genome assembly
    69 effect
    70 enzyme
    71 findings
    72 genome
    73 genome assembly
    74 gut microbiome
    75 healthy adults
    76 heterologous infections
    77 high inter-individual variation
    78 immune response
    79 immunity
    80 important modulator
    81 infection
    82 influence
    83 inter-individual variation
    84 manner
    85 metabolism
    86 metabolism modules
    87 metabolites
    88 metagenomics
    89 microbes
    90 microbial genomes
    91 microbial products
    92 microbiome
    93 modulator
    94 module
    95 months
    96 nonspecific
    97 novo genome assembly
    98 phenylalanine metabolism
    99 potential role
    100 production
    101 products
    102 protection
    103 relevant enzymes
    104 response
    105 restimulation
    106 role
    107 species-dependent manner
    108 specific responses
    109 stimulation
    110 strong effect
    111 taxa
    112 tuberculosis
    113 turn
    114 understanding
    115 vaccination
    116 vaccine
    117 vaccine responses
    118 variation
    119 weeks
    120 schema:name The influence of the gut microbiome on BCG-induced trained immunity
    121 schema:pagination 275
    122 schema:productId N6a423fd8d4134e85ad46ab7e96203ba3
    123 Na96ce1a879054970a0cfbf36b18f07d3
    124 Ncf441330c3cc4cd88c278b6b2dfa275d
    125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141296212
    126 https://doi.org/10.1186/s13059-021-02482-0
    127 schema:sdDatePublished 2022-11-24T21:08
    128 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    129 schema:sdPublisher Nd704f178fe0f40eaa54a80240cce929a
    130 schema:url https://doi.org/10.1186/s13059-021-02482-0
    131 sgo:license sg:explorer/license/
    132 sgo:sdDataset articles
    133 rdf:type schema:ScholarlyArticle
    134 N10f8349530c04ce89db8171c939b1de2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Male
    136 rdf:type schema:DefinedTerm
    137 N1ada8f29d68d4349998b32f61b569dec rdf:first sg:person.0773476547.34
    138 rdf:rest N884d17a25ee944f0bb8f2303dfb626f5
    139 N1b78a2bf455f4142b73011133264dd39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Aged
    141 rdf:type schema:DefinedTerm
    142 N2290c63b061c423bb16f4063e7d7cd1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Cohort Studies
    144 rdf:type schema:DefinedTerm
    145 N3b0b103b0b7749198cda47a1d79853b4 rdf:first sg:person.011531344314.16
    146 rdf:rest Nc0b160a9c9474b78879cd2a7d2f52b81
    147 N51f6cc49be2d4a60a206be497d55e921 rdf:first sg:person.01021435034.00
    148 rdf:rest N1ada8f29d68d4349998b32f61b569dec
    149 N54c5c32538124d2c9db569c6597d9ad8 rdf:first sg:person.016453744652.62
    150 rdf:rest Nad86cf334c7b49da902514a26f8b8e64
    151 N6a423fd8d4134e85ad46ab7e96203ba3 schema:name pubmed_id
    152 schema:value 34551799
    153 rdf:type schema:PropertyValue
    154 N7559f363cd51492091fa6b28b7b86150 rdf:first sg:person.01245376514.29
    155 rdf:rest N54c5c32538124d2c9db569c6597d9ad8
    156 N777c75f2ffeb4a7d86fe925704f620c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Young Adult
    158 rdf:type schema:DefinedTerm
    159 N833086e103a549c897b0e80f58309586 schema:volumeNumber 22
    160 rdf:type schema:PublicationVolume
    161 N884d17a25ee944f0bb8f2303dfb626f5 rdf:first sg:person.01263677437.18
    162 rdf:rest N9eb5d65316744063b5286e75e1c1203b
    163 N8d24340d979843aabfdd34bcfaf0a5ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Cytokines
    165 rdf:type schema:DefinedTerm
    166 N9e634bba08d04023a5b2449d31ad8d68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Firmicutes
    168 rdf:type schema:DefinedTerm
    169 N9eb5d65316744063b5286e75e1c1203b rdf:first sg:person.0717130066.82
    170 rdf:rest rdf:nil
    171 Na96ce1a879054970a0cfbf36b18f07d3 schema:name dimensions_id
    172 schema:value pub.1141296212
    173 rdf:type schema:PropertyValue
    174 Nad86cf334c7b49da902514a26f8b8e64 rdf:first sg:person.013057565225.31
    175 rdf:rest Nfff44e1031ab439f98f0a5c73bcc9d10
    176 Nb2ede664251848cf9f81c2894a3d51d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Adult
    178 rdf:type schema:DefinedTerm
    179 Nb8b7b261ebf643bd9420da2ab9eb432f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Female
    181 rdf:type schema:DefinedTerm
    182 Nbe6d56e014724a4d82d99248443bcb97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Metagenomics
    184 rdf:type schema:DefinedTerm
    185 Nc0b160a9c9474b78879cd2a7d2f52b81 rdf:first sg:person.014645240657.77
    186 rdf:rest N51f6cc49be2d4a60a206be497d55e921
    187 Nc3cdfcbc51ee409d815efcb33c8d84f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Adolescent
    189 rdf:type schema:DefinedTerm
    190 Nc7ce58f146ac4336b1549fbcd5590fe0 schema:issueNumber 1
    191 rdf:type schema:PublicationIssue
    192 Nc8aefe0a3d894c698102173eaf67ab84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Phenylalanine
    194 rdf:type schema:DefinedTerm
    195 Ncf441330c3cc4cd88c278b6b2dfa275d schema:name doi
    196 schema:value 10.1186/s13059-021-02482-0
    197 rdf:type schema:PropertyValue
    198 Nd571ff44e46c4bc18cbe834507a49147 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name BCG Vaccine
    200 rdf:type schema:DefinedTerm
    201 Nd704f178fe0f40eaa54a80240cce929a schema:name Springer Nature - SN SciGraph project
    202 rdf:type schema:Organization
    203 Ndb23f41e8e7c4da4b0bea3d5d7960582 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    204 schema:name Gastrointestinal Microbiome
    205 rdf:type schema:DefinedTerm
    206 Ndf77c993352b4000bff82a7656cf7b1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    207 schema:name Middle Aged
    208 rdf:type schema:DefinedTerm
    209 Ne0f5d35ed0974a21b9291a316b399202 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Humans
    211 rdf:type schema:DefinedTerm
    212 Nfff44e1031ab439f98f0a5c73bcc9d10 rdf:first sg:person.0754604770.66
    213 rdf:rest N3b0b103b0b7749198cda47a1d79853b4
    214 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    215 schema:name Environmental Sciences
    216 rdf:type schema:DefinedTerm
    217 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    218 schema:name Biological Sciences
    219 rdf:type schema:DefinedTerm
    220 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    221 schema:name Information and Computing Sciences
    222 rdf:type schema:DefinedTerm
    223 sg:grant.2439002 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-021-02482-0
    224 rdf:type schema:MonetaryGrant
    225 sg:grant.8709837 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-021-02482-0
    226 rdf:type schema:MonetaryGrant
    227 sg:journal.1023439 schema:issn 1465-6906
    228 1474-760X
    229 schema:name Genome Biology
    230 schema:publisher Springer Nature
    231 rdf:type schema:Periodical
    232 sg:person.01021435034.00 schema:affiliation grid-institutes:grid.10417.33
    233 schema:familyName van Crevel
    234 schema:givenName Reinout
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021435034.00
    236 rdf:type schema:Person
    237 sg:person.011531344314.16 schema:affiliation grid-institutes:grid.10417.33
    238 schema:familyName Moorlag
    239 schema:givenName Simone J. C. F. M.
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011531344314.16
    241 rdf:type schema:Person
    242 sg:person.01245376514.29 schema:affiliation grid-institutes:grid.66859.34
    243 schema:familyName Stražar
    244 schema:givenName Martin
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245376514.29
    246 rdf:type schema:Person
    247 sg:person.01263677437.18 schema:affiliation grid-institutes:grid.10388.32
    248 schema:familyName Netea
    249 schema:givenName Mihai G.
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263677437.18
    251 rdf:type schema:Person
    252 sg:person.013057565225.31 schema:affiliation grid-institutes:grid.512472.7
    253 schema:familyName Koeken
    254 schema:givenName Valerie A. C. M.
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013057565225.31
    256 rdf:type schema:Person
    257 sg:person.014645240657.77 schema:affiliation grid-institutes:grid.411040.0
    258 schema:familyName Joosten
    259 schema:givenName Leo A. B.
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014645240657.77
    261 rdf:type schema:Person
    262 sg:person.016453744652.62 schema:affiliation grid-institutes:grid.10417.33
    263 schema:familyName Mourits
    264 schema:givenName Vera P.
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016453744652.62
    266 rdf:type schema:Person
    267 sg:person.0717130066.82 schema:affiliation grid-institutes:grid.38142.3c
    268 schema:familyName Xavier
    269 schema:givenName Ramnik J.
    270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717130066.82
    271 rdf:type schema:Person
    272 sg:person.0754604770.66 schema:affiliation grid-institutes:grid.7143.1
    273 schema:familyName de Bree
    274 schema:givenName L. Charlotte J.
    275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754604770.66
    276 rdf:type schema:Person
    277 sg:person.0773476547.34 schema:affiliation grid-institutes:grid.66859.34
    278 schema:familyName Vlamakis
    279 schema:givenName Hera
    280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773476547.34
    281 rdf:type schema:Person
    282 sg:pub.10.1038/nbt.2942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006520065
    283 https://doi.org/10.1038/nbt.2942
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/nmeth.2066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010611135
    286 https://doi.org/10.1038/nmeth.2066
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/nri.2017.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129725
    289 https://doi.org/10.1038/nri.2017.7
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/s41467-018-05470-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106133438
    292 https://doi.org/10.1038/s41467-018-05470-4
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/s41467-020-16366-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127705453
    295 https://doi.org/10.1038/s41467-020-16366-7
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/s41564-017-0072-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099697363
    298 https://doi.org/10.1038/s41564-017-0072-8
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/s41564-018-0272-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1107912948
    301 https://doi.org/10.1038/s41564-018-0272-x
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/s41577-020-0285-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125343614
    304 https://doi.org/10.1038/s41577-020-0285-6
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/s41579-020-0438-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131097431
    307 https://doi.org/10.1038/s41579-020-0438-4
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/s41586-021-03707-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139689244
    310 https://doi.org/10.1038/s41586-021-03707-9
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1038/s41598-017-13722-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092252273
    313 https://doi.org/10.1038/s41598-017-13722-4
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1038/s41598-018-37246-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111670375
    316 https://doi.org/10.1038/s41598-018-37246-7
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
    319 https://doi.org/10.1186/1471-2105-11-119
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1186/s12866-019-1489-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117022654
    322 https://doi.org/10.1186/s12866-019-1489-4
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1186/s13073-016-0299-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009016129
    325 https://doi.org/10.1186/s13073-016-0299-7
    326 rdf:type schema:CreativeWork
    327 grid-institutes:grid.10388.32 schema:alternateName Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
    328 schema:name Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
    329 Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
    330 rdf:type schema:Organization
    331 grid-institutes:grid.10417.33 schema:alternateName Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
    332 schema:name Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
    333 rdf:type schema:Organization
    334 grid-institutes:grid.38142.3c schema:alternateName Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
    335 schema:name Broad Institute of MIT and Harvard, Cambridge, MA, USA
    336 Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
    337 Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
    338 rdf:type schema:Organization
    339 grid-institutes:grid.411040.0 schema:alternateName Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
    340 schema:name Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
    341 Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
    342 rdf:type schema:Organization
    343 grid-institutes:grid.512472.7 schema:alternateName Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
    344 schema:name Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
    345 Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
    346 rdf:type schema:Organization
    347 grid-institutes:grid.66859.34 schema:alternateName Broad Institute of MIT and Harvard, Cambridge, MA, USA
    348 schema:name Broad Institute of MIT and Harvard, Cambridge, MA, USA
    349 rdf:type schema:Organization
    350 grid-institutes:grid.7143.1 schema:alternateName Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
    351 schema:name Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
    352 Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
    353 Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
    354 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...