bin3C: exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Matthew Z. DeMaere, Aaron E. Darling

ABSTRACT

Most microbes cannot be easily cultured, and metagenomics provides a means to study them. Current techniques aim to resolve individual genomes from metagenomes, so-called metagenome-assembled genomes (MAGs). Leading approaches depend upon time series or transect studies, the efficacy of which is a function of community complexity, target abundance, and sequencing depth. We describe an unsupervised method that exploits the hierarchical nature of Hi-C interaction rates to resolve MAGs using a single time point. We validate the method and directly compare against a recently announced proprietary service, ProxiMeta. bin3C is an open-source pipeline and makes use of the Infomap clustering algorithm ( https://github.com/cerebis/bin3C ). More... »

PAGES

46

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13059-019-1643-1

DOI

http://dx.doi.org/10.1186/s13059-019-1643-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112389646

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30808380


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feces", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metagenomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbiota", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Technology Sydney", 
          "id": "https://www.grid.ac/institutes/grid.117476.2", 
          "name": [
            "The ithree institute, University of Technology Sydney, 15 Broadway, 2007, Ultimo, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DeMaere", 
        "givenName": "Matthew Z.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Technology Sydney", 
          "id": "https://www.grid.ac/institutes/grid.117476.2", 
          "name": [
            "The ithree institute, University of Technology Sydney, 15 Broadway, 2007, Ultimo, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Darling", 
        "givenName": "Aaron E.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.7717/peerj.2676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000740872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.68.5.2391-2396.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001407349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004047595", 
          "https://doi.org/10.1038/ncomms6695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006668184", 
          "https://doi.org/10.1038/nbt.2728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-015-0834-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007001582", 
          "https://doi.org/10.1186/s13059-015-0834-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1181369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007401642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1181369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007401642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2015.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007648177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008059544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.011027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009464573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.011027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009464573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009746211", 
          "https://doi.org/10.1038/nbt.2727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.mi.39.100185.001541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009812939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.micro.57.030502.090759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013011587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6976.2011.00292.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013179409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7717/peerj.603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014653830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0159161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014781725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.186072.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015107573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019590763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btv351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021132933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.70.8.4748-4755.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021705132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7717/peerj.415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023546388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605965104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028061681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.113985.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029998681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.252529799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030789781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032430080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2049-2618-2-26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033360565", 
          "https://doi.org/10.1186/2049-2618-2-26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1462-2920.2002.00352.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035061557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2008/10/p10008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037912856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10791-008-9066-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039636189", 
          "https://doi.org/10.1007/s10791-008-9066-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2010-01179-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041361554", 
          "https://doi.org/10.1140/epjst/e2010-01179-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.114.011825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042116097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.114.011825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042116097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/980451.980859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042254245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro3378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042860154", 
          "https://doi.org/10.1038/nrmicro3378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.012809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043403050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.012809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043403050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044309870", 
          "https://doi.org/10.1038/nbt.3329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.016118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046173962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.016118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046173962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7717/peerj.1165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048540869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1553374.1553511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048906649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btv638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059414543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btw290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059414767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imanum/drs019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059689753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.213462.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060407507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1134196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062454858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.213959.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084197429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/034793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085115205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/034793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085115205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/034793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085115205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091105392", 
          "https://doi.org/10.1038/nbt.3893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091105392", 
          "https://doi.org/10.1038/nbt.3893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091105392", 
          "https://doi.org/10.1038/nbt.3893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091105392", 
          "https://doi.org/10.1038/nbt.3893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091105392", 
          "https://doi.org/10.1038/nbt.3893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.4458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092065319", 
          "https://doi.org/10.1038/nmeth.4458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.4458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092065319", 
          "https://doi.org/10.1038/nmeth.4458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/198713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092128731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/198713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092128731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/198713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092128731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gigascience/gix103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092697679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/225342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093061348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/225342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093061348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/225342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093061348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sbrn.2012.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095190732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7717/peerj.4320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100665940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/256800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100712726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/256800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100712726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/256800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100712726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/261149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100923467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/261149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100923467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/261149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100923467"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Most microbes cannot be easily cultured, and metagenomics provides a means to study them. Current techniques aim to resolve individual genomes from metagenomes, so-called metagenome-assembled genomes (MAGs). Leading approaches depend upon time series or transect studies, the efficacy of which is a function of community complexity, target abundance, and sequencing depth. We describe an unsupervised method that exploits the hierarchical nature of Hi-C interaction rates to resolve MAGs using a single time point. We validate the method and directly compare against a recently announced proprietary service, ProxiMeta. bin3C is an open-source pipeline and makes use of the Infomap clustering algorithm ( https://github.com/cerebis/bin3C ).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13059-019-1643-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7074425", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5127178", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "bin3C: exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes", 
    "pagination": "46", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2ee3da568dd1629db7f343a3bf84331deeb1711f8487c2324f6268f56a279805"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30808380"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100960660"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13059-019-1643-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112389646"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13059-019-1643-1", 
      "https://app.dimensions.ai/details/publication/pub.1112389646"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72869_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13059-019-1643-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1643-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1643-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1643-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13059-019-1643-1'


 

This table displays all metadata directly associated to this object as RDF triples.

283 TRIPLES      21 PREDICATES      91 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13059-019-1643-1 schema:about N40fa1a0fd63e43658ef6a7a125d81d79
2 N5ab8e1edefad445db73a1145885d7707
3 N5afa1dc142f14694bbbbd2a78b761290
4 N5e7aa68e87f74abe98532cb85dc400f4
5 N8365170c18c64788a879f83679eb6689
6 N8a23f1e664b249a98d7aa060fb665227
7 N8a3334cecb2a4cbdafca3eb92982b5aa
8 N93843b5a8f0a45a2871178afe2531736
9 anzsrc-for:08
10 anzsrc-for:0801
11 schema:author N64e5befb95184a05bc4432fb08dbe336
12 schema:citation sg:pub.10.1007/s10791-008-9066-8
13 sg:pub.10.1038/nbt.2727
14 sg:pub.10.1038/nbt.2728
15 sg:pub.10.1038/nbt.3329
16 sg:pub.10.1038/nbt.3893
17 sg:pub.10.1038/ncomms6695
18 sg:pub.10.1038/nmeth.4458
19 sg:pub.10.1038/nrmicro3378
20 sg:pub.10.1140/epjst/e2010-01179-1
21 sg:pub.10.1186/2049-2618-2-26
22 sg:pub.10.1186/s13059-015-0834-7
23 https://doi.org/10.1016/j.tig.2015.10.003
24 https://doi.org/10.1046/j.1462-2920.2002.00352.x
25 https://doi.org/10.1073/pnas.0605965104
26 https://doi.org/10.1073/pnas.252529799
27 https://doi.org/10.1088/1742-5468/2008/10/p10008
28 https://doi.org/10.1093/bioinformatics/btp352
29 https://doi.org/10.1093/bioinformatics/btr708
30 https://doi.org/10.1093/bioinformatics/btv351
31 https://doi.org/10.1093/bioinformatics/btv638
32 https://doi.org/10.1093/bioinformatics/btw290
33 https://doi.org/10.1093/gigascience/gix103
34 https://doi.org/10.1093/imanum/drs019
35 https://doi.org/10.1093/nar/gkv424
36 https://doi.org/10.1093/nar/gkw992
37 https://doi.org/10.1101/034793
38 https://doi.org/10.1101/198713
39 https://doi.org/10.1101/225342
40 https://doi.org/10.1101/256800
41 https://doi.org/10.1101/261149
42 https://doi.org/10.1101/gr.113985.110
43 https://doi.org/10.1101/gr.186072.114
44 https://doi.org/10.1101/gr.213462.116
45 https://doi.org/10.1101/gr.213959.116
46 https://doi.org/10.1103/physreve.80.016118
47 https://doi.org/10.1103/physreve.91.012809
48 https://doi.org/10.1103/physrevx.5.011027
49 https://doi.org/10.1109/sbrn.2012.25
50 https://doi.org/10.1111/j.1574-6976.2011.00292.x
51 https://doi.org/10.1126/science.1134196
52 https://doi.org/10.1126/science.1181369
53 https://doi.org/10.1128/aem.68.5.2391-2396.2002
54 https://doi.org/10.1128/aem.70.8.4748-4755.2004
55 https://doi.org/10.1145/1553374.1553511
56 https://doi.org/10.1146/annurev.mi.39.100185.001541
57 https://doi.org/10.1146/annurev.micro.57.030502.090759
58 https://doi.org/10.1371/journal.pone.0159161
59 https://doi.org/10.1534/g3.114.011825
60 https://doi.org/10.3115/980451.980859
61 https://doi.org/10.7717/peerj.1165
62 https://doi.org/10.7717/peerj.2676
63 https://doi.org/10.7717/peerj.415
64 https://doi.org/10.7717/peerj.4320
65 https://doi.org/10.7717/peerj.603
66 schema:datePublished 2019-12
67 schema:datePublishedReg 2019-12-01
68 schema:description Most microbes cannot be easily cultured, and metagenomics provides a means to study them. Current techniques aim to resolve individual genomes from metagenomes, so-called metagenome-assembled genomes (MAGs). Leading approaches depend upon time series or transect studies, the efficacy of which is a function of community complexity, target abundance, and sequencing depth. We describe an unsupervised method that exploits the hierarchical nature of Hi-C interaction rates to resolve MAGs using a single time point. We validate the method and directly compare against a recently announced proprietary service, ProxiMeta. bin3C is an open-source pipeline and makes use of the Infomap clustering algorithm ( https://github.com/cerebis/bin3C ).
69 schema:genre research_article
70 schema:inLanguage en
71 schema:isAccessibleForFree false
72 schema:isPartOf Nfaf6eb965e994b939ec80dcf96de4842
73 Nfcf3bd65a6d940889ad8143988cbc17f
74 sg:journal.1023439
75 schema:name bin3C: exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes
76 schema:pagination 46
77 schema:productId N124efd291ce24e1bb9a2105ce8a104da
78 N2083cd34961d4373bc377d0712681d7f
79 N42bc4455968e4ef0a7f1f5252666445b
80 N497736ad029441d6adde7154bafcec99
81 N77bb2a334a9344faa35193c83bb12199
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112389646
83 https://doi.org/10.1186/s13059-019-1643-1
84 schema:sdDatePublished 2019-04-11T12:55
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N555b1c4262c2450d9fb5a591d2c18f07
87 schema:url https://link.springer.com/10.1186%2Fs13059-019-1643-1
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N032fa3fbfe5840e69133a6072cb81dc2 schema:affiliation https://www.grid.ac/institutes/grid.117476.2
92 schema:familyName DeMaere
93 schema:givenName Matthew Z.
94 rdf:type schema:Person
95 N124efd291ce24e1bb9a2105ce8a104da schema:name dimensions_id
96 schema:value pub.1112389646
97 rdf:type schema:PropertyValue
98 N2083cd34961d4373bc377d0712681d7f schema:name nlm_unique_id
99 schema:value 100960660
100 rdf:type schema:PropertyValue
101 N40fa1a0fd63e43658ef6a7a125d81d79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Metagenomics
103 rdf:type schema:DefinedTerm
104 N42bc4455968e4ef0a7f1f5252666445b schema:name doi
105 schema:value 10.1186/s13059-019-1643-1
106 rdf:type schema:PropertyValue
107 N497736ad029441d6adde7154bafcec99 schema:name readcube_id
108 schema:value 2ee3da568dd1629db7f343a3bf84331deeb1711f8487c2324f6268f56a279805
109 rdf:type schema:PropertyValue
110 N555b1c4262c2450d9fb5a591d2c18f07 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N5ab8e1edefad445db73a1145885d7707 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Genome, Bacterial
114 rdf:type schema:DefinedTerm
115 N5afa1dc142f14694bbbbd2a78b761290 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Computer Simulation
117 rdf:type schema:DefinedTerm
118 N5e7aa68e87f74abe98532cb85dc400f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Humans
120 rdf:type schema:DefinedTerm
121 N64e5befb95184a05bc4432fb08dbe336 rdf:first N032fa3fbfe5840e69133a6072cb81dc2
122 rdf:rest Naed83a97bbd644bd888f4f57cf6bcc37
123 N77bb2a334a9344faa35193c83bb12199 schema:name pubmed_id
124 schema:value 30808380
125 rdf:type schema:PropertyValue
126 N8365170c18c64788a879f83679eb6689 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Software
128 rdf:type schema:DefinedTerm
129 N8a23f1e664b249a98d7aa060fb665227 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Feces
131 rdf:type schema:DefinedTerm
132 N8a3334cecb2a4cbdafca3eb92982b5aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Microbiota
134 rdf:type schema:DefinedTerm
135 N93843b5a8f0a45a2871178afe2531736 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Sequence Analysis, DNA
137 rdf:type schema:DefinedTerm
138 Naed83a97bbd644bd888f4f57cf6bcc37 rdf:first Ncf529183ddeb4b418a2146b8067bead4
139 rdf:rest rdf:nil
140 Ncf529183ddeb4b418a2146b8067bead4 schema:affiliation https://www.grid.ac/institutes/grid.117476.2
141 schema:familyName Darling
142 schema:givenName Aaron E.
143 rdf:type schema:Person
144 Nfaf6eb965e994b939ec80dcf96de4842 schema:volumeNumber 20
145 rdf:type schema:PublicationVolume
146 Nfcf3bd65a6d940889ad8143988cbc17f schema:issueNumber 1
147 rdf:type schema:PublicationIssue
148 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
149 schema:name Information and Computing Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
152 schema:name Artificial Intelligence and Image Processing
153 rdf:type schema:DefinedTerm
154 sg:grant.5127178 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1643-1
155 rdf:type schema:MonetaryGrant
156 sg:grant.7074425 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-019-1643-1
157 rdf:type schema:MonetaryGrant
158 sg:journal.1023439 schema:issn 1465-6906
159 1474-760X
160 schema:name Genome Biology
161 rdf:type schema:Periodical
162 sg:pub.10.1007/s10791-008-9066-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039636189
163 https://doi.org/10.1007/s10791-008-9066-8
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nbt.2727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009746211
166 https://doi.org/10.1038/nbt.2727
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nbt.2728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006668184
169 https://doi.org/10.1038/nbt.2728
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nbt.3329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044309870
172 https://doi.org/10.1038/nbt.3329
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nbt.3893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091105392
175 https://doi.org/10.1038/nbt.3893
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/ncomms6695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004047595
178 https://doi.org/10.1038/ncomms6695
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nmeth.4458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092065319
181 https://doi.org/10.1038/nmeth.4458
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nrmicro3378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042860154
184 https://doi.org/10.1038/nrmicro3378
185 rdf:type schema:CreativeWork
186 sg:pub.10.1140/epjst/e2010-01179-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041361554
187 https://doi.org/10.1140/epjst/e2010-01179-1
188 rdf:type schema:CreativeWork
189 sg:pub.10.1186/2049-2618-2-26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033360565
190 https://doi.org/10.1186/2049-2618-2-26
191 rdf:type schema:CreativeWork
192 sg:pub.10.1186/s13059-015-0834-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007001582
193 https://doi.org/10.1186/s13059-015-0834-7
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.tig.2015.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007648177
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1046/j.1462-2920.2002.00352.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035061557
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1073/pnas.0605965104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028061681
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1073/pnas.252529799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030789781
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1088/1742-5468/2008/10/p10008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037912856
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/bioinformatics/btr708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008059544
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/bioinformatics/btv351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021132933
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/bioinformatics/btv638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414543
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/bioinformatics/btw290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414767
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/gigascience/gix103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092697679
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/imanum/drs019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059689753
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/nar/gkv424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019590763
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/nar/gkw992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032430080
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1101/034793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085115205
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1101/198713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092128731
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1101/225342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093061348
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1101/256800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100712726
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1101/261149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100923467
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1101/gr.113985.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029998681
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1101/gr.186072.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015107573
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1101/gr.213462.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060407507
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1101/gr.213959.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084197429
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1103/physreve.80.016118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046173962
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1103/physreve.91.012809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043403050
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1103/physrevx.5.011027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009464573
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1109/sbrn.2012.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095190732
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1111/j.1574-6976.2011.00292.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013179409
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1126/science.1134196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062454858
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1126/science.1181369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007401642
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1128/aem.68.5.2391-2396.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001407349
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1128/aem.70.8.4748-4755.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021705132
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1145/1553374.1553511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048906649
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1146/annurev.mi.39.100185.001541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009812939
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1146/annurev.micro.57.030502.090759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013011587
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1371/journal.pone.0159161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014781725
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1534/g3.114.011825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042116097
268 rdf:type schema:CreativeWork
269 https://doi.org/10.3115/980451.980859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042254245
270 rdf:type schema:CreativeWork
271 https://doi.org/10.7717/peerj.1165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048540869
272 rdf:type schema:CreativeWork
273 https://doi.org/10.7717/peerj.2676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000740872
274 rdf:type schema:CreativeWork
275 https://doi.org/10.7717/peerj.415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023546388
276 rdf:type schema:CreativeWork
277 https://doi.org/10.7717/peerj.4320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100665940
278 rdf:type schema:CreativeWork
279 https://doi.org/10.7717/peerj.603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014653830
280 rdf:type schema:CreativeWork
281 https://www.grid.ac/institutes/grid.117476.2 schema:alternateName University of Technology Sydney
282 schema:name The ithree institute, University of Technology Sydney, 15 Broadway, 2007, Ultimo, NSW, Australia
283 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...