Ontology type: schema:ScholarlyArticle Open Access: True
2019-11-28
AUTHORSDerrick E. Wood, Jennifer Lu, Ben Langmead
ABSTRACTAlthough Kraken’s k-mer-based approach provides a fast taxonomic classification of metagenomic sequence data, its large memory requirements can be limiting for some applications. Kraken 2 improves upon Kraken 1 by reducing memory usage by 85%, allowing greater amounts of reference genomic data to be used, while maintaining high accuracy and increasing speed fivefold. Kraken 2 also introduces a translated search mode, providing increased sensitivity in viral metagenomics analysis. More... »
PAGES257
http://scigraph.springernature.com/pub.10.1186/s13059-019-1891-0
DOIhttp://dx.doi.org/10.1186/s13059-019-1891-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1122989517
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/31779668
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Metagenomics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Software",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA",
"id": "http://www.grid.ac/institutes/grid.21107.35",
"name": [
"Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA",
"Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA"
],
"type": "Organization"
},
"familyName": "Wood",
"givenName": "Derrick E.",
"id": "sg:person.01223030670.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223030670.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA",
"id": "http://www.grid.ac/institutes/grid.21107.35",
"name": [
"Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA",
"Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA"
],
"type": "Organization"
},
"familyName": "Lu",
"givenName": "Jennifer",
"id": "sg:person.011420654423.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420654423.27"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA",
"id": "http://www.grid.ac/institutes/grid.21107.35",
"name": [
"Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA",
"Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA"
],
"type": "Organization"
},
"familyName": "Langmead",
"givenName": "Ben",
"id": "sg:person.011763134307.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763134307.48"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/ncomms11257",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015339285",
"https://doi.org/10.1038/ncomms11257"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12864-015-1419-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021400263",
"https://doi.org/10.1186/s12864-015-1419-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt.4229",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106359945",
"https://doi.org/10.1038/nbt.4229"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2014-15-3-r46",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030203790",
"https://doi.org/10.1186/gb-2014-15-3-r46"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41598-017-14576-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092429270",
"https://doi.org/10.1038/s41598-017-14576-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13059-018-1568-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109919786",
"https://doi.org/10.1186/s13059-018-1568-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13059-015-0587-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053251839",
"https://doi.org/10.1186/s13059-015-0587-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep19233",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051309616",
"https://doi.org/10.1038/srep19233"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ismej.2015.37",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004289195",
"https://doi.org/10.1038/ismej.2015.37"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.2066",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010611135",
"https://doi.org/10.1038/nmeth.2066"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-018-03317-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101191490",
"https://doi.org/10.1038/s41467-018-03317-6"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-11-28",
"datePublishedReg": "2019-11-28",
"description": "Although Kraken\u2019s k-mer-based approach provides a fast taxonomic classification of metagenomic sequence data, its large memory requirements can be limiting for some applications. Kraken 2 improves upon Kraken 1 by reducing memory usage by 85%, allowing greater amounts of reference genomic data to be used, while maintaining high accuracy and increasing speed fivefold. Kraken 2 also introduces a translated search mode, providing increased sensitivity in viral metagenomics analysis.",
"genre": "article",
"id": "sg:pub.10.1186/s13059-019-1891-0",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.5053187",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.8383234",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.3581225",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1023439",
"issn": [
"1474-760X",
"1465-6906"
],
"name": "Genome Biology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "20"
}
],
"keywords": [
"large memory requirements",
"memory usage",
"memory requirements",
"search mode",
"high accuracy",
"genomic data",
"metagenomic sequence data",
"classification",
"requirements",
"usage",
"accuracy",
"sequence data",
"data",
"applications",
"taxonomic classification",
"speed",
"greater amount",
"amount",
"analysis",
"mode",
"metagenomic analysis",
"sensitivity",
"viral metagenomic analysis",
"approach",
"k-mer-based approach",
"Kraken 2"
],
"name": "Improved metagenomic analysis with Kraken 2",
"pagination": "257",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1122989517"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s13059-019-1891-0"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"31779668"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s13059-019-1891-0",
"https://app.dimensions.ai/details/publication/pub.1122989517"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:07",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_811.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s13059-019-1891-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1891-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1891-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1891-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1891-0'
This table displays all metadata directly associated to this object as RDF triples.
162 TRIPLES
21 PREDICATES
64 URIs
45 LITERALS
9 BLANK NODES