Measuring the reproducibility and quality of Hi-C data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Galip Gürkan Yardımcı, Hakan Ozadam, Michael E. G. Sauria, Oana Ursu, Koon-Kiu Yan, Tao Yang, Abhijit Chakraborty, Arya Kaul, Bryan R. Lajoie, Fan Song, Ye Zhan, Ferhat Ay, Mark Gerstein, Anshul Kundaje, Qunhua Li, James Taylor, Feng Yue, Job Dekker, William S. Noble

ABSTRACT

BACKGROUND: Hi-C is currently the most widely used assay to investigate the 3D organization of the genome and to study its role in gene regulation, DNA replication, and disease. However, Hi-C experiments are costly to perform and involve multiple complex experimental steps; thus, accurate methods for measuring the quality and reproducibility of Hi-C data are essential to determine whether the output should be used further in a study. RESULTS: Using real and simulated data, we profile the performance of several recently proposed methods for assessing reproducibility of population Hi-C data, including HiCRep, GenomeDISCO, HiC-Spector, and QuASAR-Rep. By explicitly controlling noise and sparsity through simulations, we demonstrate the deficiencies of performing simple correlation analysis on pairs of matrices, and we show that methods developed specifically for Hi-C data produce better measures of reproducibility. We also show how to use established measures, such as the ratio of intra- to interchromosomal interactions, and novel ones, such as QuASAR-QC, to identify low-quality experiments. CONCLUSIONS: In this work, we assess reproducibility and quality measures by varying sequencing depth, resolution and noise levels in Hi-C data from 13 cell lines, with two biological replicates each, as well as 176 simulated matrices. Through this extensive validation and benchmarking of Hi-C data, we describe best practices for reproducibility and quality assessment of Hi-C experiments. We make all software publicly available at http://github.com/kundajelab/3DChromatin_ReplicateQC to facilitate adoption in the community. More... »

PAGES

57

References to SciGraph publications

  • 2015-05. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum in NATURE NEUROSCIENCE
  • 2017-03. Massively multiplex single-cell Hi-C in NATURE METHODS
  • 2016-12. Genome-wide mapping and analysis of chromosome architecture in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2016-12. CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data in GENOME BIOLOGY
  • 2013-10. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure in NATURE
  • 2013-11. A high-resolution map of the three-dimensional chromatin interactome in human cells in NATURE
  • 2008-11. An integrated software system for analyzing ChIP-chip and ChIP-seq data in NATURE BIOTECHNOLOGY
  • 2011-12. ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis in BMC GENOMICS
  • 2015-01. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes in NATURE METHODS
  • 2015-12. Comparison of Hi-C results using in-solution versus in-nucleus ligation in GENOME BIOLOGY
  • 2015-02. Chromatin architecture reorganization during stem cell differentiation in NATURE
  • 2016-07-18. Structural organization of the inactive X chromosome in the mouse in NATURE
  • 2015-12. Analysis methods for studying the 3D architecture of the genome in GENOME BIOLOGY
  • 2017-05-17. An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data in NATURE COMMUNICATIONS
  • 2012-01. A computational pipeline for comparative ChIP-seq analyses in NATURE PROTOCOLS
  • 2017-07. Cell-cycle dynamics of chromosomal organization at single-cell resolution in NATURE
  • 2016-12. A benchmark for RNA-seq quantification pipelines in GENOME BIOLOGY
  • 2014-02. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment in NATURE GENETICS
  • 2012-04-11. Spatial partitioning of the regulatory landscape of the X-inactivation centre in NATURE
  • 2012-04-11. Topological domains in mammalian genomes identified by analysis of chromatin interactions in NATURE
  • 2015-07. Condensin-driven remodelling of X chromosome topology during dosage compensation in NATURE
  • 2016-12. ChiLin: a comprehensive ChIP-seq and DNase-seq quality control and analysis pipeline in BMC BIOINFORMATICS
  • 2012-10. Iterative correction of Hi-C data reveals hallmarks of chromosome organization in NATURE METHODS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13059-019-1658-7

    DOI

    http://dx.doi.org/10.1186/s13059-019-1658-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112871780

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30890172


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Washington", 
              "id": "https://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Genome Sciences, University of Washington, Seattle, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yard\u0131mc\u0131", 
            "givenName": "Galip G\u00fcrkan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Massachusetts Medical School", 
              "id": "https://www.grid.ac/institutes/grid.168645.8", 
              "name": [
                "Program in Systems Biology, University of Massachusetts Medical School, Worcester, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ozadam", 
            "givenName": "Hakan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University", 
              "id": "https://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Biology Department, Johns Hopkins University, Baltimore, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sauria", 
            "givenName": "Michael E. G.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Genetics, Stanford University, Stanford, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ursu", 
            "givenName": "Oana", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "St. Jude Children's Research Hospital", 
              "id": "https://www.grid.ac/institutes/grid.240871.8", 
              "name": [
                "Department of Computational Biology, St. Jude Children\u2019s Research Hospital, Memphis, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Koon-Kiu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pennsylvania State University", 
              "id": "https://www.grid.ac/institutes/grid.29857.31", 
              "name": [
                "Bioinformatics and Genomics Program, Huck Institutes of the Life Sciences, Penn State University, State College, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Tao", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "La Jolla Institute For Allergy & Immunology", 
              "id": "https://www.grid.ac/institutes/grid.185006.a", 
              "name": [
                "Computational Biology Division, La Jolla Institute for Allergy and Immunology, San Diego, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chakraborty", 
            "givenName": "Abhijit", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "La Jolla Institute For Allergy & Immunology", 
              "id": "https://www.grid.ac/institutes/grid.185006.a", 
              "name": [
                "Computational Biology Division, La Jolla Institute for Allergy and Immunology, San Diego, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaul", 
            "givenName": "Arya", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Massachusetts Medical School", 
              "id": "https://www.grid.ac/institutes/grid.168645.8", 
              "name": [
                "Program in Systems Biology, University of Massachusetts Medical School, Worcester, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lajoie", 
            "givenName": "Bryan R.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pennsylvania State University", 
              "id": "https://www.grid.ac/institutes/grid.29857.31", 
              "name": [
                "Bioinformatics and Genomics Program, Huck Institutes of the Life Sciences, Penn State University, State College, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Fan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Massachusetts Medical School", 
              "id": "https://www.grid.ac/institutes/grid.168645.8", 
              "name": [
                "University of Massachusetts Medical School, Worcester, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhan", 
            "givenName": "Ye", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "La Jolla Institute For Allergy & Immunology", 
              "id": "https://www.grid.ac/institutes/grid.185006.a", 
              "name": [
                "Computational Biology Division, La Jolla Institute for Allergy and Immunology, San Diego, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ay", 
            "givenName": "Ferhat", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Program in Computational Biology and Bioinformatics, Yale University, New Haven, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gerstein", 
            "givenName": "Mark", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Genetics, Stanford University, Stanford, USA", 
                "Department of Computer Science, Stanford University, Stanford, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kundaje", 
            "givenName": "Anshul", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pennsylvania State University", 
              "id": "https://www.grid.ac/institutes/grid.29857.31", 
              "name": [
                "Department of Statistics, Penn State University, State College, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Qunhua", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University", 
              "id": "https://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Biology Department, Johns Hopkins University, Baltimore, USA", 
                "Computer Science Department, Johns Hopkins University, Baltimore, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taylor", 
            "givenName": "James", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pennsylvania State University", 
              "id": "https://www.grid.ac/institutes/grid.29857.31", 
              "name": [
                "Bioinformatics and Genomics Program, Huck Institutes of the Life Sciences, Penn State University, State College, USA", 
                "Department of Biochemistry & Molecular Biology, College of Medicine, Penn State University, State College, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yue", 
            "givenName": "Feng", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Howard Hughes Medical Institute", 
              "id": "https://www.grid.ac/institutes/grid.413575.1", 
              "name": [
                "Program in Systems Biology, University of Massachusetts Medical School, Worcester, USA", 
                "University of Massachusetts Medical School, Worcester, USA", 
                "Howard Hughes Medical Institute, Chevy Chase, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dekker", 
            "givenName": "Job", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Washington", 
              "id": "https://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Genome Sciences, University of Washington, Seattle, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Noble", 
            "givenName": "William S.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.cell.2007.12.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000099864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0745-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000531356", 
              "https://doi.org/10.1186/s13059-015-0745-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2871", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001229000", 
              "https://doi.org/10.1038/ng.2871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0753-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001431580", 
              "https://doi.org/10.1186/s13059-015-0753-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-0992-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001813860", 
              "https://doi.org/10.1186/s13059-016-0992-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-0992-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001813860", 
              "https://doi.org/10.1186/s13059-016-0992-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2007.05.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002139821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004787340", 
              "https://doi.org/10.1038/nature11049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-016-1274-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006887700", 
              "https://doi.org/10.1186/s12859-016-1274-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-016-1274-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006887700", 
              "https://doi.org/10.1186/s12859-016-1274-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1181369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007401642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1181369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007401642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.129437.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010573540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011299622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcb.22116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011530284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1609643113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013623512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molcel.2015.08.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014595394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014756327", 
              "https://doi.org/10.1038/nmeth.2148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3791/1869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015537137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2011.420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016476681", 
              "https://doi.org/10.1038/nprot.2011.420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.3995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017917722", 
              "https://doi.org/10.1038/nn.3995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019700652", 
              "https://doi.org/10.1038/nature12644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature18589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021280636", 
              "https://doi.org/10.1038/nature18589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature18589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021280636", 
              "https://doi.org/10.1038/nature18589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.136184.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021823681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022035194", 
              "https://doi.org/10.1038/nature12593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.160374.113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022670502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm.2016.104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022853135", 
              "https://doi.org/10.1038/nrm.2016.104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2012.01.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025469351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2014.10.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034942351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2014.10.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034942351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038345769", 
              "https://doi.org/10.1186/1471-2164-12-134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040271530", 
              "https://doi.org/10.1038/nature11082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-0940-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044116170", 
              "https://doi.org/10.1186/s13059-016-0940-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.stem.2016.01.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045468123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046074449", 
              "https://doi.org/10.1038/nature14222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btv336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046858002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2014.11.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047951603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.stem.2014.05.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049496085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051036477", 
              "https://doi.org/10.1038/nature14450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051483764", 
              "https://doi.org/10.1038/nbt.1505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053370390", 
              "https://doi.org/10.1038/nmeth.3205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/imanum/drs019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059689753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1236083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062468074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/11-aoas466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064392153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074247469", 
              "https://doi.org/10.1038/nmeth.4155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btx152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084178211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms15454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085424187", 
              "https://doi.org/10.1038/ncomms15454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms15454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085424187", 
              "https://doi.org/10.1038/ncomms15454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090343989", 
              "https://doi.org/10.1038/nature23001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090343989", 
              "https://doi.org/10.1038/nature23001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1005665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090775536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.220640.117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091435103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/181842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091915775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/181842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091915775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/181842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091915775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/204438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092310940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/204438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092310940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/204438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092310940"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: Hi-C is currently the most widely used assay to investigate the 3D organization of the genome and to study its role in gene regulation, DNA replication, and disease. However, Hi-C experiments are costly to perform and involve multiple complex experimental steps; thus, accurate methods for measuring the quality and reproducibility of Hi-C data are essential to determine whether the output should be used further in a study.\nRESULTS: Using real and simulated data, we profile the performance of several recently proposed methods for assessing reproducibility of population Hi-C data, including HiCRep, GenomeDISCO, HiC-Spector, and QuASAR-Rep. By explicitly controlling noise and sparsity through simulations, we demonstrate the deficiencies of performing simple correlation analysis on pairs of matrices, and we show that methods developed specifically for Hi-C data produce better measures of reproducibility. We also show how to use established measures, such as the ratio of intra- to interchromosomal interactions, and novel ones, such as QuASAR-QC, to identify low-quality experiments.\nCONCLUSIONS: In this work, we assess reproducibility and quality measures by varying sequencing depth, resolution and noise levels in Hi-C data from 13 cell lines, with two biological replicates each, as well as 176 simulated matrices. Through this extensive validation and benchmarking of Hi-C data, we describe best practices for reproducibility and quality assessment of Hi-C experiments. We make all software publicly available at http://github.com/kundajelab/3DChromatin_ReplicateQC to facilitate adoption in the community.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13059-019-1658-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2684183", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2699344", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2529188", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2522166", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3801598", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4455297", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6617183", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2697608", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6617092", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2697615", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5475650", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023439", 
            "issn": [
              "1474-760X", 
              "1465-6906"
            ], 
            "name": "Genome Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "Measuring the reproducibility and quality of Hi-C data", 
        "pagination": "57", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "13ae3d1f55a42450350970d83d491ba7c3d80f83f0276688d6193f473aa7f76b"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30890172"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100960660"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13059-019-1658-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112871780"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13059-019-1658-7", 
          "https://app.dimensions.ai/details/publication/pub.1112871780"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46766_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13059-019-1658-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1658-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1658-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1658-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1658-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    396 TRIPLES      21 PREDICATES      77 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13059-019-1658-7 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N2e38c498c5604109b7c10805cfbe3588
    4 schema:citation sg:pub.10.1038/nature11049
    5 sg:pub.10.1038/nature11082
    6 sg:pub.10.1038/nature12593
    7 sg:pub.10.1038/nature12644
    8 sg:pub.10.1038/nature14222
    9 sg:pub.10.1038/nature14450
    10 sg:pub.10.1038/nature18589
    11 sg:pub.10.1038/nature23001
    12 sg:pub.10.1038/nbt.1505
    13 sg:pub.10.1038/ncomms15454
    14 sg:pub.10.1038/ng.2871
    15 sg:pub.10.1038/nmeth.2148
    16 sg:pub.10.1038/nmeth.3205
    17 sg:pub.10.1038/nmeth.4155
    18 sg:pub.10.1038/nn.3995
    19 sg:pub.10.1038/nprot.2011.420
    20 sg:pub.10.1038/nrm.2016.104
    21 sg:pub.10.1186/1471-2164-12-134
    22 sg:pub.10.1186/s12859-016-1274-4
    23 sg:pub.10.1186/s13059-015-0745-7
    24 sg:pub.10.1186/s13059-015-0753-7
    25 sg:pub.10.1186/s13059-016-0940-1
    26 sg:pub.10.1186/s13059-016-0992-2
    27 https://doi.org/10.1002/jcb.22116
    28 https://doi.org/10.1016/j.cell.2007.05.009
    29 https://doi.org/10.1016/j.cell.2007.12.014
    30 https://doi.org/10.1016/j.cell.2012.01.010
    31 https://doi.org/10.1016/j.cell.2014.11.021
    32 https://doi.org/10.1016/j.molcel.2015.08.024
    33 https://doi.org/10.1016/j.stem.2014.05.017
    34 https://doi.org/10.1016/j.stem.2016.01.007
    35 https://doi.org/10.1016/j.ymeth.2014.10.031
    36 https://doi.org/10.1073/pnas.1609643113
    37 https://doi.org/10.1093/bioinformatics/bts570
    38 https://doi.org/10.1093/bioinformatics/btv336
    39 https://doi.org/10.1093/bioinformatics/btx152
    40 https://doi.org/10.1093/imanum/drs019
    41 https://doi.org/10.1101/181842
    42 https://doi.org/10.1101/204438
    43 https://doi.org/10.1101/gr.129437.111
    44 https://doi.org/10.1101/gr.136184.111
    45 https://doi.org/10.1101/gr.160374.113
    46 https://doi.org/10.1101/gr.220640.117
    47 https://doi.org/10.1126/science.1181369
    48 https://doi.org/10.1126/science.1236083
    49 https://doi.org/10.1214/11-aoas466
    50 https://doi.org/10.1371/journal.pcbi.1005665
    51 https://doi.org/10.3791/1869
    52 schema:datePublished 2019-12
    53 schema:datePublishedReg 2019-12-01
    54 schema:description BACKGROUND: Hi-C is currently the most widely used assay to investigate the 3D organization of the genome and to study its role in gene regulation, DNA replication, and disease. However, Hi-C experiments are costly to perform and involve multiple complex experimental steps; thus, accurate methods for measuring the quality and reproducibility of Hi-C data are essential to determine whether the output should be used further in a study. RESULTS: Using real and simulated data, we profile the performance of several recently proposed methods for assessing reproducibility of population Hi-C data, including HiCRep, GenomeDISCO, HiC-Spector, and QuASAR-Rep. By explicitly controlling noise and sparsity through simulations, we demonstrate the deficiencies of performing simple correlation analysis on pairs of matrices, and we show that methods developed specifically for Hi-C data produce better measures of reproducibility. We also show how to use established measures, such as the ratio of intra- to interchromosomal interactions, and novel ones, such as QuASAR-QC, to identify low-quality experiments. CONCLUSIONS: In this work, we assess reproducibility and quality measures by varying sequencing depth, resolution and noise levels in Hi-C data from 13 cell lines, with two biological replicates each, as well as 176 simulated matrices. Through this extensive validation and benchmarking of Hi-C data, we describe best practices for reproducibility and quality assessment of Hi-C experiments. We make all software publicly available at http://github.com/kundajelab/3DChromatin_ReplicateQC to facilitate adoption in the community.
    55 schema:genre research_article
    56 schema:inLanguage en
    57 schema:isAccessibleForFree false
    58 schema:isPartOf N48b782e945f647b5b9baf06cde3adf26
    59 Nb84451efb8dd4f258f21b7d16f229f25
    60 sg:journal.1023439
    61 schema:name Measuring the reproducibility and quality of Hi-C data
    62 schema:pagination 57
    63 schema:productId N08e90493b3134c3a868ae64afb38bd52
    64 N2998204e9259469d9f2b986d89022563
    65 N786ce24796f34afc81de8a5600b37847
    66 Nac3717e722ef4039b91fa80b7b5ba7ba
    67 Nfde195a68da1448a87875b2310dd8ffd
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112871780
    69 https://doi.org/10.1186/s13059-019-1658-7
    70 schema:sdDatePublished 2019-04-11T13:33
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher Nda6af16d23534fec891a29f70d6a3914
    73 schema:url https://link.springer.com/10.1186%2Fs13059-019-1658-7
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N063f8a647c7f4a65a8afe32de86ddb5f rdf:first N3a34cfffbec449398f73dce0d23cc657
    78 rdf:rest Naa5e84b2254449fdb4063c310dadf921
    79 N08e90493b3134c3a868ae64afb38bd52 schema:name nlm_unique_id
    80 schema:value 100960660
    81 rdf:type schema:PropertyValue
    82 N0c085921209f4c87b9454d26a449387e rdf:first N7de2811600ac42a3858fb28c1446e17a
    83 rdf:rest N689c1ca4dfb14f589abb124990214730
    84 N157a63642c434e7a84a35cc37429ec37 rdf:first N1a95acb6644844c3b22e7aba79f92e08
    85 rdf:rest Nc29505319b8a47b9980f5094a51dd422
    86 N1a95acb6644844c3b22e7aba79f92e08 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
    87 schema:familyName Yang
    88 schema:givenName Tao
    89 rdf:type schema:Person
    90 N1c215087d2eb44ccb44a63fb1ce335ef rdf:first N729c66a489ff498da227c52130037a5a
    91 rdf:rest N8e340d23075548aeb513f4e0349d6fbc
    92 N2786c2bdf8a74b6994b33cf513cae829 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
    93 schema:familyName Sauria
    94 schema:givenName Michael E. G.
    95 rdf:type schema:Person
    96 N2998204e9259469d9f2b986d89022563 schema:name readcube_id
    97 schema:value 13ae3d1f55a42450350970d83d491ba7c3d80f83f0276688d6193f473aa7f76b
    98 rdf:type schema:PropertyValue
    99 N2d204e3ddc8e4008b720572e1426206d schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    100 schema:familyName Ursu
    101 schema:givenName Oana
    102 rdf:type schema:Person
    103 N2e38c498c5604109b7c10805cfbe3588 rdf:first Ne81ffbaa315945ec8b2646c31dc6ee9f
    104 rdf:rest N063f8a647c7f4a65a8afe32de86ddb5f
    105 N2f38cdae46f44a2388bc18aad6eea3d7 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
    106 schema:familyName Taylor
    107 schema:givenName James
    108 rdf:type schema:Person
    109 N347991fb0f2944aaa163e3a142c8dad8 rdf:first Ne06a564c9d114e2d9c5f0a2c729190d8
    110 rdf:rest Ndf8e8873e7964d638120d41985bce56e
    111 N3541c05360c64c70bd6911fe0a1222ac schema:affiliation https://www.grid.ac/institutes/grid.185006.a
    112 schema:familyName Kaul
    113 schema:givenName Arya
    114 rdf:type schema:Person
    115 N3a34cfffbec449398f73dce0d23cc657 schema:affiliation https://www.grid.ac/institutes/grid.168645.8
    116 schema:familyName Ozadam
    117 schema:givenName Hakan
    118 rdf:type schema:Person
    119 N48b782e945f647b5b9baf06cde3adf26 schema:issueNumber 1
    120 rdf:type schema:PublicationIssue
    121 N496148b9a14644aebbf5d8ba9b6ea175 rdf:first Nb777a8679b6f4422b3ab4afaee9c67dc
    122 rdf:rest rdf:nil
    123 N5dca8e043f3f4c4082b74c4abbc802d5 schema:affiliation https://www.grid.ac/institutes/grid.413575.1
    124 schema:familyName Dekker
    125 schema:givenName Job
    126 rdf:type schema:Person
    127 N689c1ca4dfb14f589abb124990214730 rdf:first N2f38cdae46f44a2388bc18aad6eea3d7
    128 rdf:rest N347991fb0f2944aaa163e3a142c8dad8
    129 N729c66a489ff498da227c52130037a5a schema:affiliation https://www.grid.ac/institutes/grid.29857.31
    130 schema:familyName Song
    131 schema:givenName Fan
    132 rdf:type schema:Person
    133 N786ce24796f34afc81de8a5600b37847 schema:name dimensions_id
    134 schema:value pub.1112871780
    135 rdf:type schema:PropertyValue
    136 N7aa324959d604eeba81080b3bcad2567 rdf:first N917c187bd61c4010a0d3ba6187e5a35c
    137 rdf:rest Ndd49bd33a16b4a3a802b19c355bf5484
    138 N7de2811600ac42a3858fb28c1446e17a schema:affiliation https://www.grid.ac/institutes/grid.29857.31
    139 schema:familyName Li
    140 schema:givenName Qunhua
    141 rdf:type schema:Person
    142 N80713e76761b41b48ec9d67f4541ba78 rdf:first N3541c05360c64c70bd6911fe0a1222ac
    143 rdf:rest Ne54638eefb134e179cfe2bfbcfebc1d6
    144 N884b791e7a824a7985a5eaeddca58f7a schema:affiliation https://www.grid.ac/institutes/grid.240871.8
    145 schema:familyName Yan
    146 schema:givenName Koon-Kiu
    147 rdf:type schema:Person
    148 N8e340d23075548aeb513f4e0349d6fbc rdf:first Nce3f0e09f0114d83a59c733f1b667f82
    149 rdf:rest Ncc3bfa0755d540b3be4c5974ca4e9144
    150 N917c187bd61c4010a0d3ba6187e5a35c schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    151 schema:familyName Gerstein
    152 schema:givenName Mark
    153 rdf:type schema:Person
    154 N9fc51b7a84a24a70b02175828c1267d5 rdf:first N2d204e3ddc8e4008b720572e1426206d
    155 rdf:rest Ne6451e9038b04345a29c1a34ae75b24a
    156 Naa5e84b2254449fdb4063c310dadf921 rdf:first N2786c2bdf8a74b6994b33cf513cae829
    157 rdf:rest N9fc51b7a84a24a70b02175828c1267d5
    158 Nac3717e722ef4039b91fa80b7b5ba7ba schema:name doi
    159 schema:value 10.1186/s13059-019-1658-7
    160 rdf:type schema:PropertyValue
    161 Nb103955964f944cd809f6de5b9c1da31 schema:affiliation https://www.grid.ac/institutes/grid.168645.8
    162 schema:familyName Lajoie
    163 schema:givenName Bryan R.
    164 rdf:type schema:Person
    165 Nb777a8679b6f4422b3ab4afaee9c67dc schema:affiliation https://www.grid.ac/institutes/grid.34477.33
    166 schema:familyName Noble
    167 schema:givenName William S.
    168 rdf:type schema:Person
    169 Nb7918d682a6a411ebdb6e62b9090b8b0 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    170 schema:familyName Kundaje
    171 schema:givenName Anshul
    172 rdf:type schema:Person
    173 Nb84451efb8dd4f258f21b7d16f229f25 schema:volumeNumber 20
    174 rdf:type schema:PublicationVolume
    175 Nb929ee781a454d61b3b2f9164387b337 schema:affiliation https://www.grid.ac/institutes/grid.185006.a
    176 schema:familyName Ay
    177 schema:givenName Ferhat
    178 rdf:type schema:Person
    179 Nc29505319b8a47b9980f5094a51dd422 rdf:first Nd1ff536a939d41c49d5ec13289b4ee32
    180 rdf:rest N80713e76761b41b48ec9d67f4541ba78
    181 Ncc3bfa0755d540b3be4c5974ca4e9144 rdf:first Nb929ee781a454d61b3b2f9164387b337
    182 rdf:rest N7aa324959d604eeba81080b3bcad2567
    183 Nce3f0e09f0114d83a59c733f1b667f82 schema:affiliation https://www.grid.ac/institutes/grid.168645.8
    184 schema:familyName Zhan
    185 schema:givenName Ye
    186 rdf:type schema:Person
    187 Nd1ff536a939d41c49d5ec13289b4ee32 schema:affiliation https://www.grid.ac/institutes/grid.185006.a
    188 schema:familyName Chakraborty
    189 schema:givenName Abhijit
    190 rdf:type schema:Person
    191 Nda6af16d23534fec891a29f70d6a3914 schema:name Springer Nature - SN SciGraph project
    192 rdf:type schema:Organization
    193 Ndd49bd33a16b4a3a802b19c355bf5484 rdf:first Nb7918d682a6a411ebdb6e62b9090b8b0
    194 rdf:rest N0c085921209f4c87b9454d26a449387e
    195 Ndf8e8873e7964d638120d41985bce56e rdf:first N5dca8e043f3f4c4082b74c4abbc802d5
    196 rdf:rest N496148b9a14644aebbf5d8ba9b6ea175
    197 Ne06a564c9d114e2d9c5f0a2c729190d8 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
    198 schema:familyName Yue
    199 schema:givenName Feng
    200 rdf:type schema:Person
    201 Ne54638eefb134e179cfe2bfbcfebc1d6 rdf:first Nb103955964f944cd809f6de5b9c1da31
    202 rdf:rest N1c215087d2eb44ccb44a63fb1ce335ef
    203 Ne6451e9038b04345a29c1a34ae75b24a rdf:first N884b791e7a824a7985a5eaeddca58f7a
    204 rdf:rest N157a63642c434e7a84a35cc37429ec37
    205 Ne81ffbaa315945ec8b2646c31dc6ee9f schema:affiliation https://www.grid.ac/institutes/grid.34477.33
    206 schema:familyName Yardımcı
    207 schema:givenName Galip Gürkan
    208 rdf:type schema:Person
    209 Nfde195a68da1448a87875b2310dd8ffd schema:name pubmed_id
    210 schema:value 30890172
    211 rdf:type schema:PropertyValue
    212 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    213 schema:name Mathematical Sciences
    214 rdf:type schema:DefinedTerm
    215 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    216 schema:name Statistics
    217 rdf:type schema:DefinedTerm
    218 sg:grant.2522166 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
    219 rdf:type schema:MonetaryGrant
    220 sg:grant.2529188 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
    221 rdf:type schema:MonetaryGrant
    222 sg:grant.2684183 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
    223 rdf:type schema:MonetaryGrant
    224 sg:grant.2697608 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
    225 rdf:type schema:MonetaryGrant
    226 sg:grant.2697615 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
    227 rdf:type schema:MonetaryGrant
    228 sg:grant.2699344 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
    229 rdf:type schema:MonetaryGrant
    230 sg:grant.3801598 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
    231 rdf:type schema:MonetaryGrant
    232 sg:grant.4455297 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
    233 rdf:type schema:MonetaryGrant
    234 sg:grant.5475650 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
    235 rdf:type schema:MonetaryGrant
    236 sg:grant.6617092 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
    237 rdf:type schema:MonetaryGrant
    238 sg:grant.6617183 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1658-7
    239 rdf:type schema:MonetaryGrant
    240 sg:journal.1023439 schema:issn 1465-6906
    241 1474-760X
    242 schema:name Genome Biology
    243 rdf:type schema:Periodical
    244 sg:pub.10.1038/nature11049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004787340
    245 https://doi.org/10.1038/nature11049
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nature11082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040271530
    248 https://doi.org/10.1038/nature11082
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/nature12593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022035194
    251 https://doi.org/10.1038/nature12593
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nature12644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019700652
    254 https://doi.org/10.1038/nature12644
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nature14222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046074449
    257 https://doi.org/10.1038/nature14222
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nature14450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051036477
    260 https://doi.org/10.1038/nature14450
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nature18589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021280636
    263 https://doi.org/10.1038/nature18589
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nature23001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090343989
    266 https://doi.org/10.1038/nature23001
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nbt.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051483764
    269 https://doi.org/10.1038/nbt.1505
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/ncomms15454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085424187
    272 https://doi.org/10.1038/ncomms15454
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/ng.2871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001229000
    275 https://doi.org/10.1038/ng.2871
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/nmeth.2148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014756327
    278 https://doi.org/10.1038/nmeth.2148
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/nmeth.3205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053370390
    281 https://doi.org/10.1038/nmeth.3205
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/nmeth.4155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074247469
    284 https://doi.org/10.1038/nmeth.4155
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/nn.3995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017917722
    287 https://doi.org/10.1038/nn.3995
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/nprot.2011.420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016476681
    290 https://doi.org/10.1038/nprot.2011.420
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/nrm.2016.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022853135
    293 https://doi.org/10.1038/nrm.2016.104
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1186/1471-2164-12-134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038345769
    296 https://doi.org/10.1186/1471-2164-12-134
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1186/s12859-016-1274-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006887700
    299 https://doi.org/10.1186/s12859-016-1274-4
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1186/s13059-015-0745-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000531356
    302 https://doi.org/10.1186/s13059-015-0745-7
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1186/s13059-015-0753-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001431580
    305 https://doi.org/10.1186/s13059-015-0753-7
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1186/s13059-016-0940-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044116170
    308 https://doi.org/10.1186/s13059-016-0940-1
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1186/s13059-016-0992-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001813860
    311 https://doi.org/10.1186/s13059-016-0992-2
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1002/jcb.22116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011530284
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1016/j.cell.2007.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139821
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1016/j.cell.2007.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000099864
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1016/j.cell.2012.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025469351
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1016/j.cell.2014.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047951603
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1016/j.molcel.2015.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014595394
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1016/j.stem.2014.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049496085
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1016/j.stem.2016.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045468123
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1016/j.ymeth.2014.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034942351
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1073/pnas.1609643113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013623512
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1093/bioinformatics/bts570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011299622
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1093/bioinformatics/btv336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046858002
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1093/bioinformatics/btx152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084178211
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.1093/imanum/drs019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059689753
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.1101/181842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091915775
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.1101/204438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092310940
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.1101/gr.129437.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010573540
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.1101/gr.136184.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021823681
    348 rdf:type schema:CreativeWork
    349 https://doi.org/10.1101/gr.160374.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022670502
    350 rdf:type schema:CreativeWork
    351 https://doi.org/10.1101/gr.220640.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091435103
    352 rdf:type schema:CreativeWork
    353 https://doi.org/10.1126/science.1181369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007401642
    354 rdf:type schema:CreativeWork
    355 https://doi.org/10.1126/science.1236083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062468074
    356 rdf:type schema:CreativeWork
    357 https://doi.org/10.1214/11-aoas466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064392153
    358 rdf:type schema:CreativeWork
    359 https://doi.org/10.1371/journal.pcbi.1005665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090775536
    360 rdf:type schema:CreativeWork
    361 https://doi.org/10.3791/1869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015537137
    362 rdf:type schema:CreativeWork
    363 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
    364 schema:name Department of Computer Science, Stanford University, Stanford, USA
    365 Department of Genetics, Stanford University, Stanford, USA
    366 rdf:type schema:Organization
    367 https://www.grid.ac/institutes/grid.168645.8 schema:alternateName University of Massachusetts Medical School
    368 schema:name Program in Systems Biology, University of Massachusetts Medical School, Worcester, USA
    369 University of Massachusetts Medical School, Worcester, USA
    370 rdf:type schema:Organization
    371 https://www.grid.ac/institutes/grid.185006.a schema:alternateName La Jolla Institute For Allergy & Immunology
    372 schema:name Computational Biology Division, La Jolla Institute for Allergy and Immunology, San Diego, USA
    373 rdf:type schema:Organization
    374 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
    375 schema:name Biology Department, Johns Hopkins University, Baltimore, USA
    376 Computer Science Department, Johns Hopkins University, Baltimore, USA
    377 rdf:type schema:Organization
    378 https://www.grid.ac/institutes/grid.240871.8 schema:alternateName St. Jude Children's Research Hospital
    379 schema:name Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, USA
    380 rdf:type schema:Organization
    381 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
    382 schema:name Bioinformatics and Genomics Program, Huck Institutes of the Life Sciences, Penn State University, State College, USA
    383 Department of Biochemistry & Molecular Biology, College of Medicine, Penn State University, State College, USA
    384 Department of Statistics, Penn State University, State College, USA
    385 rdf:type schema:Organization
    386 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
    387 schema:name Department of Genome Sciences, University of Washington, Seattle, USA
    388 rdf:type schema:Organization
    389 https://www.grid.ac/institutes/grid.413575.1 schema:alternateName Howard Hughes Medical Institute
    390 schema:name Howard Hughes Medical Institute, Chevy Chase, USA
    391 Program in Systems Biology, University of Massachusetts Medical School, Worcester, USA
    392 University of Massachusetts Medical School, Worcester, USA
    393 rdf:type schema:Organization
    394 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
    395 schema:name Program in Computational Biology and Bioinformatics, Yale University, New Haven, USA
    396 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...