The influence of the gut microbiome on BCG-induced trained immunity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-09-22

AUTHORS

Martin Stražar, Vera P. Mourits, Valerie A. C. M. Koeken, L. Charlotte J. de Bree, Simone J. C. F. M. Moorlag, Leo A. B. Joosten, Reinout van Crevel, Hera Vlamakis, Mihai G. Netea, Ramnik J. Xavier

ABSTRACT

BackgroundThe bacillus Calmette-Guérin (BCG) vaccine protects against tuberculosis and heterologous infections but elicits high inter-individual variation in specific and nonspecific, or trained, immune responses. While the gut microbiome is increasingly recognized as an important modulator of vaccine responses and immunity in general, its potential role in BCG-induced protection is largely unknown.ResultsStool and blood were collected from 321 healthy adults before BCG vaccination, followed by blood sampling after 2 weeks and 3 months. Metagenomics based on de novo genome assembly reveals 43 immunomodulatory taxa. The nonspecific, trained immune response is detected by altered production of cytokines IL-6, IL-1β, and TNF-α upon ex vivo blood restimulation with Staphylococcus aureus and negatively correlates with abundance of Roseburia. The specific response, measured by IFN-γ production upon Mycobacterium tuberculosis stimulation, is associated positively with Ruminococcus and Eggerthella lenta. The identified immunomodulatory taxa also have the strongest effects on circulating metabolites, with Roseburia affecting phenylalanine metabolism. This is corroborated by abundances of relevant enzymes, suggesting alternate phenylalanine metabolism modules are activated in a Roseburia species-dependent manner.ConclusionsVariability in cytokine production after BCG vaccination is associated with the abundance of microbial genomes, which in turn affect or produce metabolites in circulation. Roseburia is found to alter both trained immune responses and phenylalanine metabolism, revealing microbes and microbial products that may alter BCG-induced immunity. Together, our findings contribute to the understanding of specific and trained immune responses after BCG vaccination. More... »

PAGES

275

References to SciGraph publications

  • 2020-09-23. Gut microbial metabolites as multi-kingdom intermediates in NATURE REVIEWS MICROBIOLOGY
  • 2014-07-06. An integrated catalog of reference genes in the human gut microbiome in NATURE BIOTECHNOLOGY
  • 2016-04-21. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis in GENOME MEDICINE
  • 2012-06-10. Metagenomic microbial community profiling using unique clade-specific marker genes in NATURE METHODS
  • 2021-07-14. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome in NATURE
  • 2017-10-20. Hippurate as a metabolomic marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome in SCIENTIFIC REPORTS
  • 2020-05-19. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0 in NATURE COMMUNICATIONS
  • 2017-03-06. Dysbiosis and the immune system in NATURE REVIEWS IMMUNOLOGY
  • 2019-06-10. Dynamic construction of gut microbiota may influence allergic diseases of infants in Southwest China in BMC MICROBIOLOGY
  • 2019-01-28. Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males in SCIENTIFIC REPORTS
  • 2020-03-04. Defining trained immunity and its role in health and disease in NATURE REVIEWS IMMUNOLOGY
  • 2010-03-08. Prodigal: prokaryotic gene recognition and translation initiation site identification in BMC BIOINFORMATICS
  • 2018-11-05. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model in NATURE MICROBIOLOGY
  • 2017-12-18. Enterotypes in the landscape of gut microbial community composition in NATURE MICROBIOLOGY
  • 2018-08-17. Microbial tryptophan catabolites in health and disease in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13059-021-02482-0

    DOI

    http://dx.doi.org/10.1186/s13059-021-02482-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141296212

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34551799


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adolescent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "BCG Vaccine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cohort Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cytokines", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Firmicutes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gastrointestinal Microbiome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenylalanine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Young Adult", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of MIT and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stra\u017ear", 
            "givenName": "Martin", 
            "id": "sg:person.01245376514.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245376514.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.10417.33", 
              "name": [
                "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mourits", 
            "givenName": "Vera P.", 
            "id": "sg:person.016453744652.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016453744652.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany", 
              "id": "http://www.grid.ac/institutes/grid.512472.7", 
              "name": [
                "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands", 
                "Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koeken", 
            "givenName": "Valerie A. C. M.", 
            "id": "sg:person.013057565225.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013057565225.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.7143.1", 
              "name": [
                "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands", 
                "Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark", 
                "Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Bree", 
            "givenName": "L. Charlotte J.", 
            "id": "sg:person.0754604770.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754604770.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.10417.33", 
              "name": [
                "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moorlag", 
            "givenName": "Simone J. C. F. M.", 
            "id": "sg:person.011531344314.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011531344314.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Genetics, Iuliu Ha\u021bieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania", 
              "id": "http://www.grid.ac/institutes/grid.411040.0", 
              "name": [
                "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands", 
                "Department of Medical Genetics, Iuliu Ha\u021bieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Joosten", 
            "givenName": "Leo A. B.", 
            "id": "sg:person.014645240657.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014645240657.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.10417.33", 
              "name": [
                "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van Crevel", 
            "givenName": "Reinout", 
            "id": "sg:person.01021435034.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021435034.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of MIT and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vlamakis", 
            "givenName": "Hera", 
            "id": "sg:person.0773476547.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773476547.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany", 
              "id": "http://www.grid.ac/institutes/grid.10388.32", 
              "name": [
                "Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands", 
                "Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Netea", 
            "givenName": "Mihai G.", 
            "id": "sg:person.01263677437.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263677437.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.32224.35", 
              "name": [
                "Broad Institute of MIT and Harvard, Cambridge, MA, USA", 
                "Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA", 
                "Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xavier", 
            "givenName": "Ramnik J.", 
            "id": "sg:person.0717130066.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717130066.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41598-017-13722-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092252273", 
              "https://doi.org/10.1038/s41598-017-13722-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12866-019-1489-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117022654", 
              "https://doi.org/10.1186/s12866-019-1489-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-018-0272-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107912948", 
              "https://doi.org/10.1038/s41564-018-0272-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41577-020-0285-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125343614", 
              "https://doi.org/10.1038/s41577-020-0285-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41579-020-0438-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131097431", 
              "https://doi.org/10.1038/s41579-020-0438-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nri.2017.7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129725", 
              "https://doi.org/10.1038/nri.2017.7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2942", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006520065", 
              "https://doi.org/10.1038/nbt.2942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13073-016-0299-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009016129", 
              "https://doi.org/10.1186/s13073-016-0299-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-017-0072-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099697363", 
              "https://doi.org/10.1038/s41564-017-0072-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010611135", 
              "https://doi.org/10.1038/nmeth.2066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423599", 
              "https://doi.org/10.1186/1471-2105-11-119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-021-03707-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139689244", 
              "https://doi.org/10.1038/s41586-021-03707-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-37246-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111670375", 
              "https://doi.org/10.1038/s41598-018-37246-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05470-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106133438", 
              "https://doi.org/10.1038/s41467-018-05470-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-020-16366-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127705453", 
              "https://doi.org/10.1038/s41467-020-16366-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-22", 
        "datePublishedReg": "2021-09-22", 
        "description": "BackgroundThe bacillus Calmette-Gu\u00e9rin (BCG) vaccine protects against tuberculosis and heterologous infections but elicits high inter-individual variation in specific and nonspecific, or trained, immune responses. While the gut microbiome is increasingly recognized as an important modulator of vaccine responses and immunity in general, its potential role in BCG-induced protection is largely unknown.ResultsStool and blood were collected from 321 healthy adults before BCG vaccination, followed by blood sampling after 2 weeks and 3 months. Metagenomics based on de novo genome assembly reveals 43 immunomodulatory taxa. The nonspecific, trained immune response is detected by altered production of cytokines IL-6, IL-1\u03b2, and TNF-\u03b1 upon ex vivo blood restimulation with Staphylococcus aureus and negatively correlates with abundance of Roseburia. The specific response, measured by IFN-\u03b3 production upon Mycobacterium tuberculosis stimulation, is associated positively with Ruminococcus and Eggerthella lenta. The identified immunomodulatory taxa also have the strongest effects on circulating metabolites, with Roseburia affecting phenylalanine metabolism. This is corroborated by abundances of relevant enzymes, suggesting alternate phenylalanine metabolism modules are activated in a Roseburia species-dependent manner.ConclusionsVariability in cytokine production after BCG vaccination is associated with the abundance of microbial genomes, which in turn affect or produce metabolites in circulation. Roseburia is found to alter both trained immune responses and phenylalanine metabolism, revealing microbes and microbial products that may alter BCG-induced immunity. Together, our findings contribute to the understanding of specific and trained immune responses after BCG vaccination.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13059-021-02482-0", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2439002", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8709837", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023439", 
            "issn": [
              "1474-760X", 
              "1465-6906"
            ], 
            "name": "Genome Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "keywords": [
          "BCG vaccination", 
          "immune response", 
          "gut microbiome", 
          "Bacillus Calmette-Gu\u00e9rin (BCG) vaccine", 
          "abundance of Roseburia", 
          "Mycobacterium tuberculosis stimulation", 
          "BCG-induced immunity", 
          "Calmette-Gu\u00e9rin vaccine", 
          "IFN-\u03b3 production", 
          "cytokines IL-6", 
          "phenylalanine metabolism", 
          "vaccine responses", 
          "IL-6", 
          "IL-1\u03b2", 
          "cytokine production", 
          "heterologous infections", 
          "altered production", 
          "healthy adults", 
          "vaccination", 
          "inter-individual variation", 
          "high inter-individual variation", 
          "important modulator", 
          "Roseburia", 
          "immunity", 
          "potential role", 
          "Staphylococcus aureus", 
          "BCG", 
          "blood", 
          "species-dependent manner", 
          "metabolism", 
          "response", 
          "specific responses", 
          "microbiome", 
          "metabolites", 
          "microbial products", 
          "TNF", 
          "restimulation", 
          "vaccine", 
          "tuberculosis", 
          "infection", 
          "weeks", 
          "months", 
          "stimulation", 
          "Eggerthella", 
          "adults", 
          "nonspecific", 
          "metabolism modules", 
          "Ruminococcus", 
          "aureus", 
          "ConclusionsVariability", 
          "findings", 
          "circulation", 
          "modulator", 
          "relevant enzymes", 
          "role", 
          "production", 
          "effect", 
          "enzyme", 
          "strong effect", 
          "protection", 
          "manner", 
          "microbes", 
          "understanding", 
          "metagenomics", 
          "abundance", 
          "turn", 
          "influence", 
          "genome", 
          "products", 
          "variation", 
          "microbial genomes", 
          "assembly", 
          "module", 
          "de novo genome assembly", 
          "novo genome assembly", 
          "taxa", 
          "genome assembly"
        ], 
        "name": "The influence of the gut microbiome on BCG-induced trained immunity", 
        "pagination": "275", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141296212"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13059-021-02482-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34551799"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13059-021-02482-0", 
          "https://app.dimensions.ai/details/publication/pub.1141296212"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_883.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13059-021-02482-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13059-021-02482-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13059-021-02482-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13059-021-02482-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13059-021-02482-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    354 TRIPLES      21 PREDICATES      133 URIs      109 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13059-021-02482-0 schema:about N03d90ca2530e4b2c8a71ec554edd3cc0
    2 N068acc84c2574ab1b95f4dcb6ad2f48a
    3 N1230424a438c4ca5b011c6c2009452e9
    4 N1243563e5edb431fb1c269083e3f35ea
    5 N1dd9d9113e5d475a84565a479f4b601f
    6 N1de6b51412ca4afaa9c0a9b2bd43db19
    7 N2bb6d62f7886403db6540f881d025c39
    8 N3d5390d6e95e4fb093b6a1ac61c0eb7d
    9 N3f127448b2ea43b5a211f8a549470ebb
    10 N5ee96a571a7444d69367b60af6c67c8c
    11 N702a12da6146435d9bb866ac245fb3b1
    12 N76a820bc284e47139cdbac4d36885fef
    13 Na6057c44d8274f6c837b733bd6ec80ca
    14 Naa849feb0089458bae8e267087f5aad5
    15 Nf5a043a117d74ef2b2dbc13965efb879
    16 anzsrc-for:05
    17 anzsrc-for:06
    18 anzsrc-for:08
    19 schema:author N4621b5833038484798e1b35fed61e020
    20 schema:citation sg:pub.10.1038/nbt.2942
    21 sg:pub.10.1038/nmeth.2066
    22 sg:pub.10.1038/nri.2017.7
    23 sg:pub.10.1038/s41467-018-05470-4
    24 sg:pub.10.1038/s41467-020-16366-7
    25 sg:pub.10.1038/s41564-017-0072-8
    26 sg:pub.10.1038/s41564-018-0272-x
    27 sg:pub.10.1038/s41577-020-0285-6
    28 sg:pub.10.1038/s41579-020-0438-4
    29 sg:pub.10.1038/s41586-021-03707-9
    30 sg:pub.10.1038/s41598-017-13722-4
    31 sg:pub.10.1038/s41598-018-37246-7
    32 sg:pub.10.1186/1471-2105-11-119
    33 sg:pub.10.1186/s12866-019-1489-4
    34 sg:pub.10.1186/s13073-016-0299-7
    35 schema:datePublished 2021-09-22
    36 schema:datePublishedReg 2021-09-22
    37 schema:description BackgroundThe bacillus Calmette-Guérin (BCG) vaccine protects against tuberculosis and heterologous infections but elicits high inter-individual variation in specific and nonspecific, or trained, immune responses. While the gut microbiome is increasingly recognized as an important modulator of vaccine responses and immunity in general, its potential role in BCG-induced protection is largely unknown.ResultsStool and blood were collected from 321 healthy adults before BCG vaccination, followed by blood sampling after 2 weeks and 3 months. Metagenomics based on de novo genome assembly reveals 43 immunomodulatory taxa. The nonspecific, trained immune response is detected by altered production of cytokines IL-6, IL-1β, and TNF-α upon ex vivo blood restimulation with Staphylococcus aureus and negatively correlates with abundance of Roseburia. The specific response, measured by IFN-γ production upon Mycobacterium tuberculosis stimulation, is associated positively with Ruminococcus and Eggerthella lenta. The identified immunomodulatory taxa also have the strongest effects on circulating metabolites, with Roseburia affecting phenylalanine metabolism. This is corroborated by abundances of relevant enzymes, suggesting alternate phenylalanine metabolism modules are activated in a Roseburia species-dependent manner.ConclusionsVariability in cytokine production after BCG vaccination is associated with the abundance of microbial genomes, which in turn affect or produce metabolites in circulation. Roseburia is found to alter both trained immune responses and phenylalanine metabolism, revealing microbes and microbial products that may alter BCG-induced immunity. Together, our findings contribute to the understanding of specific and trained immune responses after BCG vaccination.
    38 schema:genre article
    39 schema:isAccessibleForFree true
    40 schema:isPartOf N376c09c522e749dd82c8b07ee9bad8e0
    41 Nf698c1f86a164b16a6c93d58e2a77675
    42 sg:journal.1023439
    43 schema:keywords BCG
    44 BCG vaccination
    45 BCG-induced immunity
    46 Bacillus Calmette-Guérin (BCG) vaccine
    47 Calmette-Guérin vaccine
    48 ConclusionsVariability
    49 Eggerthella
    50 IFN-γ production
    51 IL-1β
    52 IL-6
    53 Mycobacterium tuberculosis stimulation
    54 Roseburia
    55 Ruminococcus
    56 Staphylococcus aureus
    57 TNF
    58 abundance
    59 abundance of Roseburia
    60 adults
    61 altered production
    62 assembly
    63 aureus
    64 blood
    65 circulation
    66 cytokine production
    67 cytokines IL-6
    68 de novo genome assembly
    69 effect
    70 enzyme
    71 findings
    72 genome
    73 genome assembly
    74 gut microbiome
    75 healthy adults
    76 heterologous infections
    77 high inter-individual variation
    78 immune response
    79 immunity
    80 important modulator
    81 infection
    82 influence
    83 inter-individual variation
    84 manner
    85 metabolism
    86 metabolism modules
    87 metabolites
    88 metagenomics
    89 microbes
    90 microbial genomes
    91 microbial products
    92 microbiome
    93 modulator
    94 module
    95 months
    96 nonspecific
    97 novo genome assembly
    98 phenylalanine metabolism
    99 potential role
    100 production
    101 products
    102 protection
    103 relevant enzymes
    104 response
    105 restimulation
    106 role
    107 species-dependent manner
    108 specific responses
    109 stimulation
    110 strong effect
    111 taxa
    112 tuberculosis
    113 turn
    114 understanding
    115 vaccination
    116 vaccine
    117 vaccine responses
    118 variation
    119 weeks
    120 schema:name The influence of the gut microbiome on BCG-induced trained immunity
    121 schema:pagination 275
    122 schema:productId N0dfdc48246bd4d0cbb65d451af804f14
    123 Nb9fe73f333484083b6a0417de3452a40
    124 Ndd4e746fe0f74a25970835ebd1f660c0
    125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141296212
    126 https://doi.org/10.1186/s13059-021-02482-0
    127 schema:sdDatePublished 2022-10-01T06:48
    128 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    129 schema:sdPublisher N522e62bd83024482a6158c21b5a3ea35
    130 schema:url https://doi.org/10.1186/s13059-021-02482-0
    131 sgo:license sg:explorer/license/
    132 sgo:sdDataset articles
    133 rdf:type schema:ScholarlyArticle
    134 N03d90ca2530e4b2c8a71ec554edd3cc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Male
    136 rdf:type schema:DefinedTerm
    137 N068acc84c2574ab1b95f4dcb6ad2f48a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Female
    139 rdf:type schema:DefinedTerm
    140 N0dfdc48246bd4d0cbb65d451af804f14 schema:name doi
    141 schema:value 10.1186/s13059-021-02482-0
    142 rdf:type schema:PropertyValue
    143 N1230424a438c4ca5b011c6c2009452e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Phenylalanine
    145 rdf:type schema:DefinedTerm
    146 N1243563e5edb431fb1c269083e3f35ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Middle Aged
    148 rdf:type schema:DefinedTerm
    149 N1dd9d9113e5d475a84565a479f4b601f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Cytokines
    151 rdf:type schema:DefinedTerm
    152 N1de6b51412ca4afaa9c0a9b2bd43db19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Cohort Studies
    154 rdf:type schema:DefinedTerm
    155 N2112dda3c10d467f86181bc436cbe53c rdf:first sg:person.013057565225.31
    156 rdf:rest N6e08a6ffe66a4d1d9c7eb45bac2aece8
    157 N2bb6d62f7886403db6540f881d025c39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Aged
    159 rdf:type schema:DefinedTerm
    160 N376c09c522e749dd82c8b07ee9bad8e0 schema:volumeNumber 22
    161 rdf:type schema:PublicationVolume
    162 N3d5390d6e95e4fb093b6a1ac61c0eb7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Adolescent
    164 rdf:type schema:DefinedTerm
    165 N3f127448b2ea43b5a211f8a549470ebb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Young Adult
    167 rdf:type schema:DefinedTerm
    168 N4621b5833038484798e1b35fed61e020 rdf:first sg:person.01245376514.29
    169 rdf:rest Nb3488c50b44f4f69a5b419d0189843b7
    170 N522e62bd83024482a6158c21b5a3ea35 schema:name Springer Nature - SN SciGraph project
    171 rdf:type schema:Organization
    172 N5d5851fb31664ad3b2ae5fbb008ff485 rdf:first sg:person.01021435034.00
    173 rdf:rest N6e8c9e9e63a049ca967cd6930f79354b
    174 N5ee96a571a7444d69367b60af6c67c8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Gastrointestinal Microbiome
    176 rdf:type schema:DefinedTerm
    177 N6e08a6ffe66a4d1d9c7eb45bac2aece8 rdf:first sg:person.0754604770.66
    178 rdf:rest Ne35038799fb247129561a2fc0b8891b4
    179 N6e8c9e9e63a049ca967cd6930f79354b rdf:first sg:person.0773476547.34
    180 rdf:rest Nddd95f3d866645e9af379e8452a2bd3b
    181 N702a12da6146435d9bb866ac245fb3b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name BCG Vaccine
    183 rdf:type schema:DefinedTerm
    184 N76a820bc284e47139cdbac4d36885fef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Humans
    186 rdf:type schema:DefinedTerm
    187 Na6057c44d8274f6c837b733bd6ec80ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Metagenomics
    189 rdf:type schema:DefinedTerm
    190 Naa849feb0089458bae8e267087f5aad5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Firmicutes
    192 rdf:type schema:DefinedTerm
    193 Nb3488c50b44f4f69a5b419d0189843b7 rdf:first sg:person.016453744652.62
    194 rdf:rest N2112dda3c10d467f86181bc436cbe53c
    195 Nb9fe73f333484083b6a0417de3452a40 schema:name dimensions_id
    196 schema:value pub.1141296212
    197 rdf:type schema:PropertyValue
    198 Nd0d47dfae79c48fcaed50f61cbac1c87 rdf:first sg:person.014645240657.77
    199 rdf:rest N5d5851fb31664ad3b2ae5fbb008ff485
    200 Ndd4e746fe0f74a25970835ebd1f660c0 schema:name pubmed_id
    201 schema:value 34551799
    202 rdf:type schema:PropertyValue
    203 Nddd95f3d866645e9af379e8452a2bd3b rdf:first sg:person.01263677437.18
    204 rdf:rest Ne0ad28b31de04b0893799630217be08a
    205 Ne0ad28b31de04b0893799630217be08a rdf:first sg:person.0717130066.82
    206 rdf:rest rdf:nil
    207 Ne35038799fb247129561a2fc0b8891b4 rdf:first sg:person.011531344314.16
    208 rdf:rest Nd0d47dfae79c48fcaed50f61cbac1c87
    209 Nf5a043a117d74ef2b2dbc13965efb879 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Adult
    211 rdf:type schema:DefinedTerm
    212 Nf698c1f86a164b16a6c93d58e2a77675 schema:issueNumber 1
    213 rdf:type schema:PublicationIssue
    214 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    215 schema:name Environmental Sciences
    216 rdf:type schema:DefinedTerm
    217 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    218 schema:name Biological Sciences
    219 rdf:type schema:DefinedTerm
    220 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    221 schema:name Information and Computing Sciences
    222 rdf:type schema:DefinedTerm
    223 sg:grant.2439002 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-021-02482-0
    224 rdf:type schema:MonetaryGrant
    225 sg:grant.8709837 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-021-02482-0
    226 rdf:type schema:MonetaryGrant
    227 sg:journal.1023439 schema:issn 1465-6906
    228 1474-760X
    229 schema:name Genome Biology
    230 schema:publisher Springer Nature
    231 rdf:type schema:Periodical
    232 sg:person.01021435034.00 schema:affiliation grid-institutes:grid.10417.33
    233 schema:familyName van Crevel
    234 schema:givenName Reinout
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021435034.00
    236 rdf:type schema:Person
    237 sg:person.011531344314.16 schema:affiliation grid-institutes:grid.10417.33
    238 schema:familyName Moorlag
    239 schema:givenName Simone J. C. F. M.
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011531344314.16
    241 rdf:type schema:Person
    242 sg:person.01245376514.29 schema:affiliation grid-institutes:grid.66859.34
    243 schema:familyName Stražar
    244 schema:givenName Martin
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245376514.29
    246 rdf:type schema:Person
    247 sg:person.01263677437.18 schema:affiliation grid-institutes:grid.10388.32
    248 schema:familyName Netea
    249 schema:givenName Mihai G.
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263677437.18
    251 rdf:type schema:Person
    252 sg:person.013057565225.31 schema:affiliation grid-institutes:grid.512472.7
    253 schema:familyName Koeken
    254 schema:givenName Valerie A. C. M.
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013057565225.31
    256 rdf:type schema:Person
    257 sg:person.014645240657.77 schema:affiliation grid-institutes:grid.411040.0
    258 schema:familyName Joosten
    259 schema:givenName Leo A. B.
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014645240657.77
    261 rdf:type schema:Person
    262 sg:person.016453744652.62 schema:affiliation grid-institutes:grid.10417.33
    263 schema:familyName Mourits
    264 schema:givenName Vera P.
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016453744652.62
    266 rdf:type schema:Person
    267 sg:person.0717130066.82 schema:affiliation grid-institutes:grid.32224.35
    268 schema:familyName Xavier
    269 schema:givenName Ramnik J.
    270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717130066.82
    271 rdf:type schema:Person
    272 sg:person.0754604770.66 schema:affiliation grid-institutes:grid.7143.1
    273 schema:familyName de Bree
    274 schema:givenName L. Charlotte J.
    275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754604770.66
    276 rdf:type schema:Person
    277 sg:person.0773476547.34 schema:affiliation grid-institutes:grid.66859.34
    278 schema:familyName Vlamakis
    279 schema:givenName Hera
    280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773476547.34
    281 rdf:type schema:Person
    282 sg:pub.10.1038/nbt.2942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006520065
    283 https://doi.org/10.1038/nbt.2942
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/nmeth.2066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010611135
    286 https://doi.org/10.1038/nmeth.2066
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/nri.2017.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129725
    289 https://doi.org/10.1038/nri.2017.7
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/s41467-018-05470-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106133438
    292 https://doi.org/10.1038/s41467-018-05470-4
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/s41467-020-16366-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127705453
    295 https://doi.org/10.1038/s41467-020-16366-7
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/s41564-017-0072-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099697363
    298 https://doi.org/10.1038/s41564-017-0072-8
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/s41564-018-0272-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1107912948
    301 https://doi.org/10.1038/s41564-018-0272-x
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/s41577-020-0285-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125343614
    304 https://doi.org/10.1038/s41577-020-0285-6
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/s41579-020-0438-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131097431
    307 https://doi.org/10.1038/s41579-020-0438-4
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/s41586-021-03707-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139689244
    310 https://doi.org/10.1038/s41586-021-03707-9
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1038/s41598-017-13722-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092252273
    313 https://doi.org/10.1038/s41598-017-13722-4
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1038/s41598-018-37246-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111670375
    316 https://doi.org/10.1038/s41598-018-37246-7
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
    319 https://doi.org/10.1186/1471-2105-11-119
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1186/s12866-019-1489-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117022654
    322 https://doi.org/10.1186/s12866-019-1489-4
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1186/s13073-016-0299-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009016129
    325 https://doi.org/10.1186/s13073-016-0299-7
    326 rdf:type schema:CreativeWork
    327 grid-institutes:grid.10388.32 schema:alternateName Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
    328 schema:name Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
    329 Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
    330 rdf:type schema:Organization
    331 grid-institutes:grid.10417.33 schema:alternateName Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
    332 schema:name Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
    333 rdf:type schema:Organization
    334 grid-institutes:grid.32224.35 schema:alternateName Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
    335 schema:name Broad Institute of MIT and Harvard, Cambridge, MA, USA
    336 Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
    337 Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
    338 rdf:type schema:Organization
    339 grid-institutes:grid.411040.0 schema:alternateName Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
    340 schema:name Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
    341 Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
    342 rdf:type schema:Organization
    343 grid-institutes:grid.512472.7 schema:alternateName Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
    344 schema:name Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
    345 Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
    346 rdf:type schema:Organization
    347 grid-institutes:grid.66859.34 schema:alternateName Broad Institute of MIT and Harvard, Cambridge, MA, USA
    348 schema:name Broad Institute of MIT and Harvard, Cambridge, MA, USA
    349 rdf:type schema:Organization
    350 grid-institutes:grid.7143.1 schema:alternateName Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
    351 schema:name Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
    352 Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
    353 Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
    354 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...