MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Wei Li, Han Xu, Tengfei Xiao, Le Cong, Michael I Love, Feng Zhang, Rafael A Irizarry, Jun S Liu, Myles Brown, X Shirley Liu

ABSTRACT

We propose the Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout (MAGeCK) method for prioritizing single-guide RNAs, genes and pathways in genome-scale CRISPR/Cas9 knockout screens. MAGeCK demonstrates better performance compared with existing methods, identifies both positively and negatively selected genes simultaneously, and reports robust results across different experimental conditions. Using public datasets, MAGeCK identified novel essential genes and pathways, including EGFR in vemurafenib-treated A375 cells harboring a BRAF mutation. MAGeCK also detected cell type-specific essential genes, including BCR and ABL1, in KBM7 cells bearing a BCR-ABL fusion, and IGF1R in HL-60 cells, which depends on the insulin signaling pathway for proliferation. More... »

PAGES

554

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13059-014-0554-4

DOI

http://dx.doi.org/10.1186/s13059-014-0554-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014314357

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25476604


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CRISPR-Associated Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CRISPR-Cas Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Neoplastic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Knockout Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Essential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HL-60 Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dana\u2013Farber Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.65499.37", 
          "name": [
            "Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, 02215, Boston, MA, USA", 
            "Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Wei", 
        "id": "sg:person.013217474120.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013217474120.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dana\u2013Farber Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.65499.37", 
          "name": [
            "Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, 02215, Boston, MA, USA", 
            "Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Han", 
        "id": "sg:person.01056053771.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056053771.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dana\u2013Farber Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.65499.37", 
          "name": [
            "Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 02215, Boston, MA, USA", 
            "Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Tengfei", 
        "id": "sg:person.0672414101.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672414101.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, MA, USA", 
            "McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cong", 
        "givenName": "Le", 
        "id": "sg:person.01066001262.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066001262.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dana\u2013Farber Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.65499.37", 
          "name": [
            "Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Love", 
        "givenName": "Michael I", 
        "id": "sg:person.0612232567.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612232567.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Broad Institute of MIT and Harvard, 7 Cambridge Center, 02142, Cambridge, MA, USA", 
            "McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Feng", 
        "id": "sg:person.0703626237.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703626237.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dana\u2013Farber Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.65499.37", 
          "name": [
            "Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Irizarry", 
        "givenName": "Rafael A", 
        "id": "sg:person.0736727701.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736727701.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Statistics, Harvard University, Science Center 715, 1 Oxford Street, 02138, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jun S", 
        "id": "sg:person.01306627540.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306627540.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham and Women's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 02215, Boston, MA, USA", 
            "Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, 02215, Boston, MA, USA", 
            "Department of Medicine, Brigham and Women\u2019s Hospital and Harvard Medical School, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "Myles", 
        "id": "sg:person.015327711457.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015327711457.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dana\u2013Farber Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.65499.37", 
          "name": [
            "Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, 02215, Boston, MA, USA", 
            "Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "X Shirley", 
        "id": "sg:person.01007325065.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007325065.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0900608106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000385830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/2159-8290.cd-12-0470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000560597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003969366", 
          "https://doi.org/10.1038/nmeth1089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006653097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007302590", 
          "https://doi.org/10.1038/nbt.2673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.14.2947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007853357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1247005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007966801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1247005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007966801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbamcr.2009.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008082600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008090439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009511624", 
          "https://doi.org/10.1038/nbt.2623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012543463", 
          "https://doi.org/10.1038/nbt.2647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1002011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012824919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015748372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.01334-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015986897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.16.10.5335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016955926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017305614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1231143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019873131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.2012.140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020019457", 
          "https://doi.org/10.1038/labinvest.2012.140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1232033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022072971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023247882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027499136", 
          "https://doi.org/10.1038/nature13166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029060732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-10-r106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031289083", 
          "https://doi.org/10.1186/gb-2010-11-10-r106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506580102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037705714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506580102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037705714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038374700", 
          "https://doi.org/10.1038/nature10868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1087057107300646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039703907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1087057107300646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039703907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-09-0511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040214301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041802825", 
          "https://doi.org/10.1038/nbt.2800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/2159-8290.cd-11-0341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043663281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1246981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043810806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1246981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043810806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047456674", 
          "https://doi.org/10.1186/1471-2105-11-422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047456674", 
          "https://doi.org/10.1186/1471-2105-11-422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0810485105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053380624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2649981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062548429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075070892", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082878911", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "We propose the Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout (MAGeCK) method for prioritizing single-guide RNAs, genes and pathways in genome-scale CRISPR/Cas9 knockout screens. MAGeCK demonstrates better performance compared with existing methods, identifies both positively and negatively selected genes simultaneously, and reports robust results across different experimental conditions. Using public datasets, MAGeCK identified novel essential genes and pathways, including EGFR in vemurafenib-treated A375 cells harboring a BRAF mutation. MAGeCK also detected cell type-specific essential genes, including BCR and ABL1, in KBM7 cells bearing a BCR-ABL fusion, and IGF1R in HL-60 cells, which depends on the insulin signaling pathway for proliferation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13059-014-0554-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2682540", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2521436", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens", 
    "pagination": "554", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "44316f1881f81f5f33c4b80427920a6f13facd9fc3e938982ddb1d3e78332006"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25476604"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100960660"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13059-014-0554-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014314357"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13059-014-0554-4", 
      "https://app.dimensions.ai/details/publication/pub.1014314357"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88227_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs13059-014-0554-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13059-014-0554-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13059-014-0554-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13059-014-0554-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13059-014-0554-4'


 

This table displays all metadata directly associated to this object as RDF triples.

312 TRIPLES      21 PREDICATES      76 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13059-014-0554-4 schema:about N10273af6ac54455e83697142bf62a873
2 N16eebd3c5753421c8489be9c22367c4a
3 N40db79f832014cfabaed8cdfee4b1f48
4 N6a3b8c9fc7fb42a1a18f0fe66c6ae03c
5 N734547ba66c94e7d8109341853dfce86
6 N8d968faf0dc2446799f976a1c0693622
7 N94c8e7cb020b48d288fde5d3ae510e6e
8 Nb2974d6b9127485292366f591a49d6b5
9 Ne4cd5a708d0e44309329ad5cbfc8b383
10 Ne9b0367bc16241fe8fc4344c2b90b9b7
11 Nf166f72539064a428c64787c87c311f2
12 Nf9618f2ea6884d988ed5b10f8416c62f
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N4e53299c2e6140699c34bee2ae0461e2
16 schema:citation sg:pub.10.1038/labinvest.2012.140
17 sg:pub.10.1038/nature10868
18 sg:pub.10.1038/nature13166
19 sg:pub.10.1038/nbt.2623
20 sg:pub.10.1038/nbt.2647
21 sg:pub.10.1038/nbt.2673
22 sg:pub.10.1038/nbt.2800
23 sg:pub.10.1038/nmeth1089
24 sg:pub.10.1186/1471-2105-11-422
25 sg:pub.10.1186/gb-2010-11-10-r106
26 https://app.dimensions.ai/details/publication/pub.1075070892
27 https://app.dimensions.ai/details/publication/pub.1082878911
28 https://doi.org/10.1016/j.bbamcr.2009.03.007
29 https://doi.org/10.1056/nejmoa1002011
30 https://doi.org/10.1073/pnas.0506580102
31 https://doi.org/10.1073/pnas.0810485105
32 https://doi.org/10.1073/pnas.0900608106
33 https://doi.org/10.1093/bioinformatics/btp616
34 https://doi.org/10.1093/bioinformatics/btr709
35 https://doi.org/10.1093/nar/27.14.2947
36 https://doi.org/10.1093/nar/28.1.27
37 https://doi.org/10.1093/nar/gkt1102
38 https://doi.org/10.1126/science.1231143
39 https://doi.org/10.1126/science.1232033
40 https://doi.org/10.1126/science.1246981
41 https://doi.org/10.1126/science.1247005
42 https://doi.org/10.1126/science.2649981
43 https://doi.org/10.1128/mcb.01334-08
44 https://doi.org/10.1128/mcb.16.10.5335
45 https://doi.org/10.1158/0008-5472.can-09-0511
46 https://doi.org/10.1158/2159-8290.cd-11-0341
47 https://doi.org/10.1158/2159-8290.cd-12-0470
48 https://doi.org/10.1177/1087057107300646
49 https://doi.org/10.18632/oncotarget.965
50 https://doi.org/10.2202/1544-6115.1637
51 schema:datePublished 2014-12
52 schema:datePublishedReg 2014-12-01
53 schema:description We propose the Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout (MAGeCK) method for prioritizing single-guide RNAs, genes and pathways in genome-scale CRISPR/Cas9 knockout screens. MAGeCK demonstrates better performance compared with existing methods, identifies both positively and negatively selected genes simultaneously, and reports robust results across different experimental conditions. Using public datasets, MAGeCK identified novel essential genes and pathways, including EGFR in vemurafenib-treated A375 cells harboring a BRAF mutation. MAGeCK also detected cell type-specific essential genes, including BCR and ABL1, in KBM7 cells bearing a BCR-ABL fusion, and IGF1R in HL-60 cells, which depends on the insulin signaling pathway for proliferation.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf N5d4630426d4c40e08f46dc8f121d15d7
58 N62a6d1c97b1d49c387541f2037eb7219
59 sg:journal.1023439
60 schema:name MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens
61 schema:pagination 554
62 schema:productId N200abdd55c0a4b4ea78b6bad8f6ac63e
63 N2e1ea8da876a4d4a87857f4b8bfc85ab
64 N4547d3e35c2c487b9fe14ea87a888300
65 N6d41e2cbb41d4ef5954ff9209cbebe32
66 N83748a4bd9e3417895fc9e2438dfef15
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014314357
68 https://doi.org/10.1186/s13059-014-0554-4
69 schema:sdDatePublished 2019-04-11T13:08
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N849a7f22e5624aaeb5bca32d095d7513
72 schema:url http://link.springer.com/10.1186%2Fs13059-014-0554-4
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N00837b71f97d43d696584a5d2b027563 rdf:first sg:person.0612232567.50
77 rdf:rest N024bc9485013464fb4d5d848c5d4468b
78 N024bc9485013464fb4d5d848c5d4468b rdf:first sg:person.0703626237.20
79 rdf:rest N4dfc43b38a3c4b4cbf63df61a0a5646c
80 N10273af6ac54455e83697142bf62a873 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Genes, Essential
82 rdf:type schema:DefinedTerm
83 N16eebd3c5753421c8489be9c22367c4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Neoplasms
85 rdf:type schema:DefinedTerm
86 N200abdd55c0a4b4ea78b6bad8f6ac63e schema:name pubmed_id
87 schema:value 25476604
88 rdf:type schema:PropertyValue
89 N2e1ea8da876a4d4a87857f4b8bfc85ab schema:name readcube_id
90 schema:value 44316f1881f81f5f33c4b80427920a6f13facd9fc3e938982ddb1d3e78332006
91 rdf:type schema:PropertyValue
92 N348d1fe03b144a7e9fb5e422d00f7e16 rdf:first sg:person.01306627540.69
93 rdf:rest N9044df470aa64a719c67085e8b967956
94 N40db79f832014cfabaed8cdfee4b1f48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Cell Line, Tumor
96 rdf:type schema:DefinedTerm
97 N41a292166f794c7fbbe0b2ab1b8fe6aa rdf:first sg:person.0672414101.48
98 rdf:rest Nff0c7e497b2342a284e17cb07f13292a
99 N4547d3e35c2c487b9fe14ea87a888300 schema:name nlm_unique_id
100 schema:value 100960660
101 rdf:type schema:PropertyValue
102 N4dfc43b38a3c4b4cbf63df61a0a5646c rdf:first sg:person.0736727701.99
103 rdf:rest N348d1fe03b144a7e9fb5e422d00f7e16
104 N4e53299c2e6140699c34bee2ae0461e2 rdf:first sg:person.013217474120.04
105 rdf:rest N6d5f41b4df6e4eb5b7bd7485f3d32927
106 N5d4630426d4c40e08f46dc8f121d15d7 schema:volumeNumber 15
107 rdf:type schema:PublicationVolume
108 N62a6d1c97b1d49c387541f2037eb7219 schema:issueNumber 12
109 rdf:type schema:PublicationIssue
110 N6a3b8c9fc7fb42a1a18f0fe66c6ae03c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Genetic Predisposition to Disease
112 rdf:type schema:DefinedTerm
113 N6d41e2cbb41d4ef5954ff9209cbebe32 schema:name dimensions_id
114 schema:value pub.1014314357
115 rdf:type schema:PropertyValue
116 N6d5f41b4df6e4eb5b7bd7485f3d32927 rdf:first sg:person.01056053771.22
117 rdf:rest N41a292166f794c7fbbe0b2ab1b8fe6aa
118 N734547ba66c94e7d8109341853dfce86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Gene Knockout Techniques
120 rdf:type schema:DefinedTerm
121 N83748a4bd9e3417895fc9e2438dfef15 schema:name doi
122 schema:value 10.1186/s13059-014-0554-4
123 rdf:type schema:PropertyValue
124 N849a7f22e5624aaeb5bca32d095d7513 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 N8d968faf0dc2446799f976a1c0693622 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Algorithms
128 rdf:type schema:DefinedTerm
129 N9044df470aa64a719c67085e8b967956 rdf:first sg:person.015327711457.65
130 rdf:rest Nd9b021c0989a41a2bf5ff0424f56ddf2
131 N94c8e7cb020b48d288fde5d3ae510e6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name CRISPR-Associated Proteins
133 rdf:type schema:DefinedTerm
134 Nb2974d6b9127485292366f591a49d6b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Computational Biology
136 rdf:type schema:DefinedTerm
137 Nd9b021c0989a41a2bf5ff0424f56ddf2 rdf:first sg:person.01007325065.71
138 rdf:rest rdf:nil
139 Ne4cd5a708d0e44309329ad5cbfc8b383 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Humans
141 rdf:type schema:DefinedTerm
142 Ne9b0367bc16241fe8fc4344c2b90b9b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name HL-60 Cells
144 rdf:type schema:DefinedTerm
145 Nf166f72539064a428c64787c87c311f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Gene Expression Regulation, Neoplastic
147 rdf:type schema:DefinedTerm
148 Nf9618f2ea6884d988ed5b10f8416c62f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name CRISPR-Cas Systems
150 rdf:type schema:DefinedTerm
151 Nff0c7e497b2342a284e17cb07f13292a rdf:first sg:person.01066001262.60
152 rdf:rest N00837b71f97d43d696584a5d2b027563
153 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
154 schema:name Biological Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
157 schema:name Genetics
158 rdf:type schema:DefinedTerm
159 sg:grant.2521436 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-014-0554-4
160 rdf:type schema:MonetaryGrant
161 sg:grant.2682540 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-014-0554-4
162 rdf:type schema:MonetaryGrant
163 sg:journal.1023439 schema:issn 1465-6906
164 1474-760X
165 schema:name Genome Biology
166 rdf:type schema:Periodical
167 sg:person.01007325065.71 schema:affiliation https://www.grid.ac/institutes/grid.65499.37
168 schema:familyName Liu
169 schema:givenName X Shirley
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007325065.71
171 rdf:type schema:Person
172 sg:person.01056053771.22 schema:affiliation https://www.grid.ac/institutes/grid.65499.37
173 schema:familyName Xu
174 schema:givenName Han
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056053771.22
176 rdf:type schema:Person
177 sg:person.01066001262.60 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
178 schema:familyName Cong
179 schema:givenName Le
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066001262.60
181 rdf:type schema:Person
182 sg:person.01306627540.69 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
183 schema:familyName Liu
184 schema:givenName Jun S
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306627540.69
186 rdf:type schema:Person
187 sg:person.013217474120.04 schema:affiliation https://www.grid.ac/institutes/grid.65499.37
188 schema:familyName Li
189 schema:givenName Wei
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013217474120.04
191 rdf:type schema:Person
192 sg:person.015327711457.65 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
193 schema:familyName Brown
194 schema:givenName Myles
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015327711457.65
196 rdf:type schema:Person
197 sg:person.0612232567.50 schema:affiliation https://www.grid.ac/institutes/grid.65499.37
198 schema:familyName Love
199 schema:givenName Michael I
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612232567.50
201 rdf:type schema:Person
202 sg:person.0672414101.48 schema:affiliation https://www.grid.ac/institutes/grid.65499.37
203 schema:familyName Xiao
204 schema:givenName Tengfei
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672414101.48
206 rdf:type schema:Person
207 sg:person.0703626237.20 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
208 schema:familyName Zhang
209 schema:givenName Feng
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703626237.20
211 rdf:type schema:Person
212 sg:person.0736727701.99 schema:affiliation https://www.grid.ac/institutes/grid.65499.37
213 schema:familyName Irizarry
214 schema:givenName Rafael A
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736727701.99
216 rdf:type schema:Person
217 sg:pub.10.1038/labinvest.2012.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020019457
218 https://doi.org/10.1038/labinvest.2012.140
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/nature10868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038374700
221 https://doi.org/10.1038/nature10868
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/nature13166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027499136
224 https://doi.org/10.1038/nature13166
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/nbt.2623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009511624
227 https://doi.org/10.1038/nbt.2623
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/nbt.2647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012543463
230 https://doi.org/10.1038/nbt.2647
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/nbt.2673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007302590
233 https://doi.org/10.1038/nbt.2673
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nbt.2800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041802825
236 https://doi.org/10.1038/nbt.2800
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nmeth1089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003969366
239 https://doi.org/10.1038/nmeth1089
240 rdf:type schema:CreativeWork
241 sg:pub.10.1186/1471-2105-11-422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047456674
242 https://doi.org/10.1186/1471-2105-11-422
243 rdf:type schema:CreativeWork
244 sg:pub.10.1186/gb-2010-11-10-r106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031289083
245 https://doi.org/10.1186/gb-2010-11-10-r106
246 rdf:type schema:CreativeWork
247 https://app.dimensions.ai/details/publication/pub.1075070892 schema:CreativeWork
248 https://app.dimensions.ai/details/publication/pub.1082878911 schema:CreativeWork
249 https://doi.org/10.1016/j.bbamcr.2009.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008082600
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1056/nejmoa1002011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012824919
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1073/pnas.0506580102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037705714
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1073/pnas.0810485105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053380624
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1073/pnas.0900608106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000385830
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1093/bioinformatics/btp616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247882
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1093/bioinformatics/btr709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008090439
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1093/nar/27.14.2947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007853357
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1093/nar/28.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017305614
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1093/nar/gkt1102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006653097
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1126/science.1231143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019873131
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1126/science.1232033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022072971
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1126/science.1246981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043810806
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1126/science.1247005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007966801
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1126/science.2649981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062548429
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1128/mcb.01334-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015986897
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1128/mcb.16.10.5335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016955926
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1158/0008-5472.can-09-0511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040214301
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1158/2159-8290.cd-11-0341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043663281
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1158/2159-8290.cd-12-0470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000560597
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1177/1087057107300646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039703907
290 rdf:type schema:CreativeWork
291 https://doi.org/10.18632/oncotarget.965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015748372
292 rdf:type schema:CreativeWork
293 https://doi.org/10.2202/1544-6115.1637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029060732
294 rdf:type schema:CreativeWork
295 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
296 schema:name Broad Institute of MIT and Harvard, 7 Cambridge Center, 02142, Cambridge, MA, USA
297 Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, MA, USA
298 McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
299 rdf:type schema:Organization
300 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
301 schema:name Department of Statistics, Harvard University, Science Center 715, 1 Oxford Street, 02138, Cambridge, MA, USA
302 rdf:type schema:Organization
303 https://www.grid.ac/institutes/grid.62560.37 schema:alternateName Brigham and Women's Hospital
304 schema:name Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 02215, Boston, MA, USA
305 Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 02215, Boston, MA, USA
306 Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, 02215, Boston, MA, USA
307 rdf:type schema:Organization
308 https://www.grid.ac/institutes/grid.65499.37 schema:alternateName Dana–Farber Cancer Institute
309 schema:name Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 02215, Boston, MA, USA
310 Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, 02215, Boston, MA, USA
311 Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, 02215, Boston, MA, USA
312 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...