A subgroup of microRNAs defines PTEN-deficient, triple-negative breast cancer patients with poorest prognosis and alterations in RB1, MYC, and Wnt ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-31

AUTHORS

Dong-Yu Wang, Deena M. A. Gendoo, Yaacov Ben-David, James R. Woodgett, Eldad Zacksenhaus

ABSTRACT

BackgroundTriple-negative breast cancer (TNBC) represents a heterogeneous group of ER- and HER2-negative tumors with poor clinical outcome. We recently reported that Pten-loss cooperates with low expression of microRNA-145 to induce aggressive TNBC-like lesions in mice. To systematically identify microRNAs that cooperate with PTEN-loss to induce aggressive human BC, we screened for miRNAs whose expression correlated with PTEN mRNA levels and determined the prognostic power of each PTEN-miRNA pair alone and in combination with other miRs.MethodsPublically available data sets with mRNA, microRNA, genomics, and clinical outcome were interrogated to identify miRs that correlate with PTEN expression and predict poor clinical outcome. Alterations in genomic landscape and signaling pathways were identified in most aggressive TNBC subgroups. Connectivity mapping was used to predict response to therapy.ResultsIn TNBC, PTEN loss cooperated with reduced expression of hsa-miR-4324, hsa-miR-125b, hsa-miR-381, hsa-miR-145, and has-miR136, all previously implicated in metastasis, to predict poor prognosis. A subgroup of TNBC patients with PTEN-low and reduced expression of four or five of these miRs exhibited the worst clinical outcome relative to other TNBCs (hazard ratio (HR) = 3.91; P < 0.0001), and this was validated on an independent cohort (HR = 4.42; P = 0.0003). The PTEN-low/miR-low subgroup showed distinct oncogenic alterations as well as TP53 mutation, high RB1-loss signature and high MYC, PI3K, and β-catenin signaling. This lethal subgroup almost completely overlapped with TNBC patients selected on the basis of Pten-low and RB1 signature loss or β-catenin signaling-high. Connectivity mapping predicted response to inhibitors of the PI3K pathway.ConclusionsThis analysis identified microRNAs that define a subclass of highly lethal TNBCs that should be prioritized for aggressive therapy. More... »

PAGES

18

References to SciGraph publications

  • 2012-05-16. The landscape of cancer genes and mutational processes in breast cancer in NATURE
  • 2014-01-05. Discovery and saturation analysis of cancer genes across 21 tumour types in NATURE
  • 2007-05-10. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors in GENOME BIOLOGY
  • 2015-08-24. Genome-wide analysis of microRNA and mRNA expression signatures in cancer in ACTA PHARMACOLOGICA SINICA
  • 2014-04-02. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers in NATURE
  • 2012-06-10. Whole-genome analysis informs breast cancer response to aromatase inhibition in NATURE
  • 2016-05-02. Landscape of somatic mutations in 560 breast cancer whole-genome sequences in NATURE
  • 2012-04-04. The clonal and mutational evolution spectrum of primary triple-negative breast cancers in NATURE
  • 2016-01-19. Targeted Pten deletion plus p53-R270H mutation in mouse mammary epithelium induces aggressive claudin-low and basal-like breast cancer in BREAST CANCER RESEARCH
  • 2016-05-10. The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes in NATURE COMMUNICATIONS
  • 2016-01-28. The role of MicroRNAs in human cancer in SIGNAL TRANSDUCTION AND TARGETED THERAPY
  • 2017-08-02. Integrative clinical genomics of metastatic cancer in NATURE
  • 2015-07-30. miRWalk2.0: a comprehensive atlas of microRNA-target interactions in NATURE METHODS
  • 2012-09-23. Comprehensive molecular portraits of human breast tumours in NATURE
  • 2016-09-12. Wnt signaling in cancer in ONCOGENE
  • 2012-04-18. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups in NATURE
  • 2013-05-05. The shaping and functional consequences of the microRNA landscape in breast cancer in NATURE
  • 2006-11. MicroRNA signatures in human cancers in NATURE REVIEWS CANCER
  • 2014-09-08. Effect of glycogen synthase kinase-3 inactivation on mouse mammary gland development and oncogenesis in ONCOGENE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13058-019-1098-z

    DOI

    http://dx.doi.org/10.1186/s13058-019-1098-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111832587

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30704524


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers, Tumor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Datasets as Topic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Neoplastic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kaplan-Meier Estimate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MicroRNAs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "PTEN Phosphohydrolase", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Patient Selection", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Precision Medicine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proto-Oncogene Proteins c-myc", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retinoblastoma Binding Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Triple Negative Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ubiquitin-Protein Ligases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Wnt Signaling Pathway", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Toronto General Research Institute - University Health Network, 67 College Street, Rm. 407, M5G 2M1, Toronto, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.417184.f", 
              "name": [
                "Toronto General Research Institute - University Health Network, 67 College Street, Rm. 407, M5G 2M1, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Dong-Yu", 
            "id": "sg:person.0616357160.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616357160.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK", 
              "id": "http://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gendoo", 
            "givenName": "Deena M. A.", 
            "id": "sg:person.012253263237.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012253263237.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China", 
              "id": "http://www.grid.ac/institutes/grid.413458.f", 
              "name": [
                "The Key laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 550014, Guiyang, Guizhou, China", 
                "State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ben-David", 
            "givenName": "Yaacov", 
            "id": "sg:person.01211666037.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211666037.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada", 
              "id": "http://www.grid.ac/institutes/grid.250674.2", 
              "name": [
                "Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Woodgett", 
            "givenName": "James R.", 
            "id": "sg:person.0731233037.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731233037.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medicine, University of Toronto, Toronto, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Toronto General Research Institute - University Health Network, 67 College Street, Rm. 407, M5G 2M1, Toronto, Ontario, Canada", 
                "Department of Medicine, University of Toronto, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zacksenhaus", 
            "givenName": "Eldad", 
            "id": "sg:person.0774554325.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774554325.71"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature17676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052925987", 
              "https://doi.org/10.1038/nature17676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024942368", 
              "https://doi.org/10.1038/nature11412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/aps.2015.67", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044330437", 
              "https://doi.org/10.1038/aps.2015.67"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-015-0668-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035171367", 
              "https://doi.org/10.1186/s13058-015-0668-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014607335", 
              "https://doi.org/10.1038/nature10983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027457561", 
              "https://doi.org/10.1038/nature10933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000834660", 
              "https://doi.org/10.1038/nature11143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090945552", 
              "https://doi.org/10.1038/nature23306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027957670", 
              "https://doi.org/10.1038/nature12108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sigtrans.2015.4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010366310", 
              "https://doi.org/10.1038/sigtrans.2015.4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050455938", 
              "https://doi.org/10.1038/ncomms11479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034041413", 
              "https://doi.org/10.1038/nature11017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2014.279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014677033", 
              "https://doi.org/10.1038/onc.2014.279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2016.304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012925857", 
              "https://doi.org/10.1038/onc.2016.304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12912", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043554069", 
              "https://doi.org/10.1038/nature12912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2007-8-5-r76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018711468", 
              "https://doi.org/10.1186/gb-2007-8-5-r76"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036112860", 
              "https://doi.org/10.1038/nature13187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002586636", 
              "https://doi.org/10.1038/nmeth.3485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc1997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044012298", 
              "https://doi.org/10.1038/nrc1997"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-31", 
        "datePublishedReg": "2019-01-31", 
        "description": "BackgroundTriple-negative breast cancer (TNBC) represents a heterogeneous group of ER- and HER2-negative tumors with poor clinical outcome. We recently reported that Pten-loss cooperates with low expression of microRNA-145 to induce aggressive TNBC-like lesions in mice. To systematically identify microRNAs that cooperate with PTEN-loss to induce aggressive human BC, we screened for miRNAs whose expression correlated with PTEN mRNA levels and determined the prognostic power of each PTEN-miRNA pair alone and in combination with other miRs.MethodsPublically available data sets with mRNA, microRNA, genomics, and clinical outcome were interrogated to identify miRs that correlate with PTEN expression and predict poor clinical outcome. Alterations in genomic landscape and signaling pathways were identified in most aggressive TNBC subgroups. Connectivity mapping was used to predict response to therapy.ResultsIn TNBC, PTEN loss cooperated with reduced expression of hsa-miR-4324, hsa-miR-125b, hsa-miR-381, hsa-miR-145, and has-miR136, all previously implicated in metastasis, to predict poor prognosis. A subgroup of TNBC patients with PTEN-low and reduced expression of four or five of these miRs exhibited the worst clinical outcome relative to other TNBCs (hazard ratio (HR)\u2009=\u20093.91; P\u00a0<\u20090.0001), and this was validated on an independent cohort (HR\u2009=\u20094.42; P\u2009=\u20090.0003). The PTEN-low/miR-low subgroup showed distinct oncogenic alterations as well as TP53 mutation,\u00a0high RB1-loss signature and high MYC, PI3K, and \u03b2-catenin signaling. This lethal subgroup almost completely overlapped with TNBC patients selected on the basis of Pten-low and RB1 signature loss or \u03b2-catenin signaling-high. Connectivity mapping predicted response to inhibitors of the PI3K pathway.ConclusionsThis analysis identified microRNAs that define a subclass of highly lethal TNBCs that should be prioritized for aggressive therapy.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13058-019-1098-z", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1022375", 
            "issn": [
              "1465-5411", 
              "1465-542X"
            ], 
            "name": "Breast Cancer Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "poor clinical outcome", 
          "clinical outcomes", 
          "TNBC patients", 
          "poor prognosis", 
          "BackgroundTriple-negative breast cancer", 
          "triple-negative breast cancer patients", 
          "reduced expression", 
          "HER2-negative tumors", 
          "worse clinical outcomes", 
          "breast cancer patients", 
          "connectivity mapping", 
          "PI3K pathway", 
          "TNBC subgroup", 
          "\u03b2-catenin signaling", 
          "aggressive therapy", 
          "cancer patients", 
          "breast cancer", 
          "prognostic power", 
          "ConclusionsThis analysis", 
          "independent cohort", 
          "TP53 mutations", 
          "PTEN mRNA levels", 
          "microRNA-145", 
          "oncogenic alterations", 
          "PTEN loss", 
          "low expression", 
          "human BC", 
          "patients", 
          "TNBC", 
          "heterogeneous group", 
          "K pathway", 
          "high MYC", 
          "mRNA levels", 
          "PI3K", 
          "PTEN expression", 
          "\u03b2-catenin", 
          "outcomes", 
          "subgroups", 
          "prognosis", 
          "therapy", 
          "miR", 
          "genomic landscape", 
          "alterations", 
          "expression", 
          "microRNAs", 
          "MYC", 
          "metastasis", 
          "tumors", 
          "lesions", 
          "cohort", 
          "cancer", 
          "pathway", 
          "mice", 
          "response", 
          "inhibitors", 
          "Rb1", 
          "correlates", 
          "Wnt", 
          "signaling", 
          "mRNA", 
          "loss", 
          "group", 
          "mutations", 
          "miRNAs", 
          "ER", 
          "levels", 
          "subclasses", 
          "combination", 
          "cooperate", 
          "analysis", 
          "BC", 
          "basis", 
          "genomics", 
          "signatures", 
          "mapping", 
          "available data sets", 
          "defines", 
          "pairs", 
          "data sets", 
          "set", 
          "landscape", 
          "power"
        ], 
        "name": "A subgroup of microRNAs defines PTEN-deficient, triple-negative breast cancer patients with poorest prognosis and alterations in RB1, MYC, and Wnt signaling", 
        "pagination": "18", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111832587"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13058-019-1098-z"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30704524"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13058-019-1098-z", 
          "https://app.dimensions.ai/details/publication/pub.1111832587"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_811.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13058-019-1098-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13058-019-1098-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13058-019-1098-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13058-019-1098-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13058-019-1098-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    333 TRIPLES      21 PREDICATES      144 URIs      117 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13058-019-1098-z schema:about N2ba04cfaa4cb47b89264af477f26836c
    2 N3ae4327b05d7449eb8f7f413842a4ec6
    3 N4e1acc614f544bd78e14bf8b20dd3329
    4 N555fa8d8bb9a4604bafa81430039ba44
    5 N5704565b3d5e44278d31762d71dc0fcf
    6 N5873a3bac04e4069a09ec23b72a1c0ab
    7 N5f39598acc774e2c97bc4369749f7984
    8 N6973e51aa0c340c7a80374a51a8d9122
    9 N69c3f15304e6497f8e9cc4388f006395
    10 N75c33fb28053490aadc943b17a0094cd
    11 N889760374e7244de98e4c7112c80e791
    12 N90e770140a2a4412855b979a0a1f4a6a
    13 N9ab4cac46ea6457fbd328c7626ecf8f0
    14 N9b42713eda7d4dd792fd445fdf775dec
    15 N9f83fbfc0ba54ccc8934bc6bce119a3d
    16 Nb5757617262142eb9a054e8143ef04d0
    17 Nb946c6e4cb7c4ede8148dd71f69bf9ce
    18 Nf721f125edf24d95a6507dc543abc940
    19 anzsrc-for:11
    20 anzsrc-for:1112
    21 schema:author N86d65d457cec4600aa8610a0c99873f5
    22 schema:citation sg:pub.10.1038/aps.2015.67
    23 sg:pub.10.1038/nature10933
    24 sg:pub.10.1038/nature10983
    25 sg:pub.10.1038/nature11017
    26 sg:pub.10.1038/nature11143
    27 sg:pub.10.1038/nature11412
    28 sg:pub.10.1038/nature12108
    29 sg:pub.10.1038/nature12912
    30 sg:pub.10.1038/nature13187
    31 sg:pub.10.1038/nature17676
    32 sg:pub.10.1038/nature23306
    33 sg:pub.10.1038/ncomms11479
    34 sg:pub.10.1038/nmeth.3485
    35 sg:pub.10.1038/nrc1997
    36 sg:pub.10.1038/onc.2014.279
    37 sg:pub.10.1038/onc.2016.304
    38 sg:pub.10.1038/sigtrans.2015.4
    39 sg:pub.10.1186/gb-2007-8-5-r76
    40 sg:pub.10.1186/s13058-015-0668-y
    41 schema:datePublished 2019-01-31
    42 schema:datePublishedReg 2019-01-31
    43 schema:description BackgroundTriple-negative breast cancer (TNBC) represents a heterogeneous group of ER- and HER2-negative tumors with poor clinical outcome. We recently reported that Pten-loss cooperates with low expression of microRNA-145 to induce aggressive TNBC-like lesions in mice. To systematically identify microRNAs that cooperate with PTEN-loss to induce aggressive human BC, we screened for miRNAs whose expression correlated with PTEN mRNA levels and determined the prognostic power of each PTEN-miRNA pair alone and in combination with other miRs.MethodsPublically available data sets with mRNA, microRNA, genomics, and clinical outcome were interrogated to identify miRs that correlate with PTEN expression and predict poor clinical outcome. Alterations in genomic landscape and signaling pathways were identified in most aggressive TNBC subgroups. Connectivity mapping was used to predict response to therapy.ResultsIn TNBC, PTEN loss cooperated with reduced expression of hsa-miR-4324, hsa-miR-125b, hsa-miR-381, hsa-miR-145, and has-miR136, all previously implicated in metastasis, to predict poor prognosis. A subgroup of TNBC patients with PTEN-low and reduced expression of four or five of these miRs exhibited the worst clinical outcome relative to other TNBCs (hazard ratio (HR) = 3.91; P < 0.0001), and this was validated on an independent cohort (HR = 4.42; P = 0.0003). The PTEN-low/miR-low subgroup showed distinct oncogenic alterations as well as TP53 mutation, high RB1-loss signature and high MYC, PI3K, and β-catenin signaling. This lethal subgroup almost completely overlapped with TNBC patients selected on the basis of Pten-low and RB1 signature loss or β-catenin signaling-high. Connectivity mapping predicted response to inhibitors of the PI3K pathway.ConclusionsThis analysis identified microRNAs that define a subclass of highly lethal TNBCs that should be prioritized for aggressive therapy.
    44 schema:genre article
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N0203bcf701744c11878330785f035fde
    47 Nc77c45826b5848fca63610dafa00ebad
    48 sg:journal.1022375
    49 schema:keywords BC
    50 BackgroundTriple-negative breast cancer
    51 ConclusionsThis analysis
    52 ER
    53 HER2-negative tumors
    54 K pathway
    55 MYC
    56 PI3K
    57 PI3K pathway
    58 PTEN expression
    59 PTEN loss
    60 PTEN mRNA levels
    61 Rb1
    62 TNBC
    63 TNBC patients
    64 TNBC subgroup
    65 TP53 mutations
    66 Wnt
    67 aggressive therapy
    68 alterations
    69 analysis
    70 available data sets
    71 basis
    72 breast cancer
    73 breast cancer patients
    74 cancer
    75 cancer patients
    76 clinical outcomes
    77 cohort
    78 combination
    79 connectivity mapping
    80 cooperate
    81 correlates
    82 data sets
    83 defines
    84 expression
    85 genomic landscape
    86 genomics
    87 group
    88 heterogeneous group
    89 high MYC
    90 human BC
    91 independent cohort
    92 inhibitors
    93 landscape
    94 lesions
    95 levels
    96 loss
    97 low expression
    98 mRNA
    99 mRNA levels
    100 mapping
    101 metastasis
    102 miR
    103 miRNAs
    104 mice
    105 microRNA-145
    106 microRNAs
    107 mutations
    108 oncogenic alterations
    109 outcomes
    110 pairs
    111 pathway
    112 patients
    113 poor clinical outcome
    114 poor prognosis
    115 power
    116 prognosis
    117 prognostic power
    118 reduced expression
    119 response
    120 set
    121 signaling
    122 signatures
    123 subclasses
    124 subgroups
    125 therapy
    126 triple-negative breast cancer patients
    127 tumors
    128 worse clinical outcomes
    129 β-catenin
    130 β-catenin signaling
    131 schema:name A subgroup of microRNAs defines PTEN-deficient, triple-negative breast cancer patients with poorest prognosis and alterations in RB1, MYC, and Wnt signaling
    132 schema:pagination 18
    133 schema:productId N5637684464db44a7b4bf38edce694dcf
    134 Na739f29d224945cda3c98b13a8d6bc1c
    135 Nba28bc887fa844f494d575f6a800eb72
    136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111832587
    137 https://doi.org/10.1186/s13058-019-1098-z
    138 schema:sdDatePublished 2022-09-02T16:03
    139 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    140 schema:sdPublisher Nf8b282751f4e47878393808e8b3e82b5
    141 schema:url https://doi.org/10.1186/s13058-019-1098-z
    142 sgo:license sg:explorer/license/
    143 sgo:sdDataset articles
    144 rdf:type schema:ScholarlyArticle
    145 N0203bcf701744c11878330785f035fde schema:issueNumber 1
    146 rdf:type schema:PublicationIssue
    147 N2ba04cfaa4cb47b89264af477f26836c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Retinoblastoma Binding Proteins
    149 rdf:type schema:DefinedTerm
    150 N3ae4327b05d7449eb8f7f413842a4ec6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Humans
    152 rdf:type schema:DefinedTerm
    153 N47b30e8675c94dbb8ac6f337145cb6eb rdf:first sg:person.01211666037.43
    154 rdf:rest N9bc0dc5390d047ebb5386725329d5050
    155 N4e1acc614f544bd78e14bf8b20dd3329 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Biomarkers, Tumor
    157 rdf:type schema:DefinedTerm
    158 N555fa8d8bb9a4604bafa81430039ba44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Breast
    160 rdf:type schema:DefinedTerm
    161 N5637684464db44a7b4bf38edce694dcf schema:name dimensions_id
    162 schema:value pub.1111832587
    163 rdf:type schema:PropertyValue
    164 N5704565b3d5e44278d31762d71dc0fcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name PTEN Phosphohydrolase
    166 rdf:type schema:DefinedTerm
    167 N5873a3bac04e4069a09ec23b72a1c0ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Gene Expression Profiling
    169 rdf:type schema:DefinedTerm
    170 N5f39598acc774e2c97bc4369749f7984 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name MicroRNAs
    172 rdf:type schema:DefinedTerm
    173 N6973e51aa0c340c7a80374a51a8d9122 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Gene Expression Regulation, Neoplastic
    175 rdf:type schema:DefinedTerm
    176 N69c3f15304e6497f8e9cc4388f006395 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Patient Selection
    178 rdf:type schema:DefinedTerm
    179 N75c33fb28053490aadc943b17a0094cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Kaplan-Meier Estimate
    181 rdf:type schema:DefinedTerm
    182 N866cbf5bb57847f29e9d1d59c670cd4b rdf:first sg:person.012253263237.38
    183 rdf:rest N47b30e8675c94dbb8ac6f337145cb6eb
    184 N86d65d457cec4600aa8610a0c99873f5 rdf:first sg:person.0616357160.41
    185 rdf:rest N866cbf5bb57847f29e9d1d59c670cd4b
    186 N889760374e7244de98e4c7112c80e791 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Female
    188 rdf:type schema:DefinedTerm
    189 N90e770140a2a4412855b979a0a1f4a6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Wnt Signaling Pathway
    191 rdf:type schema:DefinedTerm
    192 N9ab4cac46ea6457fbd328c7626ecf8f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Datasets as Topic
    194 rdf:type schema:DefinedTerm
    195 N9b42713eda7d4dd792fd445fdf775dec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Triple Negative Breast Neoplasms
    197 rdf:type schema:DefinedTerm
    198 N9bc0dc5390d047ebb5386725329d5050 rdf:first sg:person.0731233037.88
    199 rdf:rest Na19a41191dd34607ae8fd4f4f725cafb
    200 N9f83fbfc0ba54ccc8934bc6bce119a3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Prognosis
    202 rdf:type schema:DefinedTerm
    203 Na19a41191dd34607ae8fd4f4f725cafb rdf:first sg:person.0774554325.71
    204 rdf:rest rdf:nil
    205 Na739f29d224945cda3c98b13a8d6bc1c schema:name pubmed_id
    206 schema:value 30704524
    207 rdf:type schema:PropertyValue
    208 Nb5757617262142eb9a054e8143ef04d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Proto-Oncogene Proteins c-myc
    210 rdf:type schema:DefinedTerm
    211 Nb946c6e4cb7c4ede8148dd71f69bf9ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Precision Medicine
    213 rdf:type schema:DefinedTerm
    214 Nba28bc887fa844f494d575f6a800eb72 schema:name doi
    215 schema:value 10.1186/s13058-019-1098-z
    216 rdf:type schema:PropertyValue
    217 Nc77c45826b5848fca63610dafa00ebad schema:volumeNumber 21
    218 rdf:type schema:PublicationVolume
    219 Nf721f125edf24d95a6507dc543abc940 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    220 schema:name Ubiquitin-Protein Ligases
    221 rdf:type schema:DefinedTerm
    222 Nf8b282751f4e47878393808e8b3e82b5 schema:name Springer Nature - SN SciGraph project
    223 rdf:type schema:Organization
    224 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    225 schema:name Medical and Health Sciences
    226 rdf:type schema:DefinedTerm
    227 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    228 schema:name Oncology and Carcinogenesis
    229 rdf:type schema:DefinedTerm
    230 sg:journal.1022375 schema:issn 1465-5411
    231 1465-542X
    232 schema:name Breast Cancer Research
    233 schema:publisher Springer Nature
    234 rdf:type schema:Periodical
    235 sg:person.01211666037.43 schema:affiliation grid-institutes:grid.413458.f
    236 schema:familyName Ben-David
    237 schema:givenName Yaacov
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211666037.43
    239 rdf:type schema:Person
    240 sg:person.012253263237.38 schema:affiliation grid-institutes:grid.6572.6
    241 schema:familyName Gendoo
    242 schema:givenName Deena M. A.
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012253263237.38
    244 rdf:type schema:Person
    245 sg:person.0616357160.41 schema:affiliation grid-institutes:grid.417184.f
    246 schema:familyName Wang
    247 schema:givenName Dong-Yu
    248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616357160.41
    249 rdf:type schema:Person
    250 sg:person.0731233037.88 schema:affiliation grid-institutes:grid.250674.2
    251 schema:familyName Woodgett
    252 schema:givenName James R.
    253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731233037.88
    254 rdf:type schema:Person
    255 sg:person.0774554325.71 schema:affiliation grid-institutes:grid.17063.33
    256 schema:familyName Zacksenhaus
    257 schema:givenName Eldad
    258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774554325.71
    259 rdf:type schema:Person
    260 sg:pub.10.1038/aps.2015.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044330437
    261 https://doi.org/10.1038/aps.2015.67
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/nature10933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027457561
    264 https://doi.org/10.1038/nature10933
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/nature10983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014607335
    267 https://doi.org/10.1038/nature10983
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/nature11017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034041413
    270 https://doi.org/10.1038/nature11017
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/nature11143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000834660
    273 https://doi.org/10.1038/nature11143
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/nature11412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024942368
    276 https://doi.org/10.1038/nature11412
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/nature12108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027957670
    279 https://doi.org/10.1038/nature12108
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/nature12912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043554069
    282 https://doi.org/10.1038/nature12912
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/nature13187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036112860
    285 https://doi.org/10.1038/nature13187
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/nature17676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925987
    288 https://doi.org/10.1038/nature17676
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/nature23306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090945552
    291 https://doi.org/10.1038/nature23306
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/ncomms11479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050455938
    294 https://doi.org/10.1038/ncomms11479
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/nmeth.3485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002586636
    297 https://doi.org/10.1038/nmeth.3485
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/nrc1997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044012298
    300 https://doi.org/10.1038/nrc1997
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/onc.2014.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014677033
    303 https://doi.org/10.1038/onc.2014.279
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/onc.2016.304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012925857
    306 https://doi.org/10.1038/onc.2016.304
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/sigtrans.2015.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010366310
    309 https://doi.org/10.1038/sigtrans.2015.4
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1186/gb-2007-8-5-r76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018711468
    312 https://doi.org/10.1186/gb-2007-8-5-r76
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1186/s13058-015-0668-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035171367
    315 https://doi.org/10.1186/s13058-015-0668-y
    316 rdf:type schema:CreativeWork
    317 grid-institutes:grid.17063.33 schema:alternateName Department of Medicine, University of Toronto, Toronto, Ontario, Canada
    318 schema:name Department of Medicine, University of Toronto, Toronto, Ontario, Canada
    319 Toronto General Research Institute - University Health Network, 67 College Street, Rm. 407, M5G 2M1, Toronto, Ontario, Canada
    320 rdf:type schema:Organization
    321 grid-institutes:grid.250674.2 schema:alternateName Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada
    322 schema:name Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada
    323 rdf:type schema:Organization
    324 grid-institutes:grid.413458.f schema:alternateName State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China
    325 schema:name State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China
    326 The Key laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 550014, Guiyang, Guizhou, China
    327 rdf:type schema:Organization
    328 grid-institutes:grid.417184.f schema:alternateName Toronto General Research Institute - University Health Network, 67 College Street, Rm. 407, M5G 2M1, Toronto, Ontario, Canada
    329 schema:name Toronto General Research Institute - University Health Network, 67 College Street, Rm. 407, M5G 2M1, Toronto, Ontario, Canada
    330 rdf:type schema:Organization
    331 grid-institutes:grid.6572.6 schema:alternateName Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
    332 schema:name Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
    333 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...