Common genetic variation and novel loci associated with volumetric mammographic density View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Judith S. Brand, Keith Humphreys, Jingmei Li, Robert Karlsson, Per Hall, Kamila Czene

ABSTRACT

BACKGROUND: Mammographic density (MD) is a strong and heritable intermediate phenotype of breast cancer, but much of its genetic variation remains unexplained. METHODS: We conducted a genetic association study of volumetric MD in a Swedish mammography screening cohort (n = 9498) to identify novel MD loci. Associations with volumetric MD phenotypes (percent dense volume, absolute dense volume, and absolute nondense volume) were estimated using linear regression adjusting for age, body mass index, menopausal status, and six principal components. We also estimated the proportion of MD variance explained by additive contributions from single-nucleotide polymorphisms (SNP-based heritability [h2SNP]) in 4948 participants of the cohort. RESULTS: In total, three novel MD loci were identified (at P < 5 × 10- 8): one for percent dense volume (HABP2) and two for the absolute dense volume (INHBB, LINC01483). INHBB is an established locus for ER-negative breast cancer, and HABP2 and LINC01483 represent putative new breast cancer susceptibility loci, because both loci were associated with breast cancer in available meta-analysis data including 122,977 breast cancer cases and 105,974 control subjects (P < 0.05). h2SNP (SE) estimates for percent dense, absolute dense, and nondense volume were 0.29 (0.07), 0.31 (0.07), and 0.25 (0.07), respectively. Corresponding ratios of h2SNP to previously observed narrow-sense h2 estimates in the same cohort were 0.46, 0.72, and 0.41, respectively. CONCLUSIONS: These findings provide new insights into the genetic basis of MD and biological mechanisms linking MD to breast cancer risk. Apart from identifying three novel loci, we demonstrate that at least 25% of the MD variance is explained by common genetic variation with h2SNP/h2 ratios varying between dense and nondense MD components. More... »

PAGES

30

References to SciGraph publications

  • 2017-11. Association analysis identifies 65 new breast cancer risk loci in NATURE
  • 2012-08. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing in NATURE GENETICS
  • 2012-11. An integrated map of genetic variation from 1,092 human genomes in NATURE
  • 2011-10. Nondense mammographic area and risk of breast cancer in BREAST CANCER RESEARCH
  • 2015-12. Second-generation PLINK: rising to the challenge of larger and richer datasets in GIGASCIENCE
  • 2010-11. The G12 family proteins upregulate matrix metalloproteinase-2 via p53 leading to human breast cell invasion in BREAST CANCER RESEARCH AND TREATMENT
  • 2015-10. The reciprocal association between mammographic breast density, hyaluronan synthesis and patient outcome in BREAST CANCER RESEARCH AND TREATMENT
  • 2014-10. Digital mammographic density and breast cancer risk: a case–control study of six alternative density assessment methods in BREAST CANCER RESEARCH
  • 2015-12. Identification of two novel mammographic density loci at 6Q25.1 in BREAST CANCER RESEARCH
  • 2012-09. An integrated encyclopedia of DNA elements in the human genome in NATURE
  • 2010. Robust Breast Composition Measurement - VolparaTM in DIGITAL MAMMOGRAPHY
  • 2014-12. Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk in NATURE COMMUNICATIONS
  • 2013. Genome-Wide Complex Trait Analysis (GCTA): Methods, Data Analyses, and Interpretations in GENOME-WIDE ASSOCIATION STUDIES AND GENOMIC PREDICTION
  • 2011-03. Common variants in ZNF365 are associated with both mammographic density and breast cancer risk in NATURE GENETICS
  • 2017-12. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer in NATURE GENETICS
  • 2018-12. A comparison of five methods of measuring mammographic density: a case-control study in BREAST CANCER RESEARCH
  • 2012-12. Genetic variants associated with breast size also influence breast cancer risk in BMC MEDICAL GENETICS
  • 2007-07. A new multipoint method for genome-wide association studies by imputation of genotypes in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13058-018-0954-6

    DOI

    http://dx.doi.org/10.1186/s13058-018-0954-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103409362

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29665850


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Density", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Mutational Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Estrogen Receptor alpha", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Association Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Predisposition to Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Inhibin-beta Subunits", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mammography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Single Nucleotide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Serine Endopeptidases", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Karolinska Institute", 
              "id": "https://www.grid.ac/institutes/grid.4714.6", 
              "name": [
                "Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels V\u00e4g 12A, 171 77, Stockholm, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brand", 
            "givenName": "Judith S.", 
            "id": "sg:person.01203377330.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203377330.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Karolinska Institute", 
              "id": "https://www.grid.ac/institutes/grid.4714.6", 
              "name": [
                "Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels V\u00e4g 12A, 171 77, Stockholm, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Humphreys", 
            "givenName": "Keith", 
            "id": "sg:person.0624052041.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624052041.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Genome Institute of Singapore", 
              "id": "https://www.grid.ac/institutes/grid.418377.e", 
              "name": [
                "Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels V\u00e4g 12A, 171 77, Stockholm, Sweden", 
                "Human Genetics, Genome Institute of Singapore, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Jingmei", 
            "id": "sg:person.013760043547.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013760043547.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Karolinska Institute", 
              "id": "https://www.grid.ac/institutes/grid.4714.6", 
              "name": [
                "Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels V\u00e4g 12A, 171 77, Stockholm, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karlsson", 
            "givenName": "Robert", 
            "id": "sg:person.0744020556.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744020556.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Karolinska Institute", 
              "id": "https://www.grid.ac/institutes/grid.4714.6", 
              "name": [
                "Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels V\u00e4g 12A, 171 77, Stockholm, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hall", 
            "givenName": "Per", 
            "id": "sg:person.01010701573.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010701573.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Karolinska Institute", 
              "id": "https://www.grid.ac/institutes/grid.4714.6", 
              "name": [
                "Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels V\u00e4g 12A, 171 77, Stockholm, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Czene", 
            "givenName": "Kamila", 
            "id": "sg:person.013117404317.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117404317.63"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature11632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000661742", 
              "https://doi.org/10.1038/nature11632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-014-0439-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003025389", 
              "https://doi.org/10.1186/s13058-014-0439-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-014-0439-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003025389", 
              "https://doi.org/10.1186/s13058-014-0439-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-014-0439-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003025389", 
              "https://doi.org/10.1186/s13058-014-0439-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2350-13-53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003305792", 
              "https://doi.org/10.1186/1471-2350-13-53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jnci/dju334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008103180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jnci/dju334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008103180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2010.11.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009497006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0085952", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012440900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015726036", 
              "https://doi.org/10.1038/ncomms6303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015726036", 
              "https://doi.org/10.1038/ncomms6303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jnci/dju078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018039237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.2910460309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024301813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-009-0697-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025205313", 
              "https://doi.org/10.1007/s10549-009-0697-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-009-0697-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025205313", 
              "https://doi.org/10.1007/s10549-009-0697-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbrc.2006.04.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025856840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-015-3567-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025861492", 
              "https://doi.org/10.1007/s10549-015-3567-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-015-3567-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025861492", 
              "https://doi.org/10.1007/s10549-015-3567-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-62703-447-0_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026993766", 
              "https://doi.org/10.1007/978-1-62703-447-0_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr3041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028231393", 
              "https://doi.org/10.1186/bcr3041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028836856", 
              "https://doi.org/10.1038/ng.760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-015-0591-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028921540", 
              "https://doi.org/10.1186/s13058-015-0591-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-015-0591-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028921540", 
              "https://doi.org/10.1186/s13058-015-0591-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-015-0591-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028921540", 
              "https://doi.org/10.1186/s13058-015-0591-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029065430", 
              "https://doi.org/10.1038/nature11247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029723318", 
              "https://doi.org/10.1038/ng.2354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1055-9965.epi-08-0480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030901623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1055-9965.epi-13-1219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031019946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1055-9965.epi-13-1219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031019946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.137323.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034124863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/dds158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035890712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036490983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/jmedgenet-2013-101708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037052698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13742-015-0047-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037894462", 
              "https://doi.org/10.1186/s13742-015-0047-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.29975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042643793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-14-2012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043172665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-14-2012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043172665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13666-5_46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043583356", 
              "https://doi.org/10.1007/978-3-642-13666-5_46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13666-5_46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043583356", 
              "https://doi.org/10.1007/978-3-642-13666-5_46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.29299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044570216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.29299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044570216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046979341", 
              "https://doi.org/10.1038/ng2088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047276303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0110690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047410241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1055-9965.epi-10-0703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048852802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1055-9965.epi-06-0034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049006559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0002-9440(10)64757-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050042470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-06-1461", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050661777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1470-2045(05)70390-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052464959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052960118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/39/10/008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059022537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/57/16/5155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059029337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ije/dyw357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059676914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2005.862741", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1055-9965.epi-16-0106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063224354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083118359", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092349555", 
              "https://doi.org/10.1038/nature24284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092349555", 
              "https://doi.org/10.1038/nature24284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092350084", 
              "https://doi.org/10.1038/ng.3785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092350084", 
              "https://doi.org/10.1038/ng.3785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-018-0932-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100823773", 
              "https://doi.org/10.1186/s13058-018-0932-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-018-0932-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100823773", 
              "https://doi.org/10.1186/s13058-018-0932-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "BACKGROUND: Mammographic density (MD) is a strong and heritable intermediate phenotype of breast cancer, but much of its genetic variation remains unexplained.\nMETHODS: We conducted a genetic association study of volumetric MD in a Swedish mammography screening cohort (n = 9498) to identify novel MD loci. Associations with volumetric MD phenotypes (percent dense volume, absolute dense volume, and absolute nondense volume) were estimated using linear regression adjusting for age, body mass index, menopausal status, and six principal components. We also estimated the proportion of MD variance explained by additive contributions from single-nucleotide polymorphisms (SNP-based heritability [h2SNP]) in 4948 participants of the cohort.\nRESULTS: In total, three novel MD loci were identified (at P < 5 \u00d7 10-\u20098): one for percent dense volume (HABP2) and two for the absolute dense volume (INHBB, LINC01483). INHBB is an established locus for ER-negative breast cancer, and HABP2 and LINC01483 represent putative new breast cancer susceptibility loci, because both loci were associated with breast cancer in\u00a0available meta-analysis\u00a0data including 122,977\u00a0breast cancer cases and 105,974 control\u00a0subjects\u00a0(P < 0.05). h2SNP (SE) estimates for percent dense, absolute dense, and nondense volume were 0.29 (0.07), 0.31 (0.07), and 0.25 (0.07), respectively. Corresponding ratios of h2SNP to previously observed narrow-sense h2 estimates in the same cohort were 0.46, 0.72, and 0.41, respectively.\nCONCLUSIONS: These findings provide new insights into the genetic basis of MD and biological mechanisms linking MD to breast cancer risk. Apart from identifying three novel loci, we demonstrate that at least 25% of the MD variance is explained by common genetic\u00a0variation with h2SNP/h2 ratios varying between dense and nondense MD components.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13058-018-0954-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2695966", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3938745", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5135789", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5143107", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5140627", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3772173", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3938779", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1022375", 
            "issn": [
              "1465-5411", 
              "1465-542X"
            ], 
            "name": "Breast Cancer Research", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "Common genetic variation and novel loci associated with volumetric mammographic density", 
        "pagination": "30", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7b1c7d6a4408b904ac8c5626bd96aa9187a2555ce961c51463921b37005cc3d3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29665850"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100927353"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13058-018-0954-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103409362"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13058-018-0954-6", 
          "https://app.dimensions.ai/details/publication/pub.1103409362"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72850_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13058-018-0954-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13058-018-0954-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13058-018-0954-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13058-018-0954-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13058-018-0954-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    344 TRIPLES      21 PREDICATES      92 URIs      37 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13058-018-0954-6 schema:about N14f77d5ddf844eaab0abf136957e6e37
    2 N1cc23d51e32b44f6abdb415ef6eeb9c4
    3 N1e90773c38954608b7352844f12be53c
    4 N5993fee7403341938d1c01696de28ffd
    5 N615a26123b144668b3e95c32d116a932
    6 N6e243f6cdb0642c7840a6f81b6f0fa05
    7 N7b3616ab94e6442f9f3b4373ed54de40
    8 N80e6d0ac0d3c45a18e6a4e81867082ac
    9 N8eb2c4703c3f41209646239de0c7155c
    10 Na2f6fd3fedab4194bde7a10161f63397
    11 Na9b47ba502ee4c00895580fba57950fd
    12 Nbe3b85eae2374bd9b6a4196e0685c7a2
    13 Nc9572555be4c45e9850baa4a6376a3d6
    14 Ncddcecf976db45288f056f715ea6d0e6
    15 Nd9b5f4f53c2e48ed996456f29905175f
    16 Nf8cec13a3b024ea8b9318be6d9194944
    17 anzsrc-for:06
    18 anzsrc-for:0604
    19 schema:author N7f9343c41e0f494798c57387d3910938
    20 schema:citation sg:pub.10.1007/978-1-62703-447-0_9
    21 sg:pub.10.1007/978-3-642-13666-5_46
    22 sg:pub.10.1007/s10549-009-0697-2
    23 sg:pub.10.1007/s10549-015-3567-0
    24 sg:pub.10.1038/nature11247
    25 sg:pub.10.1038/nature11632
    26 sg:pub.10.1038/nature24284
    27 sg:pub.10.1038/ncomms6303
    28 sg:pub.10.1038/ng.2354
    29 sg:pub.10.1038/ng.3785
    30 sg:pub.10.1038/ng.760
    31 sg:pub.10.1038/ng2088
    32 sg:pub.10.1186/1471-2350-13-53
    33 sg:pub.10.1186/bcr3041
    34 sg:pub.10.1186/s13058-014-0439-1
    35 sg:pub.10.1186/s13058-015-0591-2
    36 sg:pub.10.1186/s13058-018-0932-z
    37 sg:pub.10.1186/s13742-015-0047-8
    38 https://app.dimensions.ai/details/publication/pub.1083118359
    39 https://doi.org/10.1002/ijc.2910460309
    40 https://doi.org/10.1002/ijc.29299
    41 https://doi.org/10.1002/ijc.29975
    42 https://doi.org/10.1016/j.ajhg.2010.11.011
    43 https://doi.org/10.1016/j.bbrc.2006.04.030
    44 https://doi.org/10.1016/s0002-9440(10)64757-8
    45 https://doi.org/10.1016/s1470-2045(05)70390-9
    46 https://doi.org/10.1088/0031-9155/39/10/008
    47 https://doi.org/10.1088/0031-9155/57/16/5155
    48 https://doi.org/10.1093/bioinformatics/btq340
    49 https://doi.org/10.1093/bioinformatics/btq419
    50 https://doi.org/10.1093/hmg/dds158
    51 https://doi.org/10.1093/ije/dyw357
    52 https://doi.org/10.1093/jnci/dju078
    53 https://doi.org/10.1093/jnci/dju334
    54 https://doi.org/10.1093/nar/gkr917
    55 https://doi.org/10.1101/gr.137323.112
    56 https://doi.org/10.1109/tmi.2005.862741
    57 https://doi.org/10.1136/jmedgenet-2013-101708
    58 https://doi.org/10.1158/0008-5472.can-06-1461
    59 https://doi.org/10.1158/0008-5472.can-14-2012
    60 https://doi.org/10.1158/1055-9965.epi-06-0034
    61 https://doi.org/10.1158/1055-9965.epi-08-0480
    62 https://doi.org/10.1158/1055-9965.epi-10-0703
    63 https://doi.org/10.1158/1055-9965.epi-13-1219
    64 https://doi.org/10.1158/1055-9965.epi-16-0106
    65 https://doi.org/10.1371/journal.pone.0085952
    66 https://doi.org/10.1371/journal.pone.0110690
    67 schema:datePublished 2018-12
    68 schema:datePublishedReg 2018-12-01
    69 schema:description BACKGROUND: Mammographic density (MD) is a strong and heritable intermediate phenotype of breast cancer, but much of its genetic variation remains unexplained. METHODS: We conducted a genetic association study of volumetric MD in a Swedish mammography screening cohort (n = 9498) to identify novel MD loci. Associations with volumetric MD phenotypes (percent dense volume, absolute dense volume, and absolute nondense volume) were estimated using linear regression adjusting for age, body mass index, menopausal status, and six principal components. We also estimated the proportion of MD variance explained by additive contributions from single-nucleotide polymorphisms (SNP-based heritability [h2SNP]) in 4948 participants of the cohort. RESULTS: In total, three novel MD loci were identified (at P < 5 × 10- 8): one for percent dense volume (HABP2) and two for the absolute dense volume (INHBB, LINC01483). INHBB is an established locus for ER-negative breast cancer, and HABP2 and LINC01483 represent putative new breast cancer susceptibility loci, because both loci were associated with breast cancer in available meta-analysis data including 122,977 breast cancer cases and 105,974 control subjects (P < 0.05). h2SNP (SE) estimates for percent dense, absolute dense, and nondense volume were 0.29 (0.07), 0.31 (0.07), and 0.25 (0.07), respectively. Corresponding ratios of h2SNP to previously observed narrow-sense h2 estimates in the same cohort were 0.46, 0.72, and 0.41, respectively. CONCLUSIONS: These findings provide new insights into the genetic basis of MD and biological mechanisms linking MD to breast cancer risk. Apart from identifying three novel loci, we demonstrate that at least 25% of the MD variance is explained by common genetic variation with h2SNP/h2 ratios varying between dense and nondense MD components.
    70 schema:genre research_article
    71 schema:inLanguage en
    72 schema:isAccessibleForFree true
    73 schema:isPartOf N0dbb419be6b2430aa395231d32e98fdd
    74 N5172d26fe7874d37abc237157c72c1d2
    75 sg:journal.1022375
    76 schema:name Common genetic variation and novel loci associated with volumetric mammographic density
    77 schema:pagination 30
    78 schema:productId N25f947d73f794650b856052073d0e3b1
    79 N3ee6f5a01898451d89e68e03a665185f
    80 N8dfce14501144574a082b1fd78361957
    81 N9c47f7664a734648ac05a72c702b9db8
    82 Nc29d66eda03e4947926248b9941f8044
    83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103409362
    84 https://doi.org/10.1186/s13058-018-0954-6
    85 schema:sdDatePublished 2019-04-11T12:53
    86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    87 schema:sdPublisher N174831dd61f2401f9e8a52552dc7aa5b
    88 schema:url https://link.springer.com/10.1186%2Fs13058-018-0954-6
    89 sgo:license sg:explorer/license/
    90 sgo:sdDataset articles
    91 rdf:type schema:ScholarlyArticle
    92 N0dbb419be6b2430aa395231d32e98fdd schema:issueNumber 1
    93 rdf:type schema:PublicationIssue
    94 N14f77d5ddf844eaab0abf136957e6e37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Breast
    96 rdf:type schema:DefinedTerm
    97 N174831dd61f2401f9e8a52552dc7aa5b schema:name Springer Nature - SN SciGraph project
    98 rdf:type schema:Organization
    99 N1c81ec27513d4fd98ecfe0ca91d0e6f4 rdf:first sg:person.013117404317.63
    100 rdf:rest rdf:nil
    101 N1cc23d51e32b44f6abdb415ef6eeb9c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Polymorphism, Single Nucleotide
    103 rdf:type schema:DefinedTerm
    104 N1e90773c38954608b7352844f12be53c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Serine Endopeptidases
    106 rdf:type schema:DefinedTerm
    107 N25f947d73f794650b856052073d0e3b1 schema:name readcube_id
    108 schema:value 7b1c7d6a4408b904ac8c5626bd96aa9187a2555ce961c51463921b37005cc3d3
    109 rdf:type schema:PropertyValue
    110 N3ee6f5a01898451d89e68e03a665185f schema:name dimensions_id
    111 schema:value pub.1103409362
    112 rdf:type schema:PropertyValue
    113 N473ca12a9cd14180b938b016835c7c52 rdf:first sg:person.0744020556.20
    114 rdf:rest Ndf07c8bb7bbb4534b6bb733faac06b1b
    115 N5172d26fe7874d37abc237157c72c1d2 schema:volumeNumber 20
    116 rdf:type schema:PublicationVolume
    117 N5993fee7403341938d1c01696de28ffd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Genetic Association Studies
    119 rdf:type schema:DefinedTerm
    120 N615a26123b144668b3e95c32d116a932 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Estrogen Receptor alpha
    122 rdf:type schema:DefinedTerm
    123 N6e243f6cdb0642c7840a6f81b6f0fa05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Adult
    125 rdf:type schema:DefinedTerm
    126 N7b3616ab94e6442f9f3b4373ed54de40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Breast Neoplasms
    128 rdf:type schema:DefinedTerm
    129 N7f9343c41e0f494798c57387d3910938 rdf:first sg:person.01203377330.66
    130 rdf:rest Ne40bfd9552924a0386446b60dffd0100
    131 N80e6d0ac0d3c45a18e6a4e81867082ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Breast Density
    133 rdf:type schema:DefinedTerm
    134 N8dfce14501144574a082b1fd78361957 schema:name nlm_unique_id
    135 schema:value 100927353
    136 rdf:type schema:PropertyValue
    137 N8eb2c4703c3f41209646239de0c7155c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Humans
    139 rdf:type schema:DefinedTerm
    140 N92a9314838eb40159bbf7e15836cfb26 rdf:first sg:person.013760043547.76
    141 rdf:rest N473ca12a9cd14180b938b016835c7c52
    142 N9c47f7664a734648ac05a72c702b9db8 schema:name pubmed_id
    143 schema:value 29665850
    144 rdf:type schema:PropertyValue
    145 Na2f6fd3fedab4194bde7a10161f63397 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Genetic Predisposition to Disease
    147 rdf:type schema:DefinedTerm
    148 Na9b47ba502ee4c00895580fba57950fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Mammography
    150 rdf:type schema:DefinedTerm
    151 Nbe3b85eae2374bd9b6a4196e0685c7a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Female
    153 rdf:type schema:DefinedTerm
    154 Nc29d66eda03e4947926248b9941f8044 schema:name doi
    155 schema:value 10.1186/s13058-018-0954-6
    156 rdf:type schema:PropertyValue
    157 Nc9572555be4c45e9850baa4a6376a3d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Middle Aged
    159 rdf:type schema:DefinedTerm
    160 Ncddcecf976db45288f056f715ea6d0e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Inhibin-beta Subunits
    162 rdf:type schema:DefinedTerm
    163 Nd9b5f4f53c2e48ed996456f29905175f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name DNA Mutational Analysis
    165 rdf:type schema:DefinedTerm
    166 Ndf07c8bb7bbb4534b6bb733faac06b1b rdf:first sg:person.01010701573.25
    167 rdf:rest N1c81ec27513d4fd98ecfe0ca91d0e6f4
    168 Ne40bfd9552924a0386446b60dffd0100 rdf:first sg:person.0624052041.17
    169 rdf:rest N92a9314838eb40159bbf7e15836cfb26
    170 Nf8cec13a3b024ea8b9318be6d9194944 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Aged
    172 rdf:type schema:DefinedTerm
    173 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Biological Sciences
    175 rdf:type schema:DefinedTerm
    176 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    177 schema:name Genetics
    178 rdf:type schema:DefinedTerm
    179 sg:grant.2695966 http://pending.schema.org/fundedItem sg:pub.10.1186/s13058-018-0954-6
    180 rdf:type schema:MonetaryGrant
    181 sg:grant.3772173 http://pending.schema.org/fundedItem sg:pub.10.1186/s13058-018-0954-6
    182 rdf:type schema:MonetaryGrant
    183 sg:grant.3938745 http://pending.schema.org/fundedItem sg:pub.10.1186/s13058-018-0954-6
    184 rdf:type schema:MonetaryGrant
    185 sg:grant.3938779 http://pending.schema.org/fundedItem sg:pub.10.1186/s13058-018-0954-6
    186 rdf:type schema:MonetaryGrant
    187 sg:grant.5135789 http://pending.schema.org/fundedItem sg:pub.10.1186/s13058-018-0954-6
    188 rdf:type schema:MonetaryGrant
    189 sg:grant.5140627 http://pending.schema.org/fundedItem sg:pub.10.1186/s13058-018-0954-6
    190 rdf:type schema:MonetaryGrant
    191 sg:grant.5143107 http://pending.schema.org/fundedItem sg:pub.10.1186/s13058-018-0954-6
    192 rdf:type schema:MonetaryGrant
    193 sg:journal.1022375 schema:issn 1465-5411
    194 1465-542X
    195 schema:name Breast Cancer Research
    196 rdf:type schema:Periodical
    197 sg:person.01010701573.25 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
    198 schema:familyName Hall
    199 schema:givenName Per
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010701573.25
    201 rdf:type schema:Person
    202 sg:person.01203377330.66 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
    203 schema:familyName Brand
    204 schema:givenName Judith S.
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203377330.66
    206 rdf:type schema:Person
    207 sg:person.013117404317.63 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
    208 schema:familyName Czene
    209 schema:givenName Kamila
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117404317.63
    211 rdf:type schema:Person
    212 sg:person.013760043547.76 schema:affiliation https://www.grid.ac/institutes/grid.418377.e
    213 schema:familyName Li
    214 schema:givenName Jingmei
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013760043547.76
    216 rdf:type schema:Person
    217 sg:person.0624052041.17 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
    218 schema:familyName Humphreys
    219 schema:givenName Keith
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624052041.17
    221 rdf:type schema:Person
    222 sg:person.0744020556.20 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
    223 schema:familyName Karlsson
    224 schema:givenName Robert
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744020556.20
    226 rdf:type schema:Person
    227 sg:pub.10.1007/978-1-62703-447-0_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026993766
    228 https://doi.org/10.1007/978-1-62703-447-0_9
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/978-3-642-13666-5_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043583356
    231 https://doi.org/10.1007/978-3-642-13666-5_46
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s10549-009-0697-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025205313
    234 https://doi.org/10.1007/s10549-009-0697-2
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s10549-015-3567-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025861492
    237 https://doi.org/10.1007/s10549-015-3567-0
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nature11247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065430
    240 https://doi.org/10.1038/nature11247
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nature11632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000661742
    243 https://doi.org/10.1038/nature11632
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nature24284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092349555
    246 https://doi.org/10.1038/nature24284
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/ncomms6303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015726036
    249 https://doi.org/10.1038/ncomms6303
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/ng.2354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029723318
    252 https://doi.org/10.1038/ng.2354
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/ng.3785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092350084
    255 https://doi.org/10.1038/ng.3785
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/ng.760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028836856
    258 https://doi.org/10.1038/ng.760
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/ng2088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046979341
    261 https://doi.org/10.1038/ng2088
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1186/1471-2350-13-53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003305792
    264 https://doi.org/10.1186/1471-2350-13-53
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1186/bcr3041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028231393
    267 https://doi.org/10.1186/bcr3041
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1186/s13058-014-0439-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003025389
    270 https://doi.org/10.1186/s13058-014-0439-1
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1186/s13058-015-0591-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028921540
    273 https://doi.org/10.1186/s13058-015-0591-2
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1186/s13058-018-0932-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100823773
    276 https://doi.org/10.1186/s13058-018-0932-z
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1186/s13742-015-0047-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037894462
    279 https://doi.org/10.1186/s13742-015-0047-8
    280 rdf:type schema:CreativeWork
    281 https://app.dimensions.ai/details/publication/pub.1083118359 schema:CreativeWork
    282 https://doi.org/10.1002/ijc.2910460309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024301813
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1002/ijc.29299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044570216
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1002/ijc.29975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042643793
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1016/j.ajhg.2010.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009497006
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1016/j.bbrc.2006.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025856840
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1016/s0002-9440(10)64757-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050042470
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1016/s1470-2045(05)70390-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052464959
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1088/0031-9155/39/10/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059022537
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1088/0031-9155/57/16/5155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059029337
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1093/bioinformatics/btq340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047276303
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1093/bioinformatics/btq419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036490983
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1093/hmg/dds158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035890712
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1093/ije/dyw357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059676914
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1093/jnci/dju078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018039237
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1093/jnci/dju334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008103180
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1093/nar/gkr917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052960118
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1101/gr.137323.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034124863
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1109/tmi.2005.862741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694821
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1136/jmedgenet-2013-101708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037052698
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1158/0008-5472.can-06-1461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050661777
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1158/0008-5472.can-14-2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043172665
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1158/1055-9965.epi-06-0034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049006559
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1158/1055-9965.epi-08-0480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030901623
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1158/1055-9965.epi-10-0703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048852802
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1158/1055-9965.epi-13-1219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031019946
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1158/1055-9965.epi-16-0106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063224354
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1371/journal.pone.0085952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012440900
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1371/journal.pone.0110690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047410241
    337 rdf:type schema:CreativeWork
    338 https://www.grid.ac/institutes/grid.418377.e schema:alternateName Genome Institute of Singapore
    339 schema:name Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels Väg 12A, 171 77, Stockholm, Sweden
    340 Human Genetics, Genome Institute of Singapore, Singapore, Singapore
    341 rdf:type schema:Organization
    342 https://www.grid.ac/institutes/grid.4714.6 schema:alternateName Karolinska Institute
    343 schema:name Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels Väg 12A, 171 77, Stockholm, Sweden
    344 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...