Quantitative assessment of the spatial heterogeneity of tumor-infiltrating lymphocytes in breast cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Nikita L. Mani, Kurt A. Schalper, Christos Hatzis, Ozlen Saglam, Fattaneh Tavassoli, Meghan Butler, Anees B. Chagpar, Lajos Pusztai, David L. Rimm

ABSTRACT

BACKGROUND: Tumor-infiltrating lymphocyte (TIL) count in breast cancer carries prognostic information and represents a potential predictive marker for emerging immunotherapies. However, the distribution of the lymphocyte subpopulations is not well defined. The goals of this study were to examine intratumor heterogeneity in TIL subpopulation counts in different fields of view (FOV) within each section, in different sections from the same biopsy, and between biopsies from different regions of the same cancer using quantitative immunofluorescence (QIF). METHODS: We used multiplexed QIF to quantify cytokeratin-positive epithelial cells, and CD3-positive, CD8-positive and CD20-positive lymphocytes in tissue sections from multiple biopsies obtained from different areas of 31 surgically resected primary breast carcinomas (93 samples total). Log2-transformed QIF scores or concordance and variance component analyses with linear mixed-effects models were used. Cohen's kappa index [k] of high versus low scores, defined as above and below the median, was used to measure sample similarity between areas. RESULTS: We found a strong positive correlation between CD3 and CD8 levels across all patients (Pearson correlation coefficient [CC] = 0.827). CD3 and CD8 showed a weaker but significant association with CD20 (CC = 0.446 and 0.363, respectively). For each marker, the variation between different FOVs in the same section was higher than the variation between sections or between biopsies of the same cancer. The intraclass correlation coefficients (ICC) were 0.411 for CD3, 0.324 for CD8, and 0.252 for CD20. In component analysis, 66-69 % of the variance was attributable to differences between FOVs in the same section and 30-33 % was due to differences between biopsies from different areas of the same cancer. Section to section differences were negligible. Concordance for low versus high marker status assignment in single biopsies compared to all three biopsies combined yielded k = 0.705 for CD3, k = 0.655 for CD8, and k = 0.603 for CD20. CONCLUSIONS: T and B lymphocytes show more heterogeneity across the dimensions of a single section than between different sections or regions of a given breast tumor. This observation suggests that the average lymphocyte score from a single biopsy of a tumor is reasonably representative of the whole cancer. More... »

PAGES

78

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13058-016-0737-x

DOI

http://dx.doi.org/10.1186/s13058-016-0737-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004499714

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27473061


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytokines", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorescent Antibody Technique", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunophenotyping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphocytes, Tumor-Infiltrating", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Grading", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Burden", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale School of Medicine, Yale University, 310 Cedar St., PO Box 208023, 06520-8023, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mani", 
        "givenName": "Nikita L.", 
        "id": "sg:person.012370356375.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012370356375.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale School of Medicine, Yale University, 310 Cedar St., PO Box 208023, 06520-8023, New Haven, CT, USA", 
            "Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schalper", 
        "givenName": "Kurt A.", 
        "id": "sg:person.0702425124.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702425124.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hatzis", 
        "givenName": "Christos", 
        "id": "sg:person.01104632004.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104632004.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moffitt Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.468198.a", 
          "name": [
            "Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saglam", 
        "givenName": "Ozlen", 
        "id": "sg:person.01335065645.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335065645.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale School of Medicine, Yale University, 310 Cedar St., PO Box 208023, 06520-8023, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tavassoli", 
        "givenName": "Fattaneh", 
        "id": "sg:person.01341513754.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341513754.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Butler", 
        "givenName": "Meghan", 
        "id": "sg:person.01147700313.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147700313.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chagpar", 
        "givenName": "Anees B.", 
        "id": "sg:person.01342613416.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342613416.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pusztai", 
        "givenName": "Lajos", 
        "id": "sg:person.01153753137.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153753137.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale School of Medicine, Yale University, 310 Cedar St., PO Box 208023, 06520-8023, New Haven, CT, USA", 
            "Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rimm", 
        "givenName": "David L.", 
        "id": "sg:person.0754207153.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754207153.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-14-1622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003164071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/dju435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010536127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jclinpath-2015-203089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010697628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/modpathol.2016.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011141355", 
          "https://doi.org/10.1038/modpathol.2016.109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.immuni.2013.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011676560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr3148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014237989", 
          "https://doi.org/10.1186/bcr3148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020455470", 
          "https://doi.org/10.1038/nature13954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdv239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021527237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-11-0431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021974319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/2159-8290.cd-14-0863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029393757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc3245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034518617", 
          "https://doi.org/10.1038/nrc3245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041312915", 
          "https://doi.org/10.1038/nature14011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2009.416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042063808", 
          "https://doi.org/10.1038/onc.2009.416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamaoncol.2015.0830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048236045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdu450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052737833"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: Tumor-infiltrating lymphocyte (TIL) count in breast cancer carries prognostic information and represents a potential predictive marker for emerging immunotherapies. However, the distribution of the lymphocyte subpopulations is not well defined. The goals of this study were to examine intratumor heterogeneity in TIL subpopulation counts in different fields of view (FOV) within each section, in different sections from the same biopsy, and between biopsies from different regions of the same cancer using quantitative immunofluorescence (QIF).\nMETHODS: We used multiplexed QIF to quantify cytokeratin-positive epithelial cells, and CD3-positive, CD8-positive and CD20-positive lymphocytes in tissue sections from multiple biopsies obtained from different areas of 31 surgically resected primary breast carcinomas (93 samples total). Log2-transformed QIF scores or concordance and variance component analyses with linear mixed-effects models were used. Cohen's kappa index [k] of high versus low scores, defined as above and below the median, was used to measure sample similarity between areas.\nRESULTS: We found a strong positive correlation between CD3 and CD8 levels across all patients (Pearson correlation coefficient [CC]\u2009=\u20090.827). CD3 and CD8 showed a weaker but significant association with CD20 (CC\u2009=\u20090.446 and 0.363, respectively). For each marker, the variation between different FOVs in the same section was higher than the variation between sections or between biopsies of the same cancer. The intraclass correlation coefficients (ICC) were 0.411 for CD3, 0.324 for CD8, and 0.252 for CD20. In component analysis, 66-69\u00a0% of the variance was attributable to differences between FOVs in the same section and 30-33\u00a0% was due to differences between biopsies from different areas of the same cancer. Section to section differences were negligible. Concordance for low versus high marker status assignment in single biopsies compared to all three biopsies combined yielded k\u2009=\u20090.705 for CD3, k\u2009=\u20090.655 for CD8, and k\u2009=\u20090.603 for CD20.\nCONCLUSIONS: T and B lymphocytes show more heterogeneity across the dimensions of a single section than between different sections or regions of a given breast tumor. This observation suggests that the average lymphocyte score from a single biopsy of a tumor is reasonably representative of the whole cancer.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13058-016-0737-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5475983", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1022375", 
        "issn": [
          "1465-5411", 
          "1465-542X"
        ], 
        "name": "Breast Cancer Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Quantitative assessment of the spatial heterogeneity of tumor-infiltrating lymphocytes in breast cancer", 
    "pagination": "78", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1570e6eb6b79c7ba4bc67620ba6da02dd84b7c02fff5bb7aad2ee592078d5194"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27473061"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100927353"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13058-016-0737-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004499714"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13058-016-0737-x", 
      "https://app.dimensions.ai/details/publication/pub.1004499714"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87119_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13058-016-0737-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13058-016-0737-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13058-016-0737-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13058-016-0737-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13058-016-0737-x'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      60 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13058-016-0737-x schema:about N082997143f3f4c03b65d2e6a4458774b
2 N0d5e9247d90b44af857f027835272075
3 N1b294900e30b458f98e7094a857d1985
4 N36ef8132f15644f19c12e598c68ef7e8
5 N49f6d0c4808241709646e33f1c7263a4
6 N855372b090dc4a5697a98537d136f25e
7 N8709b5b0984943e29332e00b7a48e0dd
8 N8836793187ac4f32914563b4bf56a1af
9 N89eeef6acf564cb2ba92adf6805f1615
10 N8d20c70f02634458b908d3c6dfe7fc76
11 N8fd9fe0e27ce4f7281f9e841180d1818
12 Naf6e4a4e96094ba8a12ac2a90f3db8d2
13 Nde2815c5f5e748c9821c6dc03590d593
14 Nf64bbb4c48c34e2eb306d86b7c7a149e
15 Nf655face30e2476284eb78a8da1209dc
16 Nfe554c67c01f4bd5bf2c00ffaa017596
17 anzsrc-for:11
18 anzsrc-for:1112
19 schema:author N41798bf0186147b2bb040e81d2c95338
20 schema:citation sg:pub.10.1038/modpathol.2016.109
21 sg:pub.10.1038/nature13954
22 sg:pub.10.1038/nature14011
23 sg:pub.10.1038/nrc3245
24 sg:pub.10.1038/onc.2009.416
25 sg:pub.10.1186/bcr3148
26 https://doi.org/10.1001/jamaoncol.2015.0830
27 https://doi.org/10.1016/j.immuni.2013.10.003
28 https://doi.org/10.1093/annonc/mdu450
29 https://doi.org/10.1093/annonc/mdv239
30 https://doi.org/10.1093/jnci/dju435
31 https://doi.org/10.1136/jclinpath-2015-203089
32 https://doi.org/10.1158/0008-5472.can-11-0431
33 https://doi.org/10.1158/1078-0432.ccr-14-1622
34 https://doi.org/10.1158/2159-8290.cd-14-0863
35 schema:datePublished 2016-12
36 schema:datePublishedReg 2016-12-01
37 schema:description BACKGROUND: Tumor-infiltrating lymphocyte (TIL) count in breast cancer carries prognostic information and represents a potential predictive marker for emerging immunotherapies. However, the distribution of the lymphocyte subpopulations is not well defined. The goals of this study were to examine intratumor heterogeneity in TIL subpopulation counts in different fields of view (FOV) within each section, in different sections from the same biopsy, and between biopsies from different regions of the same cancer using quantitative immunofluorescence (QIF). METHODS: We used multiplexed QIF to quantify cytokeratin-positive epithelial cells, and CD3-positive, CD8-positive and CD20-positive lymphocytes in tissue sections from multiple biopsies obtained from different areas of 31 surgically resected primary breast carcinomas (93 samples total). Log2-transformed QIF scores or concordance and variance component analyses with linear mixed-effects models were used. Cohen's kappa index [k] of high versus low scores, defined as above and below the median, was used to measure sample similarity between areas. RESULTS: We found a strong positive correlation between CD3 and CD8 levels across all patients (Pearson correlation coefficient [CC] = 0.827). CD3 and CD8 showed a weaker but significant association with CD20 (CC = 0.446 and 0.363, respectively). For each marker, the variation between different FOVs in the same section was higher than the variation between sections or between biopsies of the same cancer. The intraclass correlation coefficients (ICC) were 0.411 for CD3, 0.324 for CD8, and 0.252 for CD20. In component analysis, 66-69 % of the variance was attributable to differences between FOVs in the same section and 30-33 % was due to differences between biopsies from different areas of the same cancer. Section to section differences were negligible. Concordance for low versus high marker status assignment in single biopsies compared to all three biopsies combined yielded k = 0.705 for CD3, k = 0.655 for CD8, and k = 0.603 for CD20. CONCLUSIONS: T and B lymphocytes show more heterogeneity across the dimensions of a single section than between different sections or regions of a given breast tumor. This observation suggests that the average lymphocyte score from a single biopsy of a tumor is reasonably representative of the whole cancer.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N5d706b3ff2f7443a877ff14ebe065c0b
42 Nea47f715473647e6a20a57f02cc736f4
43 sg:journal.1022375
44 schema:name Quantitative assessment of the spatial heterogeneity of tumor-infiltrating lymphocytes in breast cancer
45 schema:pagination 78
46 schema:productId N3d7762ee09e5401f9253bca2abcfa75e
47 N86d78f4f6f044163b1a454e2bc8f3392
48 N8eabca4f406b40958b05ef4d80fc3929
49 N9636324424e14a1d9a4ed2901929cb18
50 N98aee273108d4b079f473dbc3d66a343
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004499714
52 https://doi.org/10.1186/s13058-016-0737-x
53 schema:sdDatePublished 2019-04-11T12:27
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nea828422549a430c856ab0498fc4b602
56 schema:url https://link.springer.com/10.1186%2Fs13058-016-0737-x
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N04a7626cd53246998f71824737382593 rdf:first sg:person.0702425124.69
61 rdf:rest N1e9eacb6964c4bb7b89b772cf0b16ecc
62 N076d0841f7ac4c9f822fb3d66fe125b2 rdf:first sg:person.01341513754.24
63 rdf:rest Na9dff82bb16b4d549e09c2d9169d28f5
64 N082997143f3f4c03b65d2e6a4458774b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Female
66 rdf:type schema:DefinedTerm
67 N0d5e9247d90b44af857f027835272075 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Biomarkers
69 rdf:type schema:DefinedTerm
70 N1b294900e30b458f98e7094a857d1985 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Aged
72 rdf:type schema:DefinedTerm
73 N1e9eacb6964c4bb7b89b772cf0b16ecc rdf:first sg:person.01104632004.90
74 rdf:rest Naa7ed8c5981c436ebe1946a0a767e7e8
75 N36ef8132f15644f19c12e598c68ef7e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Breast Neoplasms
77 rdf:type schema:DefinedTerm
78 N3d7762ee09e5401f9253bca2abcfa75e schema:name doi
79 schema:value 10.1186/s13058-016-0737-x
80 rdf:type schema:PropertyValue
81 N41798bf0186147b2bb040e81d2c95338 rdf:first sg:person.012370356375.87
82 rdf:rest N04a7626cd53246998f71824737382593
83 N49f6d0c4808241709646e33f1c7263a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Cytokines
85 rdf:type schema:DefinedTerm
86 N5d706b3ff2f7443a877ff14ebe065c0b schema:volumeNumber 18
87 rdf:type schema:PublicationVolume
88 N7d26557bde7a4d8ba3e533766bf20c2a rdf:first sg:person.0754207153.13
89 rdf:rest rdf:nil
90 N855372b090dc4a5697a98537d136f25e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Adult
92 rdf:type schema:DefinedTerm
93 N86d78f4f6f044163b1a454e2bc8f3392 schema:name nlm_unique_id
94 schema:value 100927353
95 rdf:type schema:PropertyValue
96 N8709b5b0984943e29332e00b7a48e0dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Reproducibility of Results
98 rdf:type schema:DefinedTerm
99 N8836793187ac4f32914563b4bf56a1af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Humans
101 rdf:type schema:DefinedTerm
102 N89eeef6acf564cb2ba92adf6805f1615 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Lymphocytes, Tumor-Infiltrating
104 rdf:type schema:DefinedTerm
105 N8d20c70f02634458b908d3c6dfe7fc76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Tumor Burden
107 rdf:type schema:DefinedTerm
108 N8eabca4f406b40958b05ef4d80fc3929 schema:name readcube_id
109 schema:value 1570e6eb6b79c7ba4bc67620ba6da02dd84b7c02fff5bb7aad2ee592078d5194
110 rdf:type schema:PropertyValue
111 N8fd9fe0e27ce4f7281f9e841180d1818 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Immunophenotyping
113 rdf:type schema:DefinedTerm
114 N9636324424e14a1d9a4ed2901929cb18 schema:name dimensions_id
115 schema:value pub.1004499714
116 rdf:type schema:PropertyValue
117 N98aee273108d4b079f473dbc3d66a343 schema:name pubmed_id
118 schema:value 27473061
119 rdf:type schema:PropertyValue
120 Na62ba13cd03e4aec84a7fee5529f3b3a rdf:first sg:person.01342613416.91
121 rdf:rest Nbf2e52ca5e8e4b0189f50c81b0a93962
122 Na9dff82bb16b4d549e09c2d9169d28f5 rdf:first sg:person.01147700313.12
123 rdf:rest Na62ba13cd03e4aec84a7fee5529f3b3a
124 Naa7ed8c5981c436ebe1946a0a767e7e8 rdf:first sg:person.01335065645.51
125 rdf:rest N076d0841f7ac4c9f822fb3d66fe125b2
126 Naf6e4a4e96094ba8a12ac2a90f3db8d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Neoplasm Grading
128 rdf:type schema:DefinedTerm
129 Nbf2e52ca5e8e4b0189f50c81b0a93962 rdf:first sg:person.01153753137.46
130 rdf:rest N7d26557bde7a4d8ba3e533766bf20c2a
131 Nde2815c5f5e748c9821c6dc03590d593 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Neoplasm Staging
133 rdf:type schema:DefinedTerm
134 Nea47f715473647e6a20a57f02cc736f4 schema:issueNumber 1
135 rdf:type schema:PublicationIssue
136 Nea828422549a430c856ab0498fc4b602 schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 Nf64bbb4c48c34e2eb306d86b7c7a149e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Fluorescent Antibody Technique
140 rdf:type schema:DefinedTerm
141 Nf655face30e2476284eb78a8da1209dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Phenotype
143 rdf:type schema:DefinedTerm
144 Nfe554c67c01f4bd5bf2c00ffaa017596 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Middle Aged
146 rdf:type schema:DefinedTerm
147 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
148 schema:name Medical and Health Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
151 schema:name Oncology and Carcinogenesis
152 rdf:type schema:DefinedTerm
153 sg:grant.5475983 http://pending.schema.org/fundedItem sg:pub.10.1186/s13058-016-0737-x
154 rdf:type schema:MonetaryGrant
155 sg:journal.1022375 schema:issn 1465-5411
156 1465-542X
157 schema:name Breast Cancer Research
158 rdf:type schema:Periodical
159 sg:person.01104632004.90 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
160 schema:familyName Hatzis
161 schema:givenName Christos
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104632004.90
163 rdf:type schema:Person
164 sg:person.01147700313.12 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
165 schema:familyName Butler
166 schema:givenName Meghan
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147700313.12
168 rdf:type schema:Person
169 sg:person.01153753137.46 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
170 schema:familyName Pusztai
171 schema:givenName Lajos
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153753137.46
173 rdf:type schema:Person
174 sg:person.012370356375.87 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
175 schema:familyName Mani
176 schema:givenName Nikita L.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012370356375.87
178 rdf:type schema:Person
179 sg:person.01335065645.51 schema:affiliation https://www.grid.ac/institutes/grid.468198.a
180 schema:familyName Saglam
181 schema:givenName Ozlen
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335065645.51
183 rdf:type schema:Person
184 sg:person.01341513754.24 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
185 schema:familyName Tavassoli
186 schema:givenName Fattaneh
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341513754.24
188 rdf:type schema:Person
189 sg:person.01342613416.91 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
190 schema:familyName Chagpar
191 schema:givenName Anees B.
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342613416.91
193 rdf:type schema:Person
194 sg:person.0702425124.69 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
195 schema:familyName Schalper
196 schema:givenName Kurt A.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702425124.69
198 rdf:type schema:Person
199 sg:person.0754207153.13 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
200 schema:familyName Rimm
201 schema:givenName David L.
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754207153.13
203 rdf:type schema:Person
204 sg:pub.10.1038/modpathol.2016.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011141355
205 https://doi.org/10.1038/modpathol.2016.109
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nature13954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020455470
208 https://doi.org/10.1038/nature13954
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/nature14011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041312915
211 https://doi.org/10.1038/nature14011
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/nrc3245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034518617
214 https://doi.org/10.1038/nrc3245
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/onc.2009.416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042063808
217 https://doi.org/10.1038/onc.2009.416
218 rdf:type schema:CreativeWork
219 sg:pub.10.1186/bcr3148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014237989
220 https://doi.org/10.1186/bcr3148
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1001/jamaoncol.2015.0830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048236045
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.immuni.2013.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011676560
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/annonc/mdu450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052737833
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1093/annonc/mdv239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021527237
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/jnci/dju435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010536127
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1136/jclinpath-2015-203089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010697628
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1158/0008-5472.can-11-0431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021974319
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1158/1078-0432.ccr-14-1622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003164071
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1158/2159-8290.cd-14-0863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029393757
239 rdf:type schema:CreativeWork
240 https://www.grid.ac/institutes/grid.468198.a schema:alternateName Moffitt Cancer Center
241 schema:name Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
244 schema:name Department of Pathology, Yale School of Medicine, Yale University, 310 Cedar St., PO Box 208023, 06520-8023, New Haven, CT, USA
245 Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT, USA
246 Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...