Measuring the reproducibility and quality of Hi-C data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Galip Gürkan Yardımcı, Hakan Ozadam, Michael E. G. Sauria, Oana Ursu, Koon-Kiu Yan, Tao Yang, Abhijit Chakraborty, Arya Kaul, Bryan R. Lajoie, Fan Song, Ye Zhan, Ferhat Ay, Mark Gerstein, Anshul Kundaje, Qunhua Li, James Taylor, Feng Yue, Job Dekker, William S. Noble

ABSTRACT

BACKGROUND: Hi-C is currently the most widely used assay to investigate the 3D organization of the genome and to study its role in gene regulation, DNA replication, and disease. However, Hi-C experiments are costly to perform and involve multiple complex experimental steps; thus, accurate methods for measuring the quality and reproducibility of Hi-C data are essential to determine whether the output should be used further in a study. RESULTS: Using real and simulated data, we profile the performance of several recently proposed methods for assessing reproducibility of population Hi-C data, including HiCRep, GenomeDISCO, HiC-Spector, and QuASAR-Rep. By explicitly controlling noise and sparsity through simulations, we demonstrate the deficiencies of performing simple correlation analysis on pairs of matrices, and we show that methods developed specifically for Hi-C data produce better measures of reproducibility. We also show how to use established measures, such as the ratio of intra- to interchromosomal interactions, and novel ones, such as QuASAR-QC, to identify low-quality experiments. CONCLUSIONS: In this work, we assess reproducibility and quality measures by varying sequencing depth, resolution and noise levels in Hi-C data from 13 cell lines, with two biological replicates each, as well as 176 simulated matrices. Through this extensive validation and benchmarking of Hi-C data, we describe best practices for reproducibility and quality assessment of Hi-C experiments. We make all software publicly available at http://github.com/kundajelab/3DChromatin_ReplicateQC to facilitate adoption in the community. More... »

PAGES

57

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13059-019-1658-7

DOI

http://dx.doi.org/10.1186/s13059-019-1658-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112871780

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30890172


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, Seattle, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yard\u0131mc\u0131", 
        "givenName": "Galip G\u00fcrkan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Medical School", 
          "id": "https://www.grid.ac/institutes/grid.168645.8", 
          "name": [
            "Program in Systems Biology, University of Massachusetts Medical School, Worcester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ozadam", 
        "givenName": "Hakan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Biology Department, Johns Hopkins University, Baltimore, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sauria", 
        "givenName": "Michael E. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Genetics, Stanford University, Stanford, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ursu", 
        "givenName": "Oana", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Jude Children's Research Hospital", 
          "id": "https://www.grid.ac/institutes/grid.240871.8", 
          "name": [
            "Department of Computational Biology, St. Jude Children\u2019s Research Hospital, Memphis, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Koon-Kiu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Bioinformatics and Genomics Program, Huck Institutes of the Life Sciences, Penn State University, State College, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Tao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "La Jolla Institute For Allergy & Immunology", 
          "id": "https://www.grid.ac/institutes/grid.185006.a", 
          "name": [
            "Computational Biology Division, La Jolla Institute for Allergy and Immunology, San Diego, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakraborty", 
        "givenName": "Abhijit", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "La Jolla Institute For Allergy & Immunology", 
          "id": "https://www.grid.ac/institutes/grid.185006.a", 
          "name": [
            "Computational Biology Division, La Jolla Institute for Allergy and Immunology, San Diego, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaul", 
        "givenName": "Arya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Medical School", 
          "id": "https://www.grid.ac/institutes/grid.168645.8", 
          "name": [
            "Program in Systems Biology, University of Massachusetts Medical School, Worcester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lajoie", 
        "givenName": "Bryan R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Bioinformatics and Genomics Program, Huck Institutes of the Life Sciences, Penn State University, State College, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Fan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Medical School", 
          "id": "https://www.grid.ac/institutes/grid.168645.8", 
          "name": [
            "University of Massachusetts Medical School, Worcester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhan", 
        "givenName": "Ye", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "La Jolla Institute For Allergy & Immunology", 
          "id": "https://www.grid.ac/institutes/grid.185006.a", 
          "name": [
            "Computational Biology Division, La Jolla Institute for Allergy and Immunology, San Diego, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ay", 
        "givenName": "Ferhat", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Program in Computational Biology and Bioinformatics, Yale University, New Haven, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerstein", 
        "givenName": "Mark", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Genetics, Stanford University, Stanford, USA", 
            "Department of Computer Science, Stanford University, Stanford, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kundaje", 
        "givenName": "Anshul", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Statistics, Penn State University, State College, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Qunhua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Biology Department, Johns Hopkins University, Baltimore, USA", 
            "Computer Science Department, Johns Hopkins University, Baltimore, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "James", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Bioinformatics and Genomics Program, Huck Institutes of the Life Sciences, Penn State University, State College, USA", 
            "Department of Biochemistry & Molecular Biology, College of Medicine, Penn State University, State College, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yue", 
        "givenName": "Feng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Howard Hughes Medical Institute", 
          "id": "https://www.grid.ac/institutes/grid.413575.1", 
          "name": [
            "Program in Systems Biology, University of Massachusetts Medical School, Worcester, USA", 
            "University of Massachusetts Medical School, Worcester, USA", 
            "Howard Hughes Medical Institute, Chevy Chase, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dekker", 
        "givenName": "Job", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, Seattle, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Noble", 
        "givenName": "William S.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cell.2007.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000099864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-015-0745-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000531356", 
          "https://doi.org/10.1186/s13059-015-0745-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001229000", 
          "https://doi.org/10.1038/ng.2871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-015-0753-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001431580", 
          "https://doi.org/10.1186/s13059-015-0753-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-0992-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001813860", 
          "https://doi.org/10.1186/s13059-016-0992-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-0992-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001813860", 
          "https://doi.org/10.1186/s13059-016-0992-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2007.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002139821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004787340", 
          "https://doi.org/10.1038/nature11049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-016-1274-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006887700", 
          "https://doi.org/10.1186/s12859-016-1274-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-016-1274-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006887700", 
          "https://doi.org/10.1186/s12859-016-1274-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1181369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007401642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1181369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007401642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.129437.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010573540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011299622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcb.22116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011530284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1609643113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013623512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2015.08.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014595394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014756327", 
          "https://doi.org/10.1038/nmeth.2148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3791/1869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015537137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2011.420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016476681", 
          "https://doi.org/10.1038/nprot.2011.420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.3995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017917722", 
          "https://doi.org/10.1038/nn.3995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019700652", 
          "https://doi.org/10.1038/nature12644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021280636", 
          "https://doi.org/10.1038/nature18589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021280636", 
          "https://doi.org/10.1038/nature18589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.136184.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021823681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022035194", 
          "https://doi.org/10.1038/nature12593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.160374.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022670502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm.2016.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022853135", 
          "https://doi.org/10.1038/nrm.2016.104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2012.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025469351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2014.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034942351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2014.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034942351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-12-134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038345769", 
          "https://doi.org/10.1186/1471-2164-12-134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040271530", 
          "https://doi.org/10.1038/nature11082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-0940-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044116170", 
          "https://doi.org/10.1186/s13059-016-0940-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.stem.2016.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045468123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046074449", 
          "https://doi.org/10.1038/nature14222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btv336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046858002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2014.11.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047951603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.stem.2014.05.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049496085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051036477", 
          "https://doi.org/10.1038/nature14450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051483764", 
          "https://doi.org/10.1038/nbt.1505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053370390", 
          "https://doi.org/10.1038/nmeth.3205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imanum/drs019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059689753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1236083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062468074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/11-aoas466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064392153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.4155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074247469", 
          "https://doi.org/10.1038/nmeth.4155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btx152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084178211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085424187", 
          "https://doi.org/10.1038/ncomms15454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085424187", 
          "https://doi.org/10.1038/ncomms15454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090343989", 
          "https://doi.org/10.1038/nature23001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090343989", 
          "https://doi.org/10.1038/nature23001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1005665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090775536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.220640.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091435103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/181842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091915775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/181842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091915775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/181842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091915775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/204438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092310940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/204438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092310940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/204438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092310940"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Hi-C is currently the most widely used assay to investigate the 3D organization of the genome and to study its role in gene regulation, DNA replication, and disease. However, Hi-C experiments are costly to perform and involve multiple complex experimental steps; thus, accurate methods for measuring the quality and reproducibility of Hi-C data are essential to determine whether the output should be used further in a study.\nRESULTS: Using real and simulated data, we profile the performance of several recently proposed methods for assessing reproducibility of population Hi-C data, including HiCRep, GenomeDISCO, HiC-Spector, and QuASAR-Rep. By explicitly controlling noise and sparsity through simulations, we demonstrate the deficiencies of performing simple correlation analysis on pairs of matrices, and we show that methods developed specifically for Hi-C data produce better measures of reproducibility. We also show how to use established measures, such as the ratio of intra- to interchromosomal interactions, and novel ones, such as QuASAR-QC, to identify low-quality experiments.\nCONCLUSIONS: In this work, we assess reproducibility and quality measures by varying sequencing depth, resolution and noise levels in Hi-C data from 13 cell lines, with two biological replicates each, as well as 176 simulated matrices. Through this extensive validation and benchmarking of Hi-C data, we describe best practices for reproducibility and quality assessment of Hi-C experiments. We make all software publicly available at http://github.com/kundajelab/3DChromatin_ReplicateQC to facilitate adoption in the community.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13059-019-1658-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2684183", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2699344", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2529188", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2522166", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3801598", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4455297", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6617183", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2697608", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6617092", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2697615", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5475650", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Measuring the reproducibility and quality of Hi-C data", 
    "pagination": "57", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "13ae3d1f55a42450350970d83d491ba7c3d80f83f0276688d6193f473aa7f76b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30890172"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100960660"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13059-019-1658-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112871780"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13059-019-1658-7", 
      "https://app.dimensions.ai/details/publication/pub.1112871780"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46766_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13059-019-1658-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1658-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1658-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1658-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1658-7'


 

This table displays all metadata directly associated to this object as RDF triples.

396 TRIPLES      21 PREDICATES      77 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13059-019-1658-7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nf74e8c9dbe4743dc9d8d9d9e7047a9bc
4 schema:citation sg:pub.10.1038/nature11049
5 sg:pub.10.1038/nature11082
6 sg:pub.10.1038/nature12593
7 sg:pub.10.1038/nature12644
8 sg:pub.10.1038/nature14222
9 sg:pub.10.1038/nature14450
10 sg:pub.10.1038/nature18589
11 sg:pub.10.1038/nature23001
12 sg:pub.10.1038/nbt.1505
13 sg:pub.10.1038/ncomms15454
14 sg:pub.10.1038/ng.2871
15 sg:pub.10.1038/nmeth.2148
16 sg:pub.10.1038/nmeth.3205
17 sg:pub.10.1038/nmeth.4155
18 sg:pub.10.1038/nn.3995
19 sg:pub.10.1038/nprot.2011.420
20 sg:pub.10.1038/nrm.2016.104
21 sg:pub.10.1186/1471-2164-12-134
22 sg:pub.10.1186/s12859-016-1274-4
23 sg:pub.10.1186/s13059-015-0745-7
24 sg:pub.10.1186/s13059-015-0753-7
25 sg:pub.10.1186/s13059-016-0940-1
26 sg:pub.10.1186/s13059-016-0992-2
27 https://doi.org/10.1002/jcb.22116
28 https://doi.org/10.1016/j.cell.2007.05.009
29 https://doi.org/10.1016/j.cell.2007.12.014
30 https://doi.org/10.1016/j.cell.2012.01.010
31 https://doi.org/10.1016/j.cell.2014.11.021
32 https://doi.org/10.1016/j.molcel.2015.08.024
33 https://doi.org/10.1016/j.stem.2014.05.017
34 https://doi.org/10.1016/j.stem.2016.01.007
35 https://doi.org/10.1016/j.ymeth.2014.10.031
36 https://doi.org/10.1073/pnas.1609643113
37 https://doi.org/10.1093/bioinformatics/bts570
38 https://doi.org/10.1093/bioinformatics/btv336
39 https://doi.org/10.1093/bioinformatics/btx152
40 https://doi.org/10.1093/imanum/drs019
41 https://doi.org/10.1101/181842
42 https://doi.org/10.1101/204438
43 https://doi.org/10.1101/gr.129437.111
44 https://doi.org/10.1101/gr.136184.111
45 https://doi.org/10.1101/gr.160374.113
46 https://doi.org/10.1101/gr.220640.117
47 https://doi.org/10.1126/science.1181369
48 https://doi.org/10.1126/science.1236083
49 https://doi.org/10.1214/11-aoas466
50 https://doi.org/10.1371/journal.pcbi.1005665
51 https://doi.org/10.3791/1869
52 schema:datePublished 2019-12
53 schema:datePublishedReg 2019-12-01
54 schema:description BACKGROUND: Hi-C is currently the most widely used assay to investigate the 3D organization of the genome and to study its role in gene regulation, DNA replication, and disease. However, Hi-C experiments are costly to perform and involve multiple complex experimental steps; thus, accurate methods for measuring the quality and reproducibility of Hi-C data are essential to determine whether the output should be used further in a study. RESULTS: Using real and simulated data, we profile the performance of several recently proposed methods for assessing reproducibility of population Hi-C data, including HiCRep, GenomeDISCO, HiC-Spector, and QuASAR-Rep. By explicitly controlling noise and sparsity through simulations, we demonstrate the deficiencies of performing simple correlation analysis on pairs of matrices, and we show that methods developed specifically for Hi-C data produce better measures of reproducibility. We also show how to use established measures, such as the ratio of intra- to interchromosomal interactions, and novel ones, such as QuASAR-QC, to identify low-quality experiments. CONCLUSIONS: In this work, we assess reproducibility and quality measures by varying sequencing depth, resolution and noise levels in Hi-C data from 13 cell lines, with two biological replicates each, as well as 176 simulated matrices. Through this extensive validation and benchmarking of Hi-C data, we describe best practices for reproducibility and quality assessment of Hi-C experiments. We make all software publicly available at http://github.com/kundajelab/3DChromatin_ReplicateQC to facilitate adoption in the community.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf N123c1c5a614d493c9e338fb21f00622d
59 N9f027f209a184e06a68b81c4d820cda2
60 sg:journal.1023439
61 schema:name Measuring the reproducibility and quality of Hi-C data
62 schema:pagination 57
63 schema:productId N4ab978ce92df4a56a0d977e6c6a678d8
64 Nb78793a78e634507afe559e36c09ebf0
65 Ne1164888fb7947c6abff6c71e2ec3fbc
66 Ne161a689610c4f5caf663c464d9e3ce9
67 Ned7cdc99c8af45ecbf500aab3f47826e
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112871780
69 https://doi.org/10.1186/s13059-019-1658-7
70 schema:sdDatePublished 2019-04-11T13:33
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N8a12d2dcadb747cd8eaad271038fe617
73 schema:url https://link.springer.com/10.1186%2Fs13059-019-1658-7
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N007f7929a00a4abc96d9352f8b31bafa schema:affiliation https://www.grid.ac/institutes/grid.168010.e
78 schema:familyName Kundaje
79 schema:givenName Anshul
80 rdf:type schema:Person
81 N02d98d08241b44af91af6db73c4834d6 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
82 schema:familyName Ursu
83 schema:givenName Oana
84 rdf:type schema:Person
85 N0394dd486e7545bdb4af1d990e7c8646 schema:affiliation https://www.grid.ac/institutes/grid.185006.a
86 schema:familyName Kaul
87 schema:givenName Arya
88 rdf:type schema:Person
89 N0f2b120fe95a4de6b7a7c5dbc4009c5c rdf:first N94ea95c61b234d1cadb725d0f0a8ce42
90 rdf:rest N5964f55793454ea8be37a6f946ab0759
91 N123c1c5a614d493c9e338fb21f00622d schema:volumeNumber 20
92 rdf:type schema:PublicationVolume
93 N16345a23cae947eaa1e52e34cfa8683c schema:affiliation https://www.grid.ac/institutes/grid.413575.1
94 schema:familyName Dekker
95 schema:givenName Job
96 rdf:type schema:Person
97 N19b653f2d23149d9bbe4d6d9d21b366e rdf:first N5b475786060b44c2a1187b0d02026734
98 rdf:rest N5f0d2116a41445ee899d46e6210b9b5b
99 N1f2ea8f425004dfeac1a904d21fa2836 rdf:first N5c80f5965f6643b7adde173c1f05ca8c
100 rdf:rest N7006a99c008140dd8667c2e196f72c88
101 N2dbdc760a6004e5cbbc0103943a5620c rdf:first N5a2729f18a2b43cfb375dc2bb922d11a
102 rdf:rest N4277fc61c5bf47b0bdba2f73e687b726
103 N342b2eb3f864449491b4ab0dfb17cea5 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
104 schema:familyName Sauria
105 schema:givenName Michael E. G.
106 rdf:type schema:Person
107 N3999772f861d418bae573e599a579365 schema:affiliation https://www.grid.ac/institutes/grid.185006.a
108 schema:familyName Ay
109 schema:givenName Ferhat
110 rdf:type schema:Person
111 N4277fc61c5bf47b0bdba2f73e687b726 rdf:first N3999772f861d418bae573e599a579365
112 rdf:rest N8529c22703d3440d99221e59729376de
113 N4ab978ce92df4a56a0d977e6c6a678d8 schema:name nlm_unique_id
114 schema:value 100960660
115 rdf:type schema:PropertyValue
116 N4cfb7576748c4c0fb5dc18a3720e3bc8 rdf:first N007f7929a00a4abc96d9352f8b31bafa
117 rdf:rest N7c0d2f03c69e4d8cad4429f0da0a9403
118 N4d79e2da1c2b421bb2caf820d21a86f2 schema:affiliation https://www.grid.ac/institutes/grid.240871.8
119 schema:familyName Yan
120 schema:givenName Koon-Kiu
121 rdf:type schema:Person
122 N52b50d6058eb404da0b8cf609d295fb8 rdf:first N987663de10a949b2a0eae48cebca7237
123 rdf:rest N19b653f2d23149d9bbe4d6d9d21b366e
124 N5964f55793454ea8be37a6f946ab0759 rdf:first N7ea5970f7c534668bc46b10dc495f74e
125 rdf:rest Ne35f2aef754940bca17b1de01f9b6d90
126 N5a2729f18a2b43cfb375dc2bb922d11a schema:affiliation https://www.grid.ac/institutes/grid.168645.8
127 schema:familyName Zhan
128 schema:givenName Ye
129 rdf:type schema:Person
130 N5b475786060b44c2a1187b0d02026734 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
131 schema:familyName Yue
132 schema:givenName Feng
133 rdf:type schema:Person
134 N5c80f5965f6643b7adde173c1f05ca8c schema:affiliation https://www.grid.ac/institutes/grid.168645.8
135 schema:familyName Ozadam
136 schema:givenName Hakan
137 rdf:type schema:Person
138 N5f0d2116a41445ee899d46e6210b9b5b rdf:first N16345a23cae947eaa1e52e34cfa8683c
139 rdf:rest Ne63d089da70343858e2eb0bf59fe1030
140 N7006a99c008140dd8667c2e196f72c88 rdf:first N342b2eb3f864449491b4ab0dfb17cea5
141 rdf:rest N761b081fafbc43a68189181502c22d24
142 N761b081fafbc43a68189181502c22d24 rdf:first N02d98d08241b44af91af6db73c4834d6
143 rdf:rest N8f3396f7f9ea4a3996678cc06e0a6431
144 N77ed7db84b6a45589d5eff69ed12f48d schema:affiliation https://www.grid.ac/institutes/grid.34477.33
145 schema:familyName Yardımcı
146 schema:givenName Galip Gürkan
147 rdf:type schema:Person
148 N7c0d2f03c69e4d8cad4429f0da0a9403 rdf:first Ndd6acbe644a84d6fba7fc3b4b40b2c29
149 rdf:rest N52b50d6058eb404da0b8cf609d295fb8
150 N7ea5970f7c534668bc46b10dc495f74e schema:affiliation https://www.grid.ac/institutes/grid.185006.a
151 schema:familyName Chakraborty
152 schema:givenName Abhijit
153 rdf:type schema:Person
154 N8529c22703d3440d99221e59729376de rdf:first N937f495e10934d1fb1e22ba070d121e7
155 rdf:rest N4cfb7576748c4c0fb5dc18a3720e3bc8
156 N8a12d2dcadb747cd8eaad271038fe617 schema:name Springer Nature - SN SciGraph project
157 rdf:type schema:Organization
158 N8f3396f7f9ea4a3996678cc06e0a6431 rdf:first N4d79e2da1c2b421bb2caf820d21a86f2
159 rdf:rest N0f2b120fe95a4de6b7a7c5dbc4009c5c
160 N937f495e10934d1fb1e22ba070d121e7 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
161 schema:familyName Gerstein
162 schema:givenName Mark
163 rdf:type schema:Person
164 N94ea95c61b234d1cadb725d0f0a8ce42 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
165 schema:familyName Yang
166 schema:givenName Tao
167 rdf:type schema:Person
168 N987663de10a949b2a0eae48cebca7237 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
169 schema:familyName Taylor
170 schema:givenName James
171 rdf:type schema:Person
172 N9f027f209a184e06a68b81c4d820cda2 schema:issueNumber 1
173 rdf:type schema:PublicationIssue
174 Nb78793a78e634507afe559e36c09ebf0 schema:name dimensions_id
175 schema:value pub.1112871780
176 rdf:type schema:PropertyValue
177 Nbc9632dc50c44ce3a5889b5dd05baf42 rdf:first Nbce901e0e32d48faaf54ff3b0c9c1f3f
178 rdf:rest N2dbdc760a6004e5cbbc0103943a5620c
179 Nbce901e0e32d48faaf54ff3b0c9c1f3f schema:affiliation https://www.grid.ac/institutes/grid.29857.31
180 schema:familyName Song
181 schema:givenName Fan
182 rdf:type schema:Person
183 Ndd6acbe644a84d6fba7fc3b4b40b2c29 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
184 schema:familyName Li
185 schema:givenName Qunhua
186 rdf:type schema:Person
187 Ne1164888fb7947c6abff6c71e2ec3fbc schema:name doi
188 schema:value 10.1186/s13059-019-1658-7
189 rdf:type schema:PropertyValue
190 Ne161a689610c4f5caf663c464d9e3ce9 schema:name readcube_id
191 schema:value 13ae3d1f55a42450350970d83d491ba7c3d80f83f0276688d6193f473aa7f76b
192 rdf:type schema:PropertyValue
193 Ne35f2aef754940bca17b1de01f9b6d90 rdf:first N0394dd486e7545bdb4af1d990e7c8646
194 rdf:rest Nee744258963147f8bd15bbaae04a1b2b
195 Ne47591c3c3c34ab9abad7efcdaf54c47 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
196 schema:familyName Noble
197 schema:givenName William S.
198 rdf:type schema:Person
199 Ne63d089da70343858e2eb0bf59fe1030 rdf:first Ne47591c3c3c34ab9abad7efcdaf54c47
200 rdf:rest rdf:nil
201 Ned7cdc99c8af45ecbf500aab3f47826e schema:name pubmed_id
202 schema:value 30890172
203 rdf:type schema:PropertyValue
204 Nedfb01de12d54dfdba32990dbd0d5beb schema:affiliation https://www.grid.ac/institutes/grid.168645.8
205 schema:familyName Lajoie
206 schema:givenName Bryan R.
207 rdf:type schema:Person
208 Nee744258963147f8bd15bbaae04a1b2b rdf:first Nedfb01de12d54dfdba32990dbd0d5beb
209 rdf:rest Nbc9632dc50c44ce3a5889b5dd05baf42
210 Nf74e8c9dbe4743dc9d8d9d9e7047a9bc rdf:first N77ed7db84b6a45589d5eff69ed12f48d
211 rdf:rest N1f2ea8f425004dfeac1a904d21fa2836
212 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
213 schema:name Mathematical Sciences
214 rdf:type schema:DefinedTerm
215 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
216 schema:name Statistics
217 rdf:type schema:DefinedTerm
218 sg:grant.2522166 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
219 rdf:type schema:MonetaryGrant
220 sg:grant.2529188 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
221 rdf:type schema:MonetaryGrant
222 sg:grant.2684183 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
223 rdf:type schema:MonetaryGrant
224 sg:grant.2697608 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
225 rdf:type schema:MonetaryGrant
226 sg:grant.2697615 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
227 rdf:type schema:MonetaryGrant
228 sg:grant.2699344 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
229 rdf:type schema:MonetaryGrant
230 sg:grant.3801598 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
231 rdf:type schema:MonetaryGrant
232 sg:grant.4455297 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
233 rdf:type schema:MonetaryGrant
234 sg:grant.5475650 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
235 rdf:type schema:MonetaryGrant
236 sg:grant.6617092 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
237 rdf:type schema:MonetaryGrant
238 sg:grant.6617183 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
239 rdf:type schema:MonetaryGrant
240 sg:journal.1023439 schema:issn 1465-6906
241 1474-760X
242 schema:name Genome Biology
243 rdf:type schema:Periodical
244 sg:pub.10.1038/nature11049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004787340
245 https://doi.org/10.1038/nature11049
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/nature11082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040271530
248 https://doi.org/10.1038/nature11082
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/nature12593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022035194
251 https://doi.org/10.1038/nature12593
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/nature12644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019700652
254 https://doi.org/10.1038/nature12644
255 rdf:type schema:CreativeWork
256 sg:pub.10.1038/nature14222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046074449
257 https://doi.org/10.1038/nature14222
258 rdf:type schema:CreativeWork
259 sg:pub.10.1038/nature14450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051036477
260 https://doi.org/10.1038/nature14450
261 rdf:type schema:CreativeWork
262 sg:pub.10.1038/nature18589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021280636
263 https://doi.org/10.1038/nature18589
264 rdf:type schema:CreativeWork
265 sg:pub.10.1038/nature23001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090343989
266 https://doi.org/10.1038/nature23001
267 rdf:type schema:CreativeWork
268 sg:pub.10.1038/nbt.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051483764
269 https://doi.org/10.1038/nbt.1505
270 rdf:type schema:CreativeWork
271 sg:pub.10.1038/ncomms15454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085424187
272 https://doi.org/10.1038/ncomms15454
273 rdf:type schema:CreativeWork
274 sg:pub.10.1038/ng.2871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001229000
275 https://doi.org/10.1038/ng.2871
276 rdf:type schema:CreativeWork
277 sg:pub.10.1038/nmeth.2148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014756327
278 https://doi.org/10.1038/nmeth.2148
279 rdf:type schema:CreativeWork
280 sg:pub.10.1038/nmeth.3205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053370390
281 https://doi.org/10.1038/nmeth.3205
282 rdf:type schema:CreativeWork
283 sg:pub.10.1038/nmeth.4155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074247469
284 https://doi.org/10.1038/nmeth.4155
285 rdf:type schema:CreativeWork
286 sg:pub.10.1038/nn.3995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017917722
287 https://doi.org/10.1038/nn.3995
288 rdf:type schema:CreativeWork
289 sg:pub.10.1038/nprot.2011.420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016476681
290 https://doi.org/10.1038/nprot.2011.420
291 rdf:type schema:CreativeWork
292 sg:pub.10.1038/nrm.2016.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022853135
293 https://doi.org/10.1038/nrm.2016.104
294 rdf:type schema:CreativeWork
295 sg:pub.10.1186/1471-2164-12-134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038345769
296 https://doi.org/10.1186/1471-2164-12-134
297 rdf:type schema:CreativeWork
298 sg:pub.10.1186/s12859-016-1274-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006887700
299 https://doi.org/10.1186/s12859-016-1274-4
300 rdf:type schema:CreativeWork
301 sg:pub.10.1186/s13059-015-0745-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000531356
302 https://doi.org/10.1186/s13059-015-0745-7
303 rdf:type schema:CreativeWork
304 sg:pub.10.1186/s13059-015-0753-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001431580
305 https://doi.org/10.1186/s13059-015-0753-7
306 rdf:type schema:CreativeWork
307 sg:pub.10.1186/s13059-016-0940-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044116170
308 https://doi.org/10.1186/s13059-016-0940-1
309 rdf:type schema:CreativeWork
310 sg:pub.10.1186/s13059-016-0992-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001813860
311 https://doi.org/10.1186/s13059-016-0992-2
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1002/jcb.22116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011530284
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1016/j.cell.2007.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139821
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1016/j.cell.2007.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000099864
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1016/j.cell.2012.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025469351
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1016/j.cell.2014.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047951603
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1016/j.molcel.2015.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014595394
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1016/j.stem.2014.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049496085
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1016/j.stem.2016.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045468123
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1016/j.ymeth.2014.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034942351
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1073/pnas.1609643113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013623512
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1093/bioinformatics/bts570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011299622
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1093/bioinformatics/btv336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046858002
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1093/bioinformatics/btx152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084178211
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1093/imanum/drs019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059689753
340 rdf:type schema:CreativeWork
341 https://doi.org/10.1101/181842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091915775
342 rdf:type schema:CreativeWork
343 https://doi.org/10.1101/204438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092310940
344 rdf:type schema:CreativeWork
345 https://doi.org/10.1101/gr.129437.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010573540
346 rdf:type schema:CreativeWork
347 https://doi.org/10.1101/gr.136184.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021823681
348 rdf:type schema:CreativeWork
349 https://doi.org/10.1101/gr.160374.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022670502
350 rdf:type schema:CreativeWork
351 https://doi.org/10.1101/gr.220640.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091435103
352 rdf:type schema:CreativeWork
353 https://doi.org/10.1126/science.1181369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007401642
354 rdf:type schema:CreativeWork
355 https://doi.org/10.1126/science.1236083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062468074
356 rdf:type schema:CreativeWork
357 https://doi.org/10.1214/11-aoas466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064392153
358 rdf:type schema:CreativeWork
359 https://doi.org/10.1371/journal.pcbi.1005665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090775536
360 rdf:type schema:CreativeWork
361 https://doi.org/10.3791/1869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015537137
362 rdf:type schema:CreativeWork
363 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
364 schema:name Department of Computer Science, Stanford University, Stanford, USA
365 Department of Genetics, Stanford University, Stanford, USA
366 rdf:type schema:Organization
367 https://www.grid.ac/institutes/grid.168645.8 schema:alternateName University of Massachusetts Medical School
368 schema:name Program in Systems Biology, University of Massachusetts Medical School, Worcester, USA
369 University of Massachusetts Medical School, Worcester, USA
370 rdf:type schema:Organization
371 https://www.grid.ac/institutes/grid.185006.a schema:alternateName La Jolla Institute For Allergy & Immunology
372 schema:name Computational Biology Division, La Jolla Institute for Allergy and Immunology, San Diego, USA
373 rdf:type schema:Organization
374 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
375 schema:name Biology Department, Johns Hopkins University, Baltimore, USA
376 Computer Science Department, Johns Hopkins University, Baltimore, USA
377 rdf:type schema:Organization
378 https://www.grid.ac/institutes/grid.240871.8 schema:alternateName St. Jude Children's Research Hospital
379 schema:name Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, USA
380 rdf:type schema:Organization
381 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
382 schema:name Bioinformatics and Genomics Program, Huck Institutes of the Life Sciences, Penn State University, State College, USA
383 Department of Biochemistry & Molecular Biology, College of Medicine, Penn State University, State College, USA
384 Department of Statistics, Penn State University, State College, USA
385 rdf:type schema:Organization
386 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
387 schema:name Department of Genome Sciences, University of Washington, Seattle, USA
388 rdf:type schema:Organization
389 https://www.grid.ac/institutes/grid.413575.1 schema:alternateName Howard Hughes Medical Institute
390 schema:name Howard Hughes Medical Institute, Chevy Chase, USA
391 Program in Systems Biology, University of Massachusetts Medical School, Worcester, USA
392 University of Massachusetts Medical School, Worcester, USA
393 rdf:type schema:Organization
394 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
395 schema:name Program in Computational Biology and Bioinformatics, Yale University, New Haven, USA
396 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...