Non-targeted transcription factors motifs are a systemic component of ChIP-seq datasets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-07

AUTHORS

Rebecca Worsley Hunt, Wyeth W Wasserman

ABSTRACT

BACKGROUND: The global effort to annotate the non-coding portion of the human genome relies heavily on chromatin immunoprecipitation data generated with high-throughput DNA sequencing (ChIP-seq). ChIP-seq is generally successful in detailing the segments of the genome bound by the immunoprecipitated transcription factor (TF), however almost all datasets contain genomic regions devoid of the canonical motif for the TF. It remains to be determined if these regions are related to the immunoprecipitated TF or whether, despite the use of controls, there is a portion of peaks that can be attributed to other causes. RESULTS: Analyses across hundreds of ChIP-seq datasets generated for sequence-specific DNA binding TFs reveal a small set of TF binding profiles for which predicted TF binding site motifs are repeatedly observed to be significantly enriched. Grouping related binding profiles, the set includes: CTCF-like, ETS-like, JUN-like, and THAP11 profiles. These frequently enriched profiles are termed 'zingers' to highlight their unanticipated enrichment in datasets for which they were not the targeted TF, and their potential impact on the interpretation and analysis of TF ChIP-seq data. Peaks with zinger motifs and lacking the ChIPped TF's motif are observed to compose up to 45% of a ChIP-seq dataset. There is substantial overlap of zinger motif containing regions between diverse TF datasets, suggesting a mechanism that is not TF-specific for the recovery of these regions. CONCLUSIONS: Based on the zinger regions proximity to cohesin-bound segments, a loading station model is proposed. Further study of zingers will advance understanding of gene regulation. More... »

PAGES

412

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13059-014-0412-4

DOI

http://dx.doi.org/10.1186/s13059-014-0412-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049984831

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25070602


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatin Immunoprecipitation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Annotation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada", 
            "Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Worsley Hunt", 
        "givenName": "Rebecca", 
        "id": "sg:person.012352046644.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012352046644.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada", 
            "Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wasserman", 
        "givenName": "Wyeth W", 
        "id": "sg:person.01164162122.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164162122.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature08514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001394004", 
          "https://doi.org/10.1038/nature08514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001394004", 
          "https://doi.org/10.1038/nature08514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.112.003202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002118368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.112.003202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002118368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003865873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-2-r24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004602724", 
          "https://doi.org/10.1186/gb-2007-8-2-r24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004695178", 
          "https://doi.org/10.1038/nature09380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004695178", 
          "https://doi.org/10.1038/nature09380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1018279108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007573614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2008.04.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011546580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011651858", 
          "https://doi.org/10.1038/nmeth.1371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2010.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012935976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.112656.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015402344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2012-13-9-r48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017450178", 
          "https://doi.org/10.1186/gb-2012-13-9-r48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018019104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019163615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni.2117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020405136", 
          "https://doi.org/10.1038/ni.2117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.136184.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021823681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022099792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029065430", 
          "https://doi.org/10.1038/nature11247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1186176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030603437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.1036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031633581", 
          "https://doi.org/10.1038/ng.1036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1316064110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034946777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.100479.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035106701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037453195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037530750", 
          "https://doi.org/10.1038/nmeth.1985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038459003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000084979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044099907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000084979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044099907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044820193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.136507.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045318398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045728553", 
          "https://doi.org/10.1038/nature06634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.8.1135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046379219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0006700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047083119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2013.07.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047377535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0905443106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048603640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0011471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049857332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051872966", 
          "https://doi.org/10.1186/1471-2164-15-472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbs038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052618674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052955805", 
          "https://doi.org/10.1038/nbt.1518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2008.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053363610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1003560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053443451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.188101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.188101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082424111", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-07", 
    "datePublishedReg": "2014-07-01", 
    "description": "BACKGROUND: The global effort to annotate the non-coding portion of the human genome relies heavily on chromatin immunoprecipitation data generated with high-throughput DNA sequencing (ChIP-seq). ChIP-seq is generally successful in detailing the segments of the genome bound by the immunoprecipitated transcription factor (TF), however almost all datasets contain genomic regions devoid of the canonical motif for the TF. It remains to be determined if these regions are related to the immunoprecipitated TF or whether, despite the use of controls, there is a portion of peaks that can be attributed to other causes.\nRESULTS: Analyses across hundreds of ChIP-seq datasets generated for sequence-specific DNA binding TFs reveal a small set of TF binding profiles for which predicted TF binding site motifs are repeatedly observed to be significantly enriched. Grouping related binding profiles, the set includes: CTCF-like, ETS-like, JUN-like, and THAP11 profiles. These frequently enriched profiles are termed 'zingers' to highlight their unanticipated enrichment in datasets for which they were not the targeted TF, and their potential impact on the interpretation and analysis of TF ChIP-seq data. Peaks with zinger motifs and lacking the ChIPped TF's motif are observed to compose up to 45% of a ChIP-seq dataset. There is substantial overlap of zinger motif containing regions between diverse TF datasets, suggesting a mechanism that is not TF-specific for the recovery of these regions.\nCONCLUSIONS: Based on the zinger regions proximity to cohesin-bound segments, a loading station model is proposed. Further study of zingers will advance understanding of gene regulation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13059-014-0412-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2520061", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023439", 
        "issn": [
          "1474-760X", 
          "1465-6906"
        ], 
        "name": "Genome Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Non-targeted transcription factors motifs are a systemic component of ChIP-seq datasets", 
    "pagination": "412", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ee1c741394a1d9bf9eef637dea1efaef6999e1a6618835db05fe07655223459b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25070602"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100960660"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13059-014-0412-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049984831"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13059-014-0412-4", 
      "https://app.dimensions.ai/details/publication/pub.1049984831"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88247_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs13059-014-0412-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13059-014-0412-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13059-014-0412-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13059-014-0412-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13059-014-0412-4'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      21 PREDICATES      81 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13059-014-0412-4 schema:about N383a13f7d2e246ac81421bb79dd3568d
2 N3b08bfe8352c4c1cba24691837f5d2a2
3 N52f834a4e69241cea640d13223f0a8db
4 N65004edee3f244d98b945bc29a172650
5 N69136ae5681c4560a68b84e4fe0556e3
6 N73f4997496ea4214bd5d90bc03ae94ec
7 N7a20a866a9c34a13a4a571db41289e56
8 N7a6ea01fb0054e159f42d90e01bc06a3
9 Na1fd1d7fd46f4cdfb09b267db55ec2f4
10 Nb3100f91364040d99ddf6c27915a5be2
11 Nc0a24a73b08042e8a40e3fca5f1f2b72
12 Ndb8315fdec104beabb89debb56403d19
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N65645f46be304099b851725bf9db7c94
16 schema:citation sg:pub.10.1038/nature06634
17 sg:pub.10.1038/nature08514
18 sg:pub.10.1038/nature09380
19 sg:pub.10.1038/nature11247
20 sg:pub.10.1038/nbt.1518
21 sg:pub.10.1038/ng.1036
22 sg:pub.10.1038/ni.2117
23 sg:pub.10.1038/nmeth.1371
24 sg:pub.10.1038/nmeth.1985
25 sg:pub.10.1186/1471-2164-15-472
26 sg:pub.10.1186/gb-2007-8-2-r24
27 sg:pub.10.1186/gb-2012-13-9-r48
28 https://app.dimensions.ai/details/publication/pub.1082424111
29 https://doi.org/10.1016/j.cell.2008.01.011
30 https://doi.org/10.1016/j.cell.2008.04.043
31 https://doi.org/10.1016/j.cell.2013.07.034
32 https://doi.org/10.1016/j.molcel.2010.05.004
33 https://doi.org/10.1073/pnas.0905443106
34 https://doi.org/10.1073/pnas.1018279108
35 https://doi.org/10.1073/pnas.1316064110
36 https://doi.org/10.1093/bib/bbs038
37 https://doi.org/10.1093/bioinformatics/18.8.1135
38 https://doi.org/10.1093/bioinformatics/btn305
39 https://doi.org/10.1093/nar/gkp950
40 https://doi.org/10.1093/nar/gkr425
41 https://doi.org/10.1093/nar/gkr443
42 https://doi.org/10.1093/nar/gks1172
43 https://doi.org/10.1093/nar/gks433
44 https://doi.org/10.1093/nar/gkt088
45 https://doi.org/10.1101/gr.100479.109
46 https://doi.org/10.1101/gr.112656.110
47 https://doi.org/10.1101/gr.136184.111
48 https://doi.org/10.1101/gr.136507.111
49 https://doi.org/10.1103/physrevlett.102.188101
50 https://doi.org/10.1126/science.1186176
51 https://doi.org/10.1159/000084979
52 https://doi.org/10.1371/journal.pgen.1003560
53 https://doi.org/10.1371/journal.pone.0006700
54 https://doi.org/10.1371/journal.pone.0011471
55 https://doi.org/10.1534/g3.112.003202
56 schema:datePublished 2014-07
57 schema:datePublishedReg 2014-07-01
58 schema:description BACKGROUND: The global effort to annotate the non-coding portion of the human genome relies heavily on chromatin immunoprecipitation data generated with high-throughput DNA sequencing (ChIP-seq). ChIP-seq is generally successful in detailing the segments of the genome bound by the immunoprecipitated transcription factor (TF), however almost all datasets contain genomic regions devoid of the canonical motif for the TF. It remains to be determined if these regions are related to the immunoprecipitated TF or whether, despite the use of controls, there is a portion of peaks that can be attributed to other causes. RESULTS: Analyses across hundreds of ChIP-seq datasets generated for sequence-specific DNA binding TFs reveal a small set of TF binding profiles for which predicted TF binding site motifs are repeatedly observed to be significantly enriched. Grouping related binding profiles, the set includes: CTCF-like, ETS-like, JUN-like, and THAP11 profiles. These frequently enriched profiles are termed 'zingers' to highlight their unanticipated enrichment in datasets for which they were not the targeted TF, and their potential impact on the interpretation and analysis of TF ChIP-seq data. Peaks with zinger motifs and lacking the ChIPped TF's motif are observed to compose up to 45% of a ChIP-seq dataset. There is substantial overlap of zinger motif containing regions between diverse TF datasets, suggesting a mechanism that is not TF-specific for the recovery of these regions. CONCLUSIONS: Based on the zinger regions proximity to cohesin-bound segments, a loading station model is proposed. Further study of zingers will advance understanding of gene regulation.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree true
62 schema:isPartOf N1df169d44119494b9a6a8de90900d07a
63 N3ea5fd2551bd47519d5965fe0ffc5cee
64 sg:journal.1023439
65 schema:name Non-targeted transcription factors motifs are a systemic component of ChIP-seq datasets
66 schema:pagination 412
67 schema:productId N5607748c928342989aa84aa4f5fe2dba
68 N634f0fb114da43918e4dfdec279cffdd
69 N905ae561f0b04bc2939c71e8174258af
70 Nbe03f0db61dc4178a0e1a0dfda3e68f4
71 Neabe43b8164547afa8c82abfcefbadf3
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049984831
73 https://doi.org/10.1186/s13059-014-0412-4
74 schema:sdDatePublished 2019-04-11T13:10
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Ndf1a425e08bc42f69d0bcf1fe2e8cec3
77 schema:url http://link.springer.com/10.1186%2Fs13059-014-0412-4
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N1df169d44119494b9a6a8de90900d07a schema:volumeNumber 15
82 rdf:type schema:PublicationVolume
83 N383a13f7d2e246ac81421bb79dd3568d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name DNA
85 rdf:type schema:DefinedTerm
86 N3b08bfe8352c4c1cba24691837f5d2a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Humans
88 rdf:type schema:DefinedTerm
89 N3ea5fd2551bd47519d5965fe0ffc5cee schema:issueNumber 7
90 rdf:type schema:PublicationIssue
91 N52f834a4e69241cea640d13223f0a8db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Mice
93 rdf:type schema:DefinedTerm
94 N5607748c928342989aa84aa4f5fe2dba schema:name readcube_id
95 schema:value ee1c741394a1d9bf9eef637dea1efaef6999e1a6618835db05fe07655223459b
96 rdf:type schema:PropertyValue
97 N634f0fb114da43918e4dfdec279cffdd schema:name nlm_unique_id
98 schema:value 100960660
99 rdf:type schema:PropertyValue
100 N65004edee3f244d98b945bc29a172650 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name High-Throughput Nucleotide Sequencing
102 rdf:type schema:DefinedTerm
103 N65645f46be304099b851725bf9db7c94 rdf:first sg:person.012352046644.38
104 rdf:rest Nd3694b9f2dd94928960423ed3777b096
105 N69136ae5681c4560a68b84e4fe0556e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Chromatin Immunoprecipitation
107 rdf:type schema:DefinedTerm
108 N73f4997496ea4214bd5d90bc03ae94ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Molecular Sequence Annotation
110 rdf:type schema:DefinedTerm
111 N7a20a866a9c34a13a4a571db41289e56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Models, Genetic
113 rdf:type schema:DefinedTerm
114 N7a6ea01fb0054e159f42d90e01bc06a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Sequence Analysis, DNA
116 rdf:type schema:DefinedTerm
117 N905ae561f0b04bc2939c71e8174258af schema:name pubmed_id
118 schema:value 25070602
119 rdf:type schema:PropertyValue
120 Na1fd1d7fd46f4cdfb09b267db55ec2f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Computational Biology
122 rdf:type schema:DefinedTerm
123 Nb3100f91364040d99ddf6c27915a5be2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Databases, Genetic
125 rdf:type schema:DefinedTerm
126 Nbe03f0db61dc4178a0e1a0dfda3e68f4 schema:name dimensions_id
127 schema:value pub.1049984831
128 rdf:type schema:PropertyValue
129 Nc0a24a73b08042e8a40e3fca5f1f2b72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Animals
131 rdf:type schema:DefinedTerm
132 Nd3694b9f2dd94928960423ed3777b096 rdf:first sg:person.01164162122.26
133 rdf:rest rdf:nil
134 Ndb8315fdec104beabb89debb56403d19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Transcription Factors
136 rdf:type schema:DefinedTerm
137 Ndf1a425e08bc42f69d0bcf1fe2e8cec3 schema:name Springer Nature - SN SciGraph project
138 rdf:type schema:Organization
139 Neabe43b8164547afa8c82abfcefbadf3 schema:name doi
140 schema:value 10.1186/s13059-014-0412-4
141 rdf:type schema:PropertyValue
142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
143 schema:name Biological Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
146 schema:name Genetics
147 rdf:type schema:DefinedTerm
148 sg:grant.2520061 http://pending.schema.org/fundedItem sg:pub.10.1186/s13059-014-0412-4
149 rdf:type schema:MonetaryGrant
150 sg:journal.1023439 schema:issn 1465-6906
151 1474-760X
152 schema:name Genome Biology
153 rdf:type schema:Periodical
154 sg:person.01164162122.26 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
155 schema:familyName Wasserman
156 schema:givenName Wyeth W
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164162122.26
158 rdf:type schema:Person
159 sg:person.012352046644.38 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
160 schema:familyName Worsley Hunt
161 schema:givenName Rebecca
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012352046644.38
163 rdf:type schema:Person
164 sg:pub.10.1038/nature06634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045728553
165 https://doi.org/10.1038/nature06634
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nature08514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001394004
168 https://doi.org/10.1038/nature08514
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nature09380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004695178
171 https://doi.org/10.1038/nature09380
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nature11247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065430
174 https://doi.org/10.1038/nature11247
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nbt.1518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052955805
177 https://doi.org/10.1038/nbt.1518
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/ng.1036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031633581
180 https://doi.org/10.1038/ng.1036
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/ni.2117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020405136
183 https://doi.org/10.1038/ni.2117
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nmeth.1371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011651858
186 https://doi.org/10.1038/nmeth.1371
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nmeth.1985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037530750
189 https://doi.org/10.1038/nmeth.1985
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/1471-2164-15-472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051872966
192 https://doi.org/10.1186/1471-2164-15-472
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/gb-2007-8-2-r24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004602724
195 https://doi.org/10.1186/gb-2007-8-2-r24
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/gb-2012-13-9-r48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017450178
198 https://doi.org/10.1186/gb-2012-13-9-r48
199 rdf:type schema:CreativeWork
200 https://app.dimensions.ai/details/publication/pub.1082424111 schema:CreativeWork
201 https://doi.org/10.1016/j.cell.2008.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053363610
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.cell.2008.04.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011546580
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.cell.2013.07.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047377535
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.molcel.2010.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012935976
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1073/pnas.0905443106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048603640
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1073/pnas.1018279108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007573614
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1073/pnas.1316064110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034946777
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/bib/bbs038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052618674
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/bioinformatics/18.8.1135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046379219
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/bioinformatics/btn305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022099792
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/nar/gkp950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037453195
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/nar/gkr425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018019104
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/nar/gkr443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038459003
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/nar/gks1172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003865873
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/nar/gks433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019163615
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/nar/gkt088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044820193
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1101/gr.100479.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035106701
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1101/gr.112656.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015402344
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1101/gr.136184.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021823681
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1101/gr.136507.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045318398
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1103/physrevlett.102.188101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755339
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1126/science.1186176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030603437
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1159/000084979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044099907
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1371/journal.pgen.1003560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053443451
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1371/journal.pone.0006700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047083119
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1371/journal.pone.0011471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049857332
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1534/g3.112.003202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002118368
254 rdf:type schema:CreativeWork
255 https://www.grid.ac/institutes/grid.17091.3e schema:alternateName University of British Columbia
256 schema:name Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada
257 Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
258 Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...