Improved metagenomic analysis with Kraken 2 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-11-28

AUTHORS

Derrick E. Wood, Jennifer Lu, Ben Langmead

ABSTRACT

Although Kraken’s k-mer-based approach provides a fast taxonomic classification of metagenomic sequence data, its large memory requirements can be limiting for some applications. Kraken 2 improves upon Kraken 1 by reducing memory usage by 85%, allowing greater amounts of reference genomic data to be used, while maintaining high accuracy and increasing speed fivefold. Kraken 2 also introduces a translated search mode, providing increased sensitivity in viral metagenomics analysis. More... »

PAGES

257

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13059-019-1891-0

DOI

http://dx.doi.org/10.1186/s13059-019-1891-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1122989517

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31779668


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metagenomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA", 
            "Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wood", 
        "givenName": "Derrick E.", 
        "id": "sg:person.01223030670.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223030670.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA", 
            "Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Jennifer", 
        "id": "sg:person.011420654423.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420654423.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA", 
            "Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langmead", 
        "givenName": "Ben", 
        "id": "sg:person.011763134307.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763134307.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms11257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015339285", 
          "https://doi.org/10.1038/ncomms11257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-015-1419-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021400263", 
          "https://doi.org/10.1186/s12864-015-1419-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.4229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106359945", 
          "https://doi.org/10.1038/nbt.4229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2014-15-3-r46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030203790", 
          "https://doi.org/10.1186/gb-2014-15-3-r46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-14576-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092429270", 
          "https://doi.org/10.1038/s41598-017-14576-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-018-1568-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109919786", 
          "https://doi.org/10.1186/s13059-018-1568-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-015-0587-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053251839", 
          "https://doi.org/10.1186/s13059-015-0587-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep19233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051309616", 
          "https://doi.org/10.1038/srep19233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2015.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004289195", 
          "https://doi.org/10.1038/ismej.2015.37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010611135", 
          "https://doi.org/10.1038/nmeth.2066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-03317-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101191490", 
          "https://doi.org/10.1038/s41467-018-03317-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-11-28", 
    "datePublishedReg": "2019-11-28", 
    "description": "Although Kraken\u2019s k-mer-based approach provides a fast taxonomic classification of metagenomic sequence data, its large memory requirements can be limiting for some applications. Kraken 2 improves upon Kraken 1 by reducing memory usage by 85%, allowing greater amounts of reference genomic data to be used, while maintaining high accuracy and increasing speed fivefold. Kraken 2 also introduces a translated search mode, providing increased sensitivity in viral metagenomics analysis.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13059-019-1891-0", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5053187", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8383234", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3581225", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "large memory requirements", 
      "memory usage", 
      "memory requirements", 
      "search mode", 
      "high accuracy", 
      "genomic data", 
      "metagenomic sequence data", 
      "classification", 
      "requirements", 
      "usage", 
      "accuracy", 
      "sequence data", 
      "data", 
      "applications", 
      "taxonomic classification", 
      "speed", 
      "greater amount", 
      "amount", 
      "analysis", 
      "mode", 
      "metagenomic analysis", 
      "sensitivity", 
      "viral metagenomic analysis", 
      "approach", 
      "k-mer-based approach", 
      "Kraken 2"
    ], 
    "name": "Improved metagenomic analysis with Kraken 2", 
    "pagination": "257", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1122989517"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13059-019-1891-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31779668"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13059-019-1891-0", 
      "https://app.dimensions.ai/details/publication/pub.1122989517"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_811.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13059-019-1891-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1891-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1891-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1891-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1891-0'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      64 URIs      45 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13059-019-1891-0 schema:about N68b0ba9d476d4504892ff9cd46d8886c
2 N6e218df71d424578b6e7053fbc6e3745
3 anzsrc-for:08
4 anzsrc-for:0801
5 schema:author Nbc99757a79b2484bbcc74f5ccf4798a6
6 schema:citation sg:pub.10.1038/ismej.2015.37
7 sg:pub.10.1038/nbt.4229
8 sg:pub.10.1038/ncomms11257
9 sg:pub.10.1038/nmeth.2066
10 sg:pub.10.1038/s41467-018-03317-6
11 sg:pub.10.1038/s41598-017-14576-6
12 sg:pub.10.1038/srep19233
13 sg:pub.10.1186/gb-2014-15-3-r46
14 sg:pub.10.1186/s12864-015-1419-2
15 sg:pub.10.1186/s13059-015-0587-3
16 sg:pub.10.1186/s13059-018-1568-0
17 schema:datePublished 2019-11-28
18 schema:datePublishedReg 2019-11-28
19 schema:description Although Kraken’s k-mer-based approach provides a fast taxonomic classification of metagenomic sequence data, its large memory requirements can be limiting for some applications. Kraken 2 improves upon Kraken 1 by reducing memory usage by 85%, allowing greater amounts of reference genomic data to be used, while maintaining high accuracy and increasing speed fivefold. Kraken 2 also introduces a translated search mode, providing increased sensitivity in viral metagenomics analysis.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf Nbdf2b911dd97446ba65a60613e9f3be4
23 Ne4ac3f7a0637469386c0467749a96302
24 sg:journal.1023439
25 schema:keywords Kraken 2
26 accuracy
27 amount
28 analysis
29 applications
30 approach
31 classification
32 data
33 genomic data
34 greater amount
35 high accuracy
36 k-mer-based approach
37 large memory requirements
38 memory requirements
39 memory usage
40 metagenomic analysis
41 metagenomic sequence data
42 mode
43 requirements
44 search mode
45 sensitivity
46 sequence data
47 speed
48 taxonomic classification
49 usage
50 viral metagenomic analysis
51 schema:name Improved metagenomic analysis with Kraken 2
52 schema:pagination 257
53 schema:productId N3668f798adaa481fbb4835916af92c6d
54 N3b7f0c2818d14b7983b31f57a9c2d55d
55 Nb54b82200f8940759f25087a0e7f3aea
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122989517
57 https://doi.org/10.1186/s13059-019-1891-0
58 schema:sdDatePublished 2022-08-04T17:07
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nf980850613fa4ab19efe44efe6fb8395
61 schema:url https://doi.org/10.1186/s13059-019-1891-0
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N3668f798adaa481fbb4835916af92c6d schema:name doi
66 schema:value 10.1186/s13059-019-1891-0
67 rdf:type schema:PropertyValue
68 N3b7f0c2818d14b7983b31f57a9c2d55d schema:name dimensions_id
69 schema:value pub.1122989517
70 rdf:type schema:PropertyValue
71 N68b0ba9d476d4504892ff9cd46d8886c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Software
73 rdf:type schema:DefinedTerm
74 N6e218df71d424578b6e7053fbc6e3745 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Metagenomics
76 rdf:type schema:DefinedTerm
77 N76869c9cd330430b864f6429dc0e1785 rdf:first sg:person.011420654423.27
78 rdf:rest N79543119884f4091800d5e2b77aca5db
79 N79543119884f4091800d5e2b77aca5db rdf:first sg:person.011763134307.48
80 rdf:rest rdf:nil
81 Nb54b82200f8940759f25087a0e7f3aea schema:name pubmed_id
82 schema:value 31779668
83 rdf:type schema:PropertyValue
84 Nbc99757a79b2484bbcc74f5ccf4798a6 rdf:first sg:person.01223030670.09
85 rdf:rest N76869c9cd330430b864f6429dc0e1785
86 Nbdf2b911dd97446ba65a60613e9f3be4 schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 Ne4ac3f7a0637469386c0467749a96302 schema:volumeNumber 20
89 rdf:type schema:PublicationVolume
90 Nf980850613fa4ab19efe44efe6fb8395 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
96 schema:name Artificial Intelligence and Image Processing
97 rdf:type schema:DefinedTerm
98 sg:grant.3581225 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1891-0
99 rdf:type schema:MonetaryGrant
100 sg:grant.5053187 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1891-0
101 rdf:type schema:MonetaryGrant
102 sg:grant.8383234 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1891-0
103 rdf:type schema:MonetaryGrant
104 sg:journal.1023439 schema:issn 1465-6906
105 1474-760X
106 schema:name Genome Biology
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.011420654423.27 schema:affiliation grid-institutes:grid.21107.35
110 schema:familyName Lu
111 schema:givenName Jennifer
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420654423.27
113 rdf:type schema:Person
114 sg:person.011763134307.48 schema:affiliation grid-institutes:grid.21107.35
115 schema:familyName Langmead
116 schema:givenName Ben
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763134307.48
118 rdf:type schema:Person
119 sg:person.01223030670.09 schema:affiliation grid-institutes:grid.21107.35
120 schema:familyName Wood
121 schema:givenName Derrick E.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223030670.09
123 rdf:type schema:Person
124 sg:pub.10.1038/ismej.2015.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004289195
125 https://doi.org/10.1038/ismej.2015.37
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nbt.4229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106359945
128 https://doi.org/10.1038/nbt.4229
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/ncomms11257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015339285
131 https://doi.org/10.1038/ncomms11257
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nmeth.2066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010611135
134 https://doi.org/10.1038/nmeth.2066
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/s41467-018-03317-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101191490
137 https://doi.org/10.1038/s41467-018-03317-6
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/s41598-017-14576-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092429270
140 https://doi.org/10.1038/s41598-017-14576-6
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/srep19233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051309616
143 https://doi.org/10.1038/srep19233
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/gb-2014-15-3-r46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030203790
146 https://doi.org/10.1186/gb-2014-15-3-r46
147 rdf:type schema:CreativeWork
148 sg:pub.10.1186/s12864-015-1419-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021400263
149 https://doi.org/10.1186/s12864-015-1419-2
150 rdf:type schema:CreativeWork
151 sg:pub.10.1186/s13059-015-0587-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053251839
152 https://doi.org/10.1186/s13059-015-0587-3
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/s13059-018-1568-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109919786
155 https://doi.org/10.1186/s13059-018-1568-0
156 rdf:type schema:CreativeWork
157 grid-institutes:grid.21107.35 schema:alternateName Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
158 Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
159 schema:name Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
160 Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
161 Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...