Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Michael I Love, Wolfgang Huber, Simon Anders

ABSTRACT

In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html webcite. More... »

PAGES

550

References to SciGraph publications

  • 2010-10. Differential expression analysis for sequence count data in GENOME BIOLOGY
  • 2013-04. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions in GENOME BIOLOGY
  • 2009. The Elements of Statistical Learning, Data Mining, Inference, and Prediction in NONE
  • 2014-05. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells in NATURE
  • 1985-12. Comparing partitions in JOURNAL OF CLASSIFICATION
  • 2011-12. ReCount: A multi-experiment resource of analysis-ready RNA-seq gene count datasets in BMC BIOINFORMATICS
  • 2010-02. The pea aphid genome sequence brings theories of insect defense into question in GENOME BIOLOGY
  • 1989. Generalized Linear Models in NONE
  • 2012-01. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer in NATURE
  • 2010-04. Understanding mechanisms underlying human gene expression variation with RNA sequencing in NATURE
  • 2010-12. baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data in BMC BIOINFORMATICS
  • 2004-09. Bioconductor: open software development for computational biology and bioinformatics in GENOME BIOLOGY
  • 2013-12. NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data in BMC BIOINFORMATICS
  • 2011-12. GC-Content Normalization for RNA-Seq Data in BMC BIOINFORMATICS
  • 2014-06. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer in NATURE
  • 2011-12. Significance testing in ridge regression for genetic data in BMC BIOINFORMATICS
  • 2013-01. Differential analysis of gene regulation at transcript resolution with RNA-seq in NATURE BIOTECHNOLOGY
  • 2014-02. voom: precision weights unlock linear model analysis tools for RNA-seq read counts in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13059-014-0550-8

    DOI

    http://dx.doi.org/10.1186/s13059-014-0550-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015222646

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25516281


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Molecular Genetics", 
              "id": "https://www.grid.ac/institutes/grid.419538.2", 
              "name": [
                "Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Department of Biostatistics, Harvard School of Public Health, 450 Brookline Avenue, 02215, Boston, MA, USA", 
                "Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany", 
                "Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 63-7314195, Ihnestrasse, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Love", 
            "givenName": "Michael I", 
            "id": "sg:person.0612232567.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612232567.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "European Molecular Biology Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.4709.a", 
              "name": [
                "Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huber", 
            "givenName": "Wolfgang", 
            "id": "sg:person.0750614167.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750614167.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "European Molecular Biology Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.4709.a", 
              "name": [
                "Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anders", 
            "givenName": "Simon", 
            "id": "sg:person.0626036202.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626036202.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature13229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005514040", 
              "https://doi.org/10.1038/nature13229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005577478", 
              "https://doi.org/10.1038/nature10730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0914005107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011637541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btk046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013118634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-4-r36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015459845", 
              "https://doi.org/10.1186/gb-2013-14-4-r36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016247401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-2-106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017440825", 
              "https://doi.org/10.1186/gb-2010-11-2-106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018457673", 
              "https://doi.org/10.1186/gb-2004-5-10-r80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxm030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019122906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0962280211428386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019188958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0962280211428386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019188958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020264836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gku310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021413889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01908075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022323983", 
              "https://doi.org/10.1007/bf01908075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023091405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023247882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/18.suppl_1.s96", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026029796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.101204.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026952720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027499136", 
              "https://doi.org/10.1038/nature13166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1003118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028412488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2202/1544-6115.1637", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029060732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-10-r106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031289083", 
              "https://doi.org/10.1186/gb-2010-11-10-r106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/18.suppl_1.s105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031487565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1032573094", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-84858-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032573094", 
              "https://doi.org/10.1007/978-0-387-84858-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-84858-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032573094", 
              "https://doi.org/10.1007/978-0-387-84858-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032929685", 
              "https://doi.org/10.1186/1471-2105-12-449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032929685", 
              "https://doi.org/10.1186/1471-2105-12-449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxs033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034320451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036891129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxs031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036970787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-14-262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039605198", 
              "https://doi.org/10.1186/1471-2105-14-262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040037878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040091254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0017820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043651368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxr054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044392328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044630803", 
              "https://doi.org/10.1038/nature08872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044630803", 
              "https://doi.org/10.1038/nature08872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045152751", 
              "https://doi.org/10.1038/nbt.2450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2014-15-2-r29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045312009", 
              "https://doi.org/10.1186/gb-2014-15-2-r29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045629641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gks042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045678648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047456674", 
              "https://doi.org/10.1186/1471-2105-11-422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047456674", 
              "https://doi.org/10.1186/1471-2105-11-422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1003531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048123102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048338371", 
              "https://doi.org/10.1186/1471-2105-12-480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.133744.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049314308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050488595", 
              "https://doi.org/10.1186/1471-2105-12-372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050488595", 
              "https://doi.org/10.1186/1471-2105-12-372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052151939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052940103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053282140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.113.008565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053323793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.113.008565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053323793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/106652701300099074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059204871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/cmb.2009.0108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059245837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/11-aoas493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064392195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18637/jss.v033.i01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068672496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18637/jss.v033.i01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068672496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/pjm.1966.16.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069063573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2202/1544-6115.1027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069289261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1268249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069420677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2532465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069977876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.184501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074949076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109705877", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3242-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705877", 
              "https://doi.org/10.1007/978-1-4899-3242-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3242-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705877", 
              "https://doi.org/10.1007/978-1-4899-3242-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-12", 
        "datePublishedReg": "2014-12-01", 
        "description": "In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html webcite.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13059-014-0550-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2682540", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023439", 
            "issn": [
              "1474-760X", 
              "1465-6906"
            ], 
            "name": "Genome Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "name": "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2", 
        "pagination": "550", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4886aea8b9ce6f44b1294a8899f11d96644958fc233b397d12b62835caf6fbc6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25516281"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100960660"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13059-014-0550-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015222646"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13059-014-0550-8", 
          "https://app.dimensions.ai/details/publication/pub.1015222646"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88247_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2Fs13059-014-0550-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13059-014-0550-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13059-014-0550-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13059-014-0550-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13059-014-0550-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    308 TRIPLES      21 PREDICATES      94 URIs      28 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13059-014-0550-8 schema:about N28544e6635534a57a2e7c758bafbd668
    2 N5937ebbb3e2e46cbb910eacae127c2a8
    3 N8ca31e836f0e467191d7d869fee6fcb1
    4 N8fab191e077b4100a1b6b9bb67fb82bf
    5 Nba581cdf78e64eb0b62e45fd13fcb8e2
    6 Nc06ae921091e41f7b15ff44b98fec3f7
    7 Nea6a9ead7e9d45f7ab0fe71185e5687b
    8 anzsrc-for:01
    9 anzsrc-for:0104
    10 schema:author N5dc258d5e3244a8fad412483bd10a6b1
    11 schema:citation sg:pub.10.1007/978-0-387-84858-7
    12 sg:pub.10.1007/978-1-4899-3242-6
    13 sg:pub.10.1007/bf01908075
    14 sg:pub.10.1038/nature08872
    15 sg:pub.10.1038/nature10730
    16 sg:pub.10.1038/nature13166
    17 sg:pub.10.1038/nature13229
    18 sg:pub.10.1038/nbt.2450
    19 sg:pub.10.1186/1471-2105-11-422
    20 sg:pub.10.1186/1471-2105-12-372
    21 sg:pub.10.1186/1471-2105-12-449
    22 sg:pub.10.1186/1471-2105-12-480
    23 sg:pub.10.1186/1471-2105-14-262
    24 sg:pub.10.1186/gb-2004-5-10-r80
    25 sg:pub.10.1186/gb-2010-11-10-r106
    26 sg:pub.10.1186/gb-2010-11-2-106
    27 sg:pub.10.1186/gb-2013-14-4-r36
    28 sg:pub.10.1186/gb-2014-15-2-r29
    29 https://app.dimensions.ai/details/publication/pub.1032573094
    30 https://app.dimensions.ai/details/publication/pub.1109705877
    31 https://doi.org/10.1073/pnas.0914005107
    32 https://doi.org/10.1089/106652701300099074
    33 https://doi.org/10.1089/cmb.2009.0108
    34 https://doi.org/10.1093/bioinformatics/18.suppl_1.s105
    35 https://doi.org/10.1093/bioinformatics/18.suppl_1.s96
    36 https://doi.org/10.1093/bioinformatics/btk046
    37 https://doi.org/10.1093/bioinformatics/btm453
    38 https://doi.org/10.1093/bioinformatics/btp053
    39 https://doi.org/10.1093/bioinformatics/btp616
    40 https://doi.org/10.1093/bioinformatics/btr449
    41 https://doi.org/10.1093/bioinformatics/bts260
    42 https://doi.org/10.1093/bioinformatics/bts477
    43 https://doi.org/10.1093/bioinformatics/bts515
    44 https://doi.org/10.1093/bioinformatics/btt087
    45 https://doi.org/10.1093/bioinformatics/btt656
    46 https://doi.org/10.1093/bioinformatics/btu638
    47 https://doi.org/10.1093/biostatistics/kxm030
    48 https://doi.org/10.1093/biostatistics/kxr054
    49 https://doi.org/10.1093/biostatistics/kxs031
    50 https://doi.org/10.1093/biostatistics/kxs033
    51 https://doi.org/10.1093/nar/gks042
    52 https://doi.org/10.1093/nar/gkt1386
    53 https://doi.org/10.1093/nar/gku310
    54 https://doi.org/10.1101/gr.101204.109
    55 https://doi.org/10.1101/gr.133744.111
    56 https://doi.org/10.1101/gr.184501
    57 https://doi.org/10.1177/0962280211428386
    58 https://doi.org/10.1214/11-aoas493
    59 https://doi.org/10.1371/journal.pcbi.1003118
    60 https://doi.org/10.1371/journal.pcbi.1003531
    61 https://doi.org/10.1371/journal.pone.0017820
    62 https://doi.org/10.1534/g3.113.008565
    63 https://doi.org/10.18637/jss.v033.i01
    64 https://doi.org/10.2140/pjm.1966.16.1
    65 https://doi.org/10.2202/1544-6115.1027
    66 https://doi.org/10.2202/1544-6115.1637
    67 https://doi.org/10.2307/1268249
    68 https://doi.org/10.2307/2532465
    69 schema:datePublished 2014-12
    70 schema:datePublishedReg 2014-12-01
    71 schema:description In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html webcite.
    72 schema:genre research_article
    73 schema:inLanguage en
    74 schema:isAccessibleForFree true
    75 schema:isPartOf N34b6a0ec1d8c4af2875602f01cf0f36b
    76 N3abde8c0d07341fc91adb0103645d56f
    77 sg:journal.1023439
    78 schema:name Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    79 schema:pagination 550
    80 schema:productId N076d00091f594d48a8a0046f526fe498
    81 N3513106e4f374e73827e3f40f31832d8
    82 N7eb627c4640340a082958736df9bd5c4
    83 Nab58369ce69d4be5bd02ab0cf36f9182
    84 Ne87af8d9372045058c2af81f339d4f1a
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015222646
    86 https://doi.org/10.1186/s13059-014-0550-8
    87 schema:sdDatePublished 2019-04-11T13:10
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher Nf9a04de015b643ed960e14fdf969a3fc
    90 schema:url http://link.springer.com/10.1186%2Fs13059-014-0550-8
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N076d00091f594d48a8a0046f526fe498 schema:name nlm_unique_id
    95 schema:value 100960660
    96 rdf:type schema:PropertyValue
    97 N28544e6635534a57a2e7c758bafbd668 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Computational Biology
    99 rdf:type schema:DefinedTerm
    100 N34b6a0ec1d8c4af2875602f01cf0f36b schema:issueNumber 12
    101 rdf:type schema:PublicationIssue
    102 N3513106e4f374e73827e3f40f31832d8 schema:name doi
    103 schema:value 10.1186/s13059-014-0550-8
    104 rdf:type schema:PropertyValue
    105 N3abde8c0d07341fc91adb0103645d56f schema:volumeNumber 15
    106 rdf:type schema:PublicationVolume
    107 N5937ebbb3e2e46cbb910eacae127c2a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Sequence Analysis, RNA
    109 rdf:type schema:DefinedTerm
    110 N5dc258d5e3244a8fad412483bd10a6b1 rdf:first sg:person.0612232567.50
    111 rdf:rest Nd890979c32f446acb9ce993a0388850b
    112 N76c8ecbd5a8945bb8d413f7727c7bd33 rdf:first sg:person.0626036202.10
    113 rdf:rest rdf:nil
    114 N7eb627c4640340a082958736df9bd5c4 schema:name pubmed_id
    115 schema:value 25516281
    116 rdf:type schema:PropertyValue
    117 N8ca31e836f0e467191d7d869fee6fcb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Algorithms
    119 rdf:type schema:DefinedTerm
    120 N8fab191e077b4100a1b6b9bb67fb82bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name RNA
    122 rdf:type schema:DefinedTerm
    123 Nab58369ce69d4be5bd02ab0cf36f9182 schema:name readcube_id
    124 schema:value 4886aea8b9ce6f44b1294a8899f11d96644958fc233b397d12b62835caf6fbc6
    125 rdf:type schema:PropertyValue
    126 Nba581cdf78e64eb0b62e45fd13fcb8e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Models, Genetic
    128 rdf:type schema:DefinedTerm
    129 Nc06ae921091e41f7b15ff44b98fec3f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name High-Throughput Nucleotide Sequencing
    131 rdf:type schema:DefinedTerm
    132 Nd890979c32f446acb9ce993a0388850b rdf:first sg:person.0750614167.42
    133 rdf:rest N76c8ecbd5a8945bb8d413f7727c7bd33
    134 Ne87af8d9372045058c2af81f339d4f1a schema:name dimensions_id
    135 schema:value pub.1015222646
    136 rdf:type schema:PropertyValue
    137 Nea6a9ead7e9d45f7ab0fe71185e5687b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Software
    139 rdf:type schema:DefinedTerm
    140 Nf9a04de015b643ed960e14fdf969a3fc schema:name Springer Nature - SN SciGraph project
    141 rdf:type schema:Organization
    142 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Mathematical Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Statistics
    147 rdf:type schema:DefinedTerm
    148 sg:grant.2682540 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-014-0550-8
    149 rdf:type schema:MonetaryGrant
    150 sg:journal.1023439 schema:issn 1465-6906
    151 1474-760X
    152 schema:name Genome Biology
    153 rdf:type schema:Periodical
    154 sg:person.0612232567.50 schema:affiliation https://www.grid.ac/institutes/grid.419538.2
    155 schema:familyName Love
    156 schema:givenName Michael I
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612232567.50
    158 rdf:type schema:Person
    159 sg:person.0626036202.10 schema:affiliation https://www.grid.ac/institutes/grid.4709.a
    160 schema:familyName Anders
    161 schema:givenName Simon
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626036202.10
    163 rdf:type schema:Person
    164 sg:person.0750614167.42 schema:affiliation https://www.grid.ac/institutes/grid.4709.a
    165 schema:familyName Huber
    166 schema:givenName Wolfgang
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750614167.42
    168 rdf:type schema:Person
    169 sg:pub.10.1007/978-0-387-84858-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032573094
    170 https://doi.org/10.1007/978-0-387-84858-7
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/978-1-4899-3242-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705877
    173 https://doi.org/10.1007/978-1-4899-3242-6
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/bf01908075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022323983
    176 https://doi.org/10.1007/bf01908075
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nature08872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044630803
    179 https://doi.org/10.1038/nature08872
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nature10730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005577478
    182 https://doi.org/10.1038/nature10730
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nature13166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027499136
    185 https://doi.org/10.1038/nature13166
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nature13229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005514040
    188 https://doi.org/10.1038/nature13229
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nbt.2450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045152751
    191 https://doi.org/10.1038/nbt.2450
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1186/1471-2105-11-422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047456674
    194 https://doi.org/10.1186/1471-2105-11-422
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1186/1471-2105-12-372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050488595
    197 https://doi.org/10.1186/1471-2105-12-372
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1186/1471-2105-12-449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032929685
    200 https://doi.org/10.1186/1471-2105-12-449
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1186/1471-2105-12-480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048338371
    203 https://doi.org/10.1186/1471-2105-12-480
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1186/1471-2105-14-262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039605198
    206 https://doi.org/10.1186/1471-2105-14-262
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
    209 https://doi.org/10.1186/gb-2004-5-10-r80
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1186/gb-2010-11-10-r106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031289083
    212 https://doi.org/10.1186/gb-2010-11-10-r106
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1186/gb-2010-11-2-106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017440825
    215 https://doi.org/10.1186/gb-2010-11-2-106
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1186/gb-2013-14-4-r36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015459845
    218 https://doi.org/10.1186/gb-2013-14-4-r36
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1186/gb-2014-15-2-r29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045312009
    221 https://doi.org/10.1186/gb-2014-15-2-r29
    222 rdf:type schema:CreativeWork
    223 https://app.dimensions.ai/details/publication/pub.1032573094 schema:CreativeWork
    224 https://app.dimensions.ai/details/publication/pub.1109705877 schema:CreativeWork
    225 https://doi.org/10.1073/pnas.0914005107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011637541
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1089/106652701300099074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204871
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1089/cmb.2009.0108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245837
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1093/bioinformatics/18.suppl_1.s105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031487565
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1093/bioinformatics/18.suppl_1.s96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026029796
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1093/bioinformatics/btk046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013118634
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1093/bioinformatics/btm453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891129
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1093/bioinformatics/btp053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040037878
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1093/bioinformatics/btp616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247882
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1093/bioinformatics/btr449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023091405
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1093/bioinformatics/bts260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052151939
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1093/bioinformatics/bts477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020264836
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1093/bioinformatics/bts515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040091254
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1093/bioinformatics/btt087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052940103
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1093/bioinformatics/btt656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016247401
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1093/bioinformatics/btu638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053282140
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1093/biostatistics/kxm030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019122906
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1093/biostatistics/kxr054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044392328
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1093/biostatistics/kxs031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036970787
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1093/biostatistics/kxs033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034320451
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1093/nar/gks042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045678648
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1093/nar/gkt1386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045629641
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1093/nar/gku310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021413889
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1101/gr.101204.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026952720
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1101/gr.133744.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049314308
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1101/gr.184501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074949076
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1177/0962280211428386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019188958
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1214/11-aoas493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064392195
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1371/journal.pcbi.1003118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028412488
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1371/journal.pcbi.1003531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048123102
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1371/journal.pone.0017820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043651368
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1534/g3.113.008565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053323793
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.18637/jss.v033.i01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672496
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.2140/pjm.1966.16.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069063573
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.2202/1544-6115.1027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069289261
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.2202/1544-6115.1637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029060732
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.2307/1268249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069420677
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.2307/2532465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977876
    300 rdf:type schema:CreativeWork
    301 https://www.grid.ac/institutes/grid.419538.2 schema:alternateName Max Planck Institute for Molecular Genetics
    302 schema:name Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Department of Biostatistics, Harvard School of Public Health, 450 Brookline Avenue, 02215, Boston, MA, USA
    303 Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 63-7314195, Ihnestrasse, Berlin, Germany
    304 Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
    305 rdf:type schema:Organization
    306 https://www.grid.ac/institutes/grid.4709.a schema:alternateName European Molecular Biology Laboratory
    307 schema:name Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
    308 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...