The significance of tumour microarchitectural features in breast cancer prognosis: a digital image analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

I. Roxanis, R. Colling, C. Kartsonaki, A. R. Green, E A. Rakha

ABSTRACT

BACKGROUND: As only a minor portion of the information present in histological sections is accessible by eye, recognition and quantification of complex patterns and relationships among constituents relies on digital image analysis. In this study, our working hypothesis was that, with the application of digital image analysis technology, visually unquantifiable breast cancer microarchitectural features can be rigorously assessed and tested as prognostic parameters for invasive breast carcinoma of no special type. METHODS: Digital image analysis was performed using public domain software (ImageJ) on tissue microarrays from a cohort of 696 patients, and validated with a commercial platform (Visiopharm). Quantified features included elements defining tumour microarchitecture, with emphasis on the extent of tumour-stroma interface. The differential prognostic impact of tumour nest microarchitecture in the four immunohistochemical surrogates for molecular classification was analysed. Prognostic parameters included axillary lymph node status, breast cancer-specific survival, and time to distant metastasis. Associations of each feature with prognostic parameters were assessed using logistic regression and Cox proportional models adjusting for age at diagnosis, grade, and tumour size. RESULTS: An arrangement in numerous small nests was associated with axillary lymph node involvement. The association was stronger in luminal tumours (odds ratio (OR) = 1.39, p = 0.003 for a 1-SD increase in nest number, OR = 0.75, p = 0.006 for mean nest area). Nest number was also associated with survival (hazard ratio (HR) = 1.15, p = 0.027), but total nest perimeter was the parameter most significantly associated with survival in luminal tumours (HR = 1.26, p = 0.005). In the relatively small cohort of triple-negative tumours, mean circularity showed association with time to distant metastasis (HR = 1.71, p = 0.027) and survival (HR = 1.8, p = 0.02). CONCLUSIONS: We propose that tumour arrangement in few large nests indicates a decreased metastatic potential. By contrast, organisation in numerous small nests provides the tumour with increased metastatic potential to regional lymph nodes. An outstretched pattern in small nests bestows tumours with a tendency for decreased breast cancer-specific survival. Although further validation studies are required before the argument for routine quantification of microarchitectural features is established, our approach is consistent with the demand for cost-effective methods for triaging breast cancer patients that are more likely to benefit from chemotherapy. More... »

PAGES

11

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13058-018-0934-x

DOI

http://dx.doi.org/10.1186/s13058-018-0934-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100822214

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29402299


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease-Free Survival", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Nodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Royal Free London NHS Foundation Trust", 
          "id": "https://www.grid.ac/institutes/grid.437485.9", 
          "name": [
            "Department of Cellular Pathology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Headley Way, Headington, OX3 9DU, Oxford, UK", 
            "Present Address: Institute of Cancer Research, London and Royal Free London NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roxanis", 
        "givenName": "I.", 
        "id": "sg:person.0732025651.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732025651.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "John Radcliffe Hospital", 
          "id": "https://www.grid.ac/institutes/grid.8348.7", 
          "name": [
            "Department of Cellular Pathology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Headley Way, Headington, OX3 9DU, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Colling", 
        "givenName": "R.", 
        "id": "sg:person.01350067444.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350067444.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Nuffield Department of Population Health, University of Oxford, Big Data Institute Building, Old Road Campus, Roosevelt Drive, OX3 7LF, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kartsonaki", 
        "givenName": "C.", 
        "id": "sg:person.01160702211.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160702211.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Academic Pathology, Division of Cancer and Stem Cells, The University of Nottingham, Room 2-052-S Academic Unit of Oncology, Nottingham City Hospital, NG5 1PB, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Green", 
        "givenName": "A. R.", 
        "id": "sg:person.016416665412.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016416665412.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nottingham City Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412920.c", 
          "name": [
            "Department of Cellular Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, NG5 1PB, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rakha", 
        "givenName": "E A.", 
        "id": "sg:person.0743637501.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743637501.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/modpathol.2015.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000558221", 
          "https://doi.org/10.1038/modpathol.2015.37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-06-0410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000859355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002452968", 
          "https://doi.org/10.1038/nrc1075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002452968", 
          "https://doi.org/10.1038/nrc1075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3002564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003389409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mds326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007108194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0082314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007254924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb2548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007269666", 
          "https://doi.org/10.1038/ncb2548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-05-4414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008978686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr2607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009736506", 
          "https://doi.org/10.1186/bcr2607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr2607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009736506", 
          "https://doi.org/10.1186/bcr2607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep10690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017130680", 
          "https://doi.org/10.1038/srep10690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m110.136770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025282107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1119313109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025973393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1209519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026568279", 
          "https://doi.org/10.1038/sj.onc.1209519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1209519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026568279", 
          "https://doi.org/10.1038/sj.onc.1209519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026706357", 
          "https://doi.org/10.1038/nmeth.2019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.29364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031273511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jclinpath-2015-202914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031573392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033699583", 
          "https://doi.org/10.1038/nrc1670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033699583", 
          "https://doi.org/10.1038/nrc1670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034411467", 
          "https://doi.org/10.1038/nrc2173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molonc.2007.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035320244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035817137", 
          "https://doi.org/10.1038/nmeth.2089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/amiajnl-2012-001540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035881245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2014.1153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036923484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.21004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039744402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb1973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040386073", 
          "https://doi.org/10.1038/ncb1973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb1973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040386073", 
          "https://doi.org/10.1038/ncb1973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1001961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041944399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdp273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042228618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0023833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047892687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051222405", 
          "https://doi.org/10.1038/nature12626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/rbme.2009.2034865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061446240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5306/wjco.v6.i6.252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072757668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084430951"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: As only a minor portion of the information present in histological sections is accessible by eye, recognition and quantification of complex patterns and relationships among constituents relies on digital image analysis. In this study, our working hypothesis was that, with the application of digital image analysis technology, visually unquantifiable breast cancer microarchitectural features can be rigorously assessed and tested as prognostic parameters for invasive breast carcinoma of no special type.\nMETHODS: Digital image analysis was performed using public domain software (ImageJ) on tissue microarrays from a cohort of 696 patients, and validated with a commercial platform (Visiopharm). Quantified features included elements defining tumour microarchitecture, with emphasis on the extent of tumour-stroma interface. The differential prognostic impact of tumour nest microarchitecture in the four immunohistochemical surrogates for molecular classification was analysed. Prognostic parameters included axillary lymph node status, breast cancer-specific survival, and time to distant metastasis. Associations of each feature with prognostic parameters were assessed using logistic regression and Cox proportional models adjusting for age at diagnosis, grade, and tumour size.\nRESULTS: An arrangement in numerous small nests was associated with axillary lymph node involvement. The association was stronger in luminal tumours (odds ratio (OR)\u2009=\u20091.39, p\u2009=\u20090.003 for a 1-SD increase in nest number, OR\u2009=\u20090.75, p\u2009=\u20090.006 for mean nest area). Nest number was also associated with survival (hazard ratio (HR)\u2009=\u20091.15, p\u2009=\u20090.027), but total nest perimeter was the parameter most significantly associated with survival in luminal tumours (HR\u2009=\u20091.26, p\u2009=\u20090.005). In the relatively small cohort of triple-negative tumours, mean circularity showed association with time to distant metastasis (HR\u2009=\u20091.71, p\u2009=\u20090.027) and survival (HR\u2009=\u20091.8, p\u2009=\u20090.02).\nCONCLUSIONS: We propose that tumour arrangement in few large nests indicates a decreased metastatic potential. By contrast, organisation in numerous small nests provides the tumour with increased metastatic potential to regional lymph nodes. An outstretched pattern in small nests bestows tumours with a tendency for decreased breast cancer-specific survival. Although further validation studies are required before the argument for routine quantification of microarchitectural features is established, our approach is consistent with the demand for cost-effective methods for triaging breast cancer patients that are more likely to benefit from chemotherapy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13058-018-0934-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2786510", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5139925", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1022375", 
        "issn": [
          "1465-5411", 
          "1465-542X"
        ], 
        "name": "Breast Cancer Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "The significance of tumour microarchitectural features in breast cancer prognosis: a digital image analysis", 
    "pagination": "11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "85c1a38d79b494ef50d10681398a0be2fe99f2f1b191eaa1c1384fb26c70a834"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29402299"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100927353"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13058-018-0934-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100822214"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13058-018-0934-x", 
      "https://app.dimensions.ai/details/publication/pub.1100822214"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72856_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13058-018-0934-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13058-018-0934-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13058-018-0934-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13058-018-0934-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13058-018-0934-x'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      21 PREDICATES      73 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13058-018-0934-x schema:about N3493d2097e394b1ea56ebffc0baa4f48
2 N472e29dcc7674398a4e70bdb7164628c
3 N8e4771020da54f86ac60882e03e087de
4 N8e7ec38877474cd2840a6c9ac61aee5a
5 N96813d24db8640fd863f1e665a9164c5
6 Nb8c76e6ea9cf49dab185277d1abe2fe2
7 Nbadbcad8411e4ab8892a760c26b1aaec
8 Nbf889e7c56df49a381ae73d72776c8a9
9 Nc13cf1149519405a833c376f7050350d
10 Ncf3dba21479f452a8b5e28aebcff9566
11 Nebf1f288c4d64817ba9ae11a665d4674
12 Nec082d88400b433989ec9bec8d859b02
13 Nfa85c3a7ebcc44fba57609811f7c3cfe
14 anzsrc-for:11
15 anzsrc-for:1112
16 schema:author N434f42ad19354aea84592db84cde59bb
17 schema:citation sg:pub.10.1038/modpathol.2015.37
18 sg:pub.10.1038/nature12626
19 sg:pub.10.1038/ncb1973
20 sg:pub.10.1038/ncb2548
21 sg:pub.10.1038/nmeth.2019
22 sg:pub.10.1038/nmeth.2089
23 sg:pub.10.1038/nrc1075
24 sg:pub.10.1038/nrc1670
25 sg:pub.10.1038/nrc2173
26 sg:pub.10.1038/sj.onc.1209519
27 sg:pub.10.1038/srep10690
28 sg:pub.10.1186/bcr2607
29 https://doi.org/10.1002/ijc.21004
30 https://doi.org/10.1002/ijc.29364
31 https://doi.org/10.1016/j.molonc.2007.02.004
32 https://doi.org/10.1073/pnas.1119313109
33 https://doi.org/10.1074/jbc.m110.136770
34 https://doi.org/10.1093/annonc/mdp273
35 https://doi.org/10.1093/annonc/mds326
36 https://doi.org/10.1098/rsif.2014.1153
37 https://doi.org/10.1109/rbme.2009.2034865
38 https://doi.org/10.1126/scitranslmed.3002564
39 https://doi.org/10.1136/amiajnl-2012-001540
40 https://doi.org/10.1136/jclinpath-2015-202914
41 https://doi.org/10.1158/0008-5472.can-05-4414
42 https://doi.org/10.1158/0008-5472.can-06-0410
43 https://doi.org/10.1371/journal.pmed.1001961
44 https://doi.org/10.1371/journal.pone.0023833
45 https://doi.org/10.1371/journal.pone.0082314
46 https://doi.org/10.3322/caac.21393
47 https://doi.org/10.5306/wjco.v6.i6.252
48 schema:datePublished 2018-12
49 schema:datePublishedReg 2018-12-01
50 schema:description BACKGROUND: As only a minor portion of the information present in histological sections is accessible by eye, recognition and quantification of complex patterns and relationships among constituents relies on digital image analysis. In this study, our working hypothesis was that, with the application of digital image analysis technology, visually unquantifiable breast cancer microarchitectural features can be rigorously assessed and tested as prognostic parameters for invasive breast carcinoma of no special type. METHODS: Digital image analysis was performed using public domain software (ImageJ) on tissue microarrays from a cohort of 696 patients, and validated with a commercial platform (Visiopharm). Quantified features included elements defining tumour microarchitecture, with emphasis on the extent of tumour-stroma interface. The differential prognostic impact of tumour nest microarchitecture in the four immunohistochemical surrogates for molecular classification was analysed. Prognostic parameters included axillary lymph node status, breast cancer-specific survival, and time to distant metastasis. Associations of each feature with prognostic parameters were assessed using logistic regression and Cox proportional models adjusting for age at diagnosis, grade, and tumour size. RESULTS: An arrangement in numerous small nests was associated with axillary lymph node involvement. The association was stronger in luminal tumours (odds ratio (OR) = 1.39, p = 0.003 for a 1-SD increase in nest number, OR = 0.75, p = 0.006 for mean nest area). Nest number was also associated with survival (hazard ratio (HR) = 1.15, p = 0.027), but total nest perimeter was the parameter most significantly associated with survival in luminal tumours (HR = 1.26, p = 0.005). In the relatively small cohort of triple-negative tumours, mean circularity showed association with time to distant metastasis (HR = 1.71, p = 0.027) and survival (HR = 1.8, p = 0.02). CONCLUSIONS: We propose that tumour arrangement in few large nests indicates a decreased metastatic potential. By contrast, organisation in numerous small nests provides the tumour with increased metastatic potential to regional lymph nodes. An outstretched pattern in small nests bestows tumours with a tendency for decreased breast cancer-specific survival. Although further validation studies are required before the argument for routine quantification of microarchitectural features is established, our approach is consistent with the demand for cost-effective methods for triaging breast cancer patients that are more likely to benefit from chemotherapy.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N39dbd198e10b4c7488d5f4bb5e57a748
55 Ne041860b8f9344db9c439a9719f433ca
56 sg:journal.1022375
57 schema:name The significance of tumour microarchitectural features in breast cancer prognosis: a digital image analysis
58 schema:pagination 11
59 schema:productId N20feb3142e3b41ff97d1794bd79e4915
60 N618d3bea49e641fea84b22fd7fdaf94d
61 Nabf49aa898c84ff4a5462763a84265e7
62 Ne195e049cee549f08226be31c39c6f9c
63 Ne65dae917edc44e48d51c67c8b73a1b4
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100822214
65 https://doi.org/10.1186/s13058-018-0934-x
66 schema:sdDatePublished 2019-04-11T12:53
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N715628d966624efdb5a4d8dfec27fb20
69 schema:url https://link.springer.com/10.1186%2Fs13058-018-0934-x
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N20feb3142e3b41ff97d1794bd79e4915 schema:name doi
74 schema:value 10.1186/s13058-018-0934-x
75 rdf:type schema:PropertyValue
76 N3493d2097e394b1ea56ebffc0baa4f48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Aged
78 rdf:type schema:DefinedTerm
79 N39dbd198e10b4c7488d5f4bb5e57a748 schema:volumeNumber 20
80 rdf:type schema:PublicationVolume
81 N434f42ad19354aea84592db84cde59bb rdf:first sg:person.0732025651.85
82 rdf:rest Nfba7e058f7d547afb50dd589d7e889c6
83 N472e29dcc7674398a4e70bdb7164628c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Image Processing, Computer-Assisted
85 rdf:type schema:DefinedTerm
86 N618d3bea49e641fea84b22fd7fdaf94d schema:name readcube_id
87 schema:value 85c1a38d79b494ef50d10681398a0be2fe99f2f1b191eaa1c1384fb26c70a834
88 rdf:type schema:PropertyValue
89 N715628d966624efdb5a4d8dfec27fb20 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N8af94bdf6db04ee4a5e446293afc1933 rdf:first sg:person.0743637501.84
92 rdf:rest rdf:nil
93 N8e4771020da54f86ac60882e03e087de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Breast
95 rdf:type schema:DefinedTerm
96 N8e7ec38877474cd2840a6c9ac61aee5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Adult
98 rdf:type schema:DefinedTerm
99 N96813d24db8640fd863f1e665a9164c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Disease-Free Survival
101 rdf:type schema:DefinedTerm
102 Nabf49aa898c84ff4a5462763a84265e7 schema:name dimensions_id
103 schema:value pub.1100822214
104 rdf:type schema:PropertyValue
105 Nb8c76e6ea9cf49dab185277d1abe2fe2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Humans
107 rdf:type schema:DefinedTerm
108 Nbadbcad8411e4ab8892a760c26b1aaec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Proportional Hazards Models
110 rdf:type schema:DefinedTerm
111 Nbf889e7c56df49a381ae73d72776c8a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Prognosis
113 rdf:type schema:DefinedTerm
114 Nc13cf1149519405a833c376f7050350d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Middle Aged
116 rdf:type schema:DefinedTerm
117 Ncf3dba21479f452a8b5e28aebcff9566 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Lymph Nodes
119 rdf:type schema:DefinedTerm
120 Nd3b4059f86ed4c7bb433357830ed3ede rdf:first sg:person.01160702211.93
121 rdf:rest Nfa4597931708485599952f99a777e526
122 Ne041860b8f9344db9c439a9719f433ca schema:issueNumber 1
123 rdf:type schema:PublicationIssue
124 Ne195e049cee549f08226be31c39c6f9c schema:name pubmed_id
125 schema:value 29402299
126 rdf:type schema:PropertyValue
127 Ne236a12dbc4e4ac6a65d07a30bd08e9f schema:name Academic Pathology, Division of Cancer and Stem Cells, The University of Nottingham, Room 2-052-S Academic Unit of Oncology, Nottingham City Hospital, NG5 1PB, Nottingham, UK
128 rdf:type schema:Organization
129 Ne65dae917edc44e48d51c67c8b73a1b4 schema:name nlm_unique_id
130 schema:value 100927353
131 rdf:type schema:PropertyValue
132 Nebf1f288c4d64817ba9ae11a665d4674 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Female
134 rdf:type schema:DefinedTerm
135 Nec082d88400b433989ec9bec8d859b02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Breast Neoplasms
137 rdf:type schema:DefinedTerm
138 Nfa4597931708485599952f99a777e526 rdf:first sg:person.016416665412.02
139 rdf:rest N8af94bdf6db04ee4a5e446293afc1933
140 Nfa85c3a7ebcc44fba57609811f7c3cfe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Lymphatic Metastasis
142 rdf:type schema:DefinedTerm
143 Nfba7e058f7d547afb50dd589d7e889c6 rdf:first sg:person.01350067444.21
144 rdf:rest Nd3b4059f86ed4c7bb433357830ed3ede
145 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
146 schema:name Medical and Health Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
149 schema:name Oncology and Carcinogenesis
150 rdf:type schema:DefinedTerm
151 sg:grant.2786510 http://pending.schema.org/fundedItem sg:pub.10.1186/s13058-018-0934-x
152 rdf:type schema:MonetaryGrant
153 sg:grant.5139925 http://pending.schema.org/fundedItem sg:pub.10.1186/s13058-018-0934-x
154 rdf:type schema:MonetaryGrant
155 sg:journal.1022375 schema:issn 1465-5411
156 1465-542X
157 schema:name Breast Cancer Research
158 rdf:type schema:Periodical
159 sg:person.01160702211.93 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
160 schema:familyName Kartsonaki
161 schema:givenName C.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160702211.93
163 rdf:type schema:Person
164 sg:person.01350067444.21 schema:affiliation https://www.grid.ac/institutes/grid.8348.7
165 schema:familyName Colling
166 schema:givenName R.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350067444.21
168 rdf:type schema:Person
169 sg:person.016416665412.02 schema:affiliation Ne236a12dbc4e4ac6a65d07a30bd08e9f
170 schema:familyName Green
171 schema:givenName A. R.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016416665412.02
173 rdf:type schema:Person
174 sg:person.0732025651.85 schema:affiliation https://www.grid.ac/institutes/grid.437485.9
175 schema:familyName Roxanis
176 schema:givenName I.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732025651.85
178 rdf:type schema:Person
179 sg:person.0743637501.84 schema:affiliation https://www.grid.ac/institutes/grid.412920.c
180 schema:familyName Rakha
181 schema:givenName E A.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743637501.84
183 rdf:type schema:Person
184 sg:pub.10.1038/modpathol.2015.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000558221
185 https://doi.org/10.1038/modpathol.2015.37
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nature12626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051222405
188 https://doi.org/10.1038/nature12626
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/ncb1973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040386073
191 https://doi.org/10.1038/ncb1973
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/ncb2548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007269666
194 https://doi.org/10.1038/ncb2548
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nmeth.2019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026706357
197 https://doi.org/10.1038/nmeth.2019
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nmeth.2089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035817137
200 https://doi.org/10.1038/nmeth.2089
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nrc1075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002452968
203 https://doi.org/10.1038/nrc1075
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nrc1670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033699583
206 https://doi.org/10.1038/nrc1670
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nrc2173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034411467
209 https://doi.org/10.1038/nrc2173
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/sj.onc.1209519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026568279
212 https://doi.org/10.1038/sj.onc.1209519
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/srep10690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017130680
215 https://doi.org/10.1038/srep10690
216 rdf:type schema:CreativeWork
217 sg:pub.10.1186/bcr2607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009736506
218 https://doi.org/10.1186/bcr2607
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1002/ijc.21004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039744402
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1002/ijc.29364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031273511
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.molonc.2007.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035320244
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1073/pnas.1119313109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025973393
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1074/jbc.m110.136770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025282107
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/annonc/mdp273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042228618
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/annonc/mds326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007108194
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1098/rsif.2014.1153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036923484
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1109/rbme.2009.2034865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446240
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1126/scitranslmed.3002564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003389409
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1136/amiajnl-2012-001540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035881245
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1136/jclinpath-2015-202914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031573392
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1158/0008-5472.can-05-4414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008978686
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1158/0008-5472.can-06-0410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000859355
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1371/journal.pmed.1001961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041944399
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1371/journal.pone.0023833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047892687
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1371/journal.pone.0082314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007254924
253 rdf:type schema:CreativeWork
254 https://doi.org/10.3322/caac.21393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084430951
255 rdf:type schema:CreativeWork
256 https://doi.org/10.5306/wjco.v6.i6.252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072757668
257 rdf:type schema:CreativeWork
258 https://www.grid.ac/institutes/grid.412920.c schema:alternateName Nottingham City Hospital
259 schema:name Department of Cellular Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, NG5 1PB, Nottingham, UK
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.437485.9 schema:alternateName Royal Free London NHS Foundation Trust
262 schema:name Department of Cellular Pathology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Headley Way, Headington, OX3 9DU, Oxford, UK
263 Present Address: Institute of Cancer Research, London and Royal Free London NHS Foundation Trust, London, UK
264 rdf:type schema:Organization
265 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
266 schema:name Nuffield Department of Population Health, University of Oxford, Big Data Institute Building, Old Road Campus, Roosevelt Drive, OX3 7LF, Oxford, UK
267 rdf:type schema:Organization
268 https://www.grid.ac/institutes/grid.8348.7 schema:alternateName John Radcliffe Hospital
269 schema:name Department of Cellular Pathology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Headley Way, Headington, OX3 9DU, Oxford, UK
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...