Molecular profiling of hormone receptor-positive, HER2-negative breast cancers from patients treated with neoadjuvant endocrine therapy in the CARMINA 02 trial ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-11

AUTHORS

Xu Liang, Adrien Briaux, Véronique Becette, Camille Benoist, Anais Boulai, Walid Chemlali, Anne Schnitzler, Sylvain Baulande, Sofia Rivera, Marie-Ange Mouret-Reynier, Laurence Venat Bouvet, Thibaut De La Motte Rouge, Jérôme Lemonnier, Florence Lerebours, Céline Callens

ABSTRACT

BACKGROUND: Postmenopausal women with large, hormone receptor (HR)-positive/HER2-negative and low-proliferative breast cancer derived a benefit from neoadjuvant endocrine therapy (NET) in the CARMINA02 trial. This study was designed to correlate gene expression and mutation profiles with both response to NET and prognosis. METHODS: Gene expression profiling using RNA sequencing was performed in 86 pre-NET and post-NET tumor samples. Targeted next-generation sequencing of 91 candidate breast cancer-associated genes was performed on DNA samples from 89 patients. Molecular data were correlated with radiological response and relapse-free survival. RESULTS: The transcriptional profile of tumors to NET in responders involved immune-associated genes enriched in activated Th1 pathway, which remained unchanged in non-responders. Immune response was confirmed by analysis of tumor-infiltrating lymphocytes (TILs). The percentage of TILs was significantly increased post-NET compared to pre-NET samples in responders (p = 0.0071), but not in non-responders (p = 0.0938). Gene expression revealed that lipid metabolism was the main molecular function related to prognosis, while PPARγ is the most important upstream regulator gene. The most frequently mutated genes were PIK3CA (48.3%), CDH1 (20.2%), PTEN (15.7%), TP53 (10.1%), LAMA2 (10.1%), BRCA2 (9.0%), MAP3K1 (7.9%), ALK (6.7%), INPP4B (6.7%), NCOR1 (6.7%), and NF1 (5.6%). Cell cycle and apoptosis pathway and PIK3CA/AKT/mTOR pathway were altered significantly more frequently in non-responders than in responders (p = 0.0017 and p = 0.0094, respectively). The average number of mutations per sample was significantly higher in endocrine-resistant tumors (2.88 vs. 1.64, p = 0.03), but no difference was observed in terms of prognosis. ESR1 hotspot mutations were detected in 3.4% of treatment-naive tumors. CONCLUSIONS: The Th1-related immune system and lipid metabolism appear to play key roles in the response to endocrine therapy and prognosis in HR-positive/HER2-negative breast cancer. Deleterious somatic mutations in the cell cycle and apoptosis pathway and PIK3CA/AKT/mTOR pathway may be relevant for clinical management. TRIAL REGISTRATION: This trial is registered with ClinicalTrials.gov ( NCT00629616 ) on March 6, 2008, retrospectively registered. More... »

PAGES

124

References to SciGraph publications

  • 2008-03-09. Molecular signatures of neoadjuvant endocrine therapy for breast cancer: characteristics of response or intrinsic resistance in BREAST CANCER RESEARCH AND TREATMENT
  • 2010-05-02. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms in NATURE BIOTECHNOLOGY
  • 2016-03-18. Prognostic and Predictive Biomarkers of Endocrine Responsiveness for Estrogen Receptor Positive Breast Cancer in NOVEL BIOMARKERS IN THE CONTINUUM OF BREAST CANCER
  • 2013-04-25. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions in GENOME BIOLOGY
  • 2011-03-01. Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer in BREAST CANCER RESEARCH
  • 2009-10-21. Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer in BREAST CANCER RESEARCH AND TREATMENT
  • 2017-10-31. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer in BREAST CANCER
  • 2016-03-16. Clinical significance of the expression of autophagy-associated marker, beclin 1, in breast cancer patients who received neoadjuvant endocrine therapy in BMC CANCER
  • 2016-08-09. Aromatase inhibition remodels the clonal architecture of estrogen-receptor-positive breast cancers in NATURE COMMUNICATIONS
  • 2015-06-30. ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer in NATURE REVIEWS CLINICAL ONCOLOGY
  • 2010-04-29. Gene expression profiling and prediction of response to hormonal neoadjuvant treatment with anastrozole in surgically resectable breast cancer in BREAST CANCER RESEARCH AND TREATMENT
  • 2012-09-23. Comprehensive molecular portraits of human breast tumors in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13045-018-0670-9

    DOI

    http://dx.doi.org/10.1186/s13045-018-0670-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107535461

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30305115


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anastrozole", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antineoplastic Agents, Hormonal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Neoplasm", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fulvestrant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lymphocytes, Tumor-Infiltrating", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoadjuvant Therapy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Postmenopause", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Neoplasm", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Th1 Cells", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.418596.7", 
              "name": [
                "Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China", 
                "Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liang", 
            "givenName": "Xu", 
            "id": "sg:person.01162147270.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162147270.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.418596.7", 
              "name": [
                "Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Briaux", 
            "givenName": "Adrien", 
            "id": "sg:person.01137561627.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137561627.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biopathology, Curie Institute, Ren\u00e9 Huguenin Hospital, Saint-Cloud, France", 
              "id": "http://www.grid.ac/institutes/grid.418205.a", 
              "name": [
                "Department of Biopathology, Curie Institute, Ren\u00e9 Huguenin Hospital, Saint-Cloud, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Becette", 
            "givenName": "V\u00e9ronique", 
            "id": "sg:person.0677256620.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677256620.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.418596.7", 
              "name": [
                "Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benoist", 
            "givenName": "Camille", 
            "id": "sg:person.010662144121.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662144121.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.418596.7", 
              "name": [
                "Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boulai", 
            "givenName": "Anais", 
            "id": "sg:person.0737243140.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737243140.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.418596.7", 
              "name": [
                "Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chemlali", 
            "givenName": "Walid", 
            "id": "sg:person.0711375376.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711375376.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.418596.7", 
              "name": [
                "Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schnitzler", 
            "givenName": "Anne", 
            "id": "sg:person.0643262176.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643262176.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut Curie Genomics of Excellence (ICGex) Platform, Curie Institute, PSL Research University, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.418596.7", 
              "name": [
                "Institut Curie Genomics of Excellence (ICGex) Platform, Curie Institute, PSL Research University, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baulande", 
            "givenName": "Sylvain", 
            "id": "sg:person.01075423610.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075423610.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiotherapy, Gustave Roussy, Villejuif, France", 
              "id": "http://www.grid.ac/institutes/grid.14925.3b", 
              "name": [
                "Department of Radiotherapy, Gustave Roussy, Villejuif, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rivera", 
            "givenName": "Sofia", 
            "id": "sg:person.0704016445.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704016445.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Oncology, Centre Jean Perrin, Clermont-Ferrand, France", 
              "id": "http://www.grid.ac/institutes/grid.418113.e", 
              "name": [
                "Department of Medical Oncology, Centre Jean Perrin, Clermont-Ferrand, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mouret-Reynier", 
            "givenName": "Marie-Ange", 
            "id": "sg:person.0677500261.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677500261.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Oncology, CHU, Limoges, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Medical Oncology, CHU, Limoges, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bouvet", 
            "givenName": "Laurence Venat", 
            "id": "sg:person.013616164443.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013616164443.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Oncology, Centre Eugene Marquis, Rennes, France", 
              "id": "http://www.grid.ac/institutes/grid.417988.b", 
              "name": [
                "Department of Medical Oncology, Centre Eugene Marquis, Rennes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "De La Motte Rouge", 
            "givenName": "Thibaut", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "R&D Unicancer, UCBG, Paris, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "R&D Unicancer, UCBG, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lemonnier", 
            "givenName": "J\u00e9r\u00f4me", 
            "id": "sg:person.01176013267.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176013267.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Oncology, Curie Institute, Ren\u00e9 Huguenin Hospital, Saint-Cloud, France", 
              "id": "http://www.grid.ac/institutes/grid.418205.a", 
              "name": [
                "Department of Medical Oncology, Curie Institute, Ren\u00e9 Huguenin Hospital, Saint-Cloud, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lerebours", 
            "givenName": "Florence", 
            "id": "sg:person.01075435727.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075435727.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.418596.7", 
              "name": [
                "Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Callens", 
            "givenName": "C\u00e9line", 
            "id": "sg:person.01254174307.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254174307.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature11412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024942368", 
              "https://doi.org/10.1038/nature11412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-008-9897-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050984101", 
              "https://doi.org/10.1007/s10549-008-9897-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031035095", 
              "https://doi.org/10.1038/nbt.1621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-22909-6_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005541252", 
              "https://doi.org/10.1007/978-3-319-22909-6_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-010-0887-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041062559", 
              "https://doi.org/10.1007/s10549-010-0887-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr2833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023415107", 
              "https://doi.org/10.1186/bcr2833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12498", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034470951", 
              "https://doi.org/10.1038/ncomms12498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-4-r36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015459845", 
              "https://doi.org/10.1186/gb-2013-14-4-r36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2015.117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002958014", 
              "https://doi.org/10.1038/nrclinonc.2015.117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-009-0575-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011069188", 
              "https://doi.org/10.1007/s10549-009-0575-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12282-017-0812-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092457660", 
              "https://doi.org/10.1007/s12282-017-0812-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12885-016-2270-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014955638", 
              "https://doi.org/10.1186/s12885-016-2270-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10-11", 
        "datePublishedReg": "2018-10-11", 
        "description": "BACKGROUND: Postmenopausal women with large, hormone receptor (HR)-positive/HER2-negative and low-proliferative breast cancer derived a benefit from neoadjuvant endocrine therapy (NET) in the CARMINA02 trial. This study was designed to correlate gene expression and mutation profiles with both response to NET and prognosis.\nMETHODS: Gene expression profiling using RNA sequencing was performed in 86 pre-NET and post-NET tumor samples. Targeted next-generation sequencing of 91 candidate breast cancer-associated genes was performed on DNA samples from 89 patients. Molecular data were correlated with radiological response and relapse-free survival.\nRESULTS: The transcriptional profile of tumors to NET in responders involved immune-associated genes enriched in activated Th1 pathway, which remained unchanged in non-responders. Immune response was confirmed by analysis of tumor-infiltrating lymphocytes (TILs). The percentage of TILs was significantly increased post-NET compared to pre-NET samples in responders (p\u2009=\u20090.0071), but not in non-responders (p\u2009=\u20090.0938). Gene expression revealed that lipid metabolism was the main molecular function related to prognosis, while PPAR\u03b3 is the most important upstream regulator gene. The most frequently mutated genes were PIK3CA (48.3%), CDH1 (20.2%), PTEN (15.7%), TP53 (10.1%), LAMA2 (10.1%), BRCA2 (9.0%), MAP3K1 (7.9%), ALK (6.7%), INPP4B (6.7%), NCOR1 (6.7%), and NF1 (5.6%). Cell cycle and apoptosis pathway and PIK3CA/AKT/mTOR pathway were altered significantly more frequently in non-responders than in responders (p\u2009=\u20090.0017 and p\u2009=\u20090.0094, respectively). The average number of mutations per sample was significantly higher in endocrine-resistant tumors (2.88 vs. 1.64, p\u2009=\u00a00.03), but no difference was observed in terms of prognosis. ESR1 hotspot mutations were detected in 3.4% of treatment-naive tumors.\nCONCLUSIONS: The Th1-related immune system and lipid metabolism appear to play key roles in the response to endocrine therapy and prognosis in HR-positive/HER2-negative breast cancer. Deleterious somatic mutations in the cell cycle and apoptosis pathway and PIK3CA/AKT/mTOR pathway may be relevant for clinical management.\nTRIAL REGISTRATION: This trial is registered with ClinicalTrials.gov ( NCT00629616 ) on March 6, 2008, retrospectively registered.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13045-018-0670-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1039771", 
            "issn": [
              "1756-8722"
            ], 
            "name": "Journal of Hematology & Oncology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "neoadjuvant endocrine therapy", 
          "tumor-infiltrating lymphocytes", 
          "HER2-negative breast cancer", 
          "AKT/mTOR pathway", 
          "PIK3CA/AKT/mTOR pathway", 
          "breast cancer", 
          "endocrine therapy", 
          "percentage of TILs", 
          "mTOR pathway", 
          "lipid metabolism", 
          "gene expression", 
          "cell cycle", 
          "endocrine-resistant tumors", 
          "ESR1 hotspot mutations", 
          "treatment-naive tumors", 
          "relapse-free survival", 
          "apoptosis pathway", 
          "terms of prognosis", 
          "breast cancer-associated genes", 
          "immune-associated genes", 
          "main molecular functions", 
          "upstream regulator genes", 
          "gene expression profiling", 
          "Th1 pathway", 
          "postmenopausal women", 
          "radiological response", 
          "clinical management", 
          "immune response", 
          "molecular functions", 
          "cancer-associated genes", 
          "next-generation sequencing", 
          "molecular data", 
          "immune system", 
          "prognosis", 
          "transcriptional profiles", 
          "RNA sequencing", 
          "deleterious somatic mutations", 
          "regulator gene", 
          "tumor samples", 
          "expression profiling", 
          "hotspot mutations", 
          "hormone receptors", 
          "molecular profiling", 
          "therapy", 
          "tumors", 
          "cancer", 
          "responders", 
          "mutation profiles", 
          "trials", 
          "genes", 
          "patients", 
          "somatic mutations", 
          "pathway", 
          "DNA samples", 
          "mutations", 
          "sequencing", 
          "metabolism", 
          "profiling", 
          "response", 
          "key role", 
          "expression", 
          "lymphocytes", 
          "average number", 
          "PPAR\u03b3", 
          "hormone", 
          "LAMA2", 
          "ALK", 
          "women", 
          "receptors", 
          "TP53", 
          "survival", 
          "NCoR1", 
          "BRCA2", 
          "CDH1", 
          "MAP3K1", 
          "INPP4B", 
          "NF1", 
          "PTEN", 
          "samples", 
          "profile", 
          "percentage", 
          "cycle", 
          "management", 
          "differences", 
          "study", 
          "role", 
          "benefits", 
          "function", 
          "data", 
          "number", 
          "analysis", 
          "system", 
          "terms", 
          "low-proliferative breast cancer", 
          "CARMINA02 trial", 
          "post-NET tumor samples", 
          "candidate breast cancer-associated genes", 
          "pre-NET samples", 
          "important upstream regulator gene", 
          "Th1-related immune system", 
          "CARMINA 02 trial"
        ], 
        "name": "Molecular profiling of hormone receptor-positive, HER2-negative breast cancers from patients treated with neoadjuvant endocrine therapy in the CARMINA 02 trial (UCBG-0609)", 
        "pagination": "124", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107535461"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13045-018-0670-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30305115"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13045-018-0670-9", 
          "https://app.dimensions.ai/details/publication/pub.1107535461"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_778.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13045-018-0670-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13045-018-0670-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13045-018-0670-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13045-018-0670-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13045-018-0670-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    389 TRIPLES      22 PREDICATES      154 URIs      134 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13045-018-0670-9 schema:about N0d212be93b5645b79400ad691ecab814
    2 N2e4bab4338be4cbd88e968e9565bacc5
    3 N33d2e5cc10954eefb7087853d9b47abd
    4 N4ab8741ed4c844c885b33d413786fd4d
    5 N4fb3a70332014f03a771511cf0e6be4a
    6 N7589a10c9762416181a1b1f876fa3148
    7 N76041b40af6a4a04860e378614832e9e
    8 N8062314e42ee469f8abe4f836197d9cf
    9 Na5d3cc64f5a642c7b69afefaaa5054dd
    10 Naeda5fdaa66e44258149d620b626be12
    11 Nb5ca89261ae44555a2d7802e64658923
    12 Nc052874809f745b0ad3ddda1ccbe19e1
    13 Nc962b3b91bfa4137a4ef9666781acc0e
    14 Ncaae3ef8890149879507351064a3af2e
    15 Ncd9e8882e1ed4a408b9b421fc468dc7e
    16 anzsrc-for:11
    17 anzsrc-for:1112
    18 schema:author Nc20dd9612ea94bdb964afcc727d446a4
    19 schema:citation sg:pub.10.1007/978-3-319-22909-6_5
    20 sg:pub.10.1007/s10549-008-9897-4
    21 sg:pub.10.1007/s10549-009-0575-y
    22 sg:pub.10.1007/s10549-010-0887-y
    23 sg:pub.10.1007/s12282-017-0812-x
    24 sg:pub.10.1038/nature11412
    25 sg:pub.10.1038/nbt.1621
    26 sg:pub.10.1038/ncomms12498
    27 sg:pub.10.1038/nrclinonc.2015.117
    28 sg:pub.10.1186/bcr2833
    29 sg:pub.10.1186/gb-2013-14-4-r36
    30 sg:pub.10.1186/s12885-016-2270-9
    31 schema:datePublished 2018-10-11
    32 schema:datePublishedReg 2018-10-11
    33 schema:description BACKGROUND: Postmenopausal women with large, hormone receptor (HR)-positive/HER2-negative and low-proliferative breast cancer derived a benefit from neoadjuvant endocrine therapy (NET) in the CARMINA02 trial. This study was designed to correlate gene expression and mutation profiles with both response to NET and prognosis. METHODS: Gene expression profiling using RNA sequencing was performed in 86 pre-NET and post-NET tumor samples. Targeted next-generation sequencing of 91 candidate breast cancer-associated genes was performed on DNA samples from 89 patients. Molecular data were correlated with radiological response and relapse-free survival. RESULTS: The transcriptional profile of tumors to NET in responders involved immune-associated genes enriched in activated Th1 pathway, which remained unchanged in non-responders. Immune response was confirmed by analysis of tumor-infiltrating lymphocytes (TILs). The percentage of TILs was significantly increased post-NET compared to pre-NET samples in responders (p = 0.0071), but not in non-responders (p = 0.0938). Gene expression revealed that lipid metabolism was the main molecular function related to prognosis, while PPARγ is the most important upstream regulator gene. The most frequently mutated genes were PIK3CA (48.3%), CDH1 (20.2%), PTEN (15.7%), TP53 (10.1%), LAMA2 (10.1%), BRCA2 (9.0%), MAP3K1 (7.9%), ALK (6.7%), INPP4B (6.7%), NCOR1 (6.7%), and NF1 (5.6%). Cell cycle and apoptosis pathway and PIK3CA/AKT/mTOR pathway were altered significantly more frequently in non-responders than in responders (p = 0.0017 and p = 0.0094, respectively). The average number of mutations per sample was significantly higher in endocrine-resistant tumors (2.88 vs. 1.64, p = 0.03), but no difference was observed in terms of prognosis. ESR1 hotspot mutations were detected in 3.4% of treatment-naive tumors. CONCLUSIONS: The Th1-related immune system and lipid metabolism appear to play key roles in the response to endocrine therapy and prognosis in HR-positive/HER2-negative breast cancer. Deleterious somatic mutations in the cell cycle and apoptosis pathway and PIK3CA/AKT/mTOR pathway may be relevant for clinical management. TRIAL REGISTRATION: This trial is registered with ClinicalTrials.gov ( NCT00629616 ) on March 6, 2008, retrospectively registered.
    34 schema:genre article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf Na06e0baf87c94937b85338514cd5df8c
    38 Nf9dddebe11bf4f5f90b5a3ba824f0893
    39 sg:journal.1039771
    40 schema:keywords AKT/mTOR pathway
    41 ALK
    42 BRCA2
    43 CARMINA 02 trial
    44 CARMINA02 trial
    45 CDH1
    46 DNA samples
    47 ESR1 hotspot mutations
    48 HER2-negative breast cancer
    49 INPP4B
    50 LAMA2
    51 MAP3K1
    52 NCoR1
    53 NF1
    54 PIK3CA/AKT/mTOR pathway
    55 PPARγ
    56 PTEN
    57 RNA sequencing
    58 TP53
    59 Th1 pathway
    60 Th1-related immune system
    61 analysis
    62 apoptosis pathway
    63 average number
    64 benefits
    65 breast cancer
    66 breast cancer-associated genes
    67 cancer
    68 cancer-associated genes
    69 candidate breast cancer-associated genes
    70 cell cycle
    71 clinical management
    72 cycle
    73 data
    74 deleterious somatic mutations
    75 differences
    76 endocrine therapy
    77 endocrine-resistant tumors
    78 expression
    79 expression profiling
    80 function
    81 gene expression
    82 gene expression profiling
    83 genes
    84 hormone
    85 hormone receptors
    86 hotspot mutations
    87 immune response
    88 immune system
    89 immune-associated genes
    90 important upstream regulator gene
    91 key role
    92 lipid metabolism
    93 low-proliferative breast cancer
    94 lymphocytes
    95 mTOR pathway
    96 main molecular functions
    97 management
    98 metabolism
    99 molecular data
    100 molecular functions
    101 molecular profiling
    102 mutation profiles
    103 mutations
    104 neoadjuvant endocrine therapy
    105 next-generation sequencing
    106 number
    107 pathway
    108 patients
    109 percentage
    110 percentage of TILs
    111 post-NET tumor samples
    112 postmenopausal women
    113 pre-NET samples
    114 profile
    115 profiling
    116 prognosis
    117 radiological response
    118 receptors
    119 regulator gene
    120 relapse-free survival
    121 responders
    122 response
    123 role
    124 samples
    125 sequencing
    126 somatic mutations
    127 study
    128 survival
    129 system
    130 terms
    131 terms of prognosis
    132 therapy
    133 transcriptional profiles
    134 treatment-naive tumors
    135 trials
    136 tumor samples
    137 tumor-infiltrating lymphocytes
    138 tumors
    139 upstream regulator genes
    140 women
    141 schema:name Molecular profiling of hormone receptor-positive, HER2-negative breast cancers from patients treated with neoadjuvant endocrine therapy in the CARMINA 02 trial (UCBG-0609)
    142 schema:pagination 124
    143 schema:productId Na395ae514ce44bb4ac9b7ace28d8ba62
    144 Nd89847b1136c4e1994bbec7b89e78d70
    145 Nfbfd688b85714b1fba3164629c082579
    146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107535461
    147 https://doi.org/10.1186/s13045-018-0670-9
    148 schema:sdDatePublished 2021-11-01T18:33
    149 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    150 schema:sdPublisher Nd6ffa78c7b0c4e43ad5eec5221493ae6
    151 schema:url https://doi.org/10.1186/s13045-018-0670-9
    152 sgo:license sg:explorer/license/
    153 sgo:sdDataset articles
    154 rdf:type schema:ScholarlyArticle
    155 N0d212be93b5645b79400ad691ecab814 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name DNA, Neoplasm
    157 rdf:type schema:DefinedTerm
    158 N10eb9078bdf84645986242c5438e92a2 rdf:first sg:person.0737243140.42
    159 rdf:rest Nda8f432bd5b549a29520e5d17f45a4ac
    160 N1e7555ed44da4f3f8625aef9a0a8a34b rdf:first N3782f47344e64a8e98bc95057e0ba51a
    161 rdf:rest Nd2d94da4c4df4f6eaf058b3cf0052173
    162 N2e4bab4338be4cbd88e968e9565bacc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Gene Expression Profiling
    164 rdf:type schema:DefinedTerm
    165 N33d2e5cc10954eefb7087853d9b47abd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Breast Neoplasms
    167 rdf:type schema:DefinedTerm
    168 N3782f47344e64a8e98bc95057e0ba51a schema:affiliation grid-institutes:grid.417988.b
    169 schema:familyName De La Motte Rouge
    170 schema:givenName Thibaut
    171 rdf:type schema:Person
    172 N4ab8741ed4c844c885b33d413786fd4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Aged
    174 rdf:type schema:DefinedTerm
    175 N4e27a5b3c3f4453f85a3d2be77cb4e70 rdf:first sg:person.0704016445.09
    176 rdf:rest N81e8c7db12a5421bb12aaf4834b99a36
    177 N4fb3a70332014f03a771511cf0e6be4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Fulvestrant
    179 rdf:type schema:DefinedTerm
    180 N601fec6cdc274745840619bceb3f1244 rdf:first sg:person.01075435727.26
    181 rdf:rest Nb5b6ab0411514051abc4a79cda9e09f0
    182 N6aa8355e42224a2382ca83e609a9af23 rdf:first sg:person.013616164443.00
    183 rdf:rest N1e7555ed44da4f3f8625aef9a0a8a34b
    184 N7152b77320844041b1fc7bee24351fd8 rdf:first sg:person.010662144121.80
    185 rdf:rest N10eb9078bdf84645986242c5438e92a2
    186 N7589a10c9762416181a1b1f876fa3148 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Th1 Cells
    188 rdf:type schema:DefinedTerm
    189 N76041b40af6a4a04860e378614832e9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Anastrozole
    191 rdf:type schema:DefinedTerm
    192 N8062314e42ee469f8abe4f836197d9cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Postmenopause
    194 rdf:type schema:DefinedTerm
    195 N81e8c7db12a5421bb12aaf4834b99a36 rdf:first sg:person.0677500261.85
    196 rdf:rest N6aa8355e42224a2382ca83e609a9af23
    197 N82d0bb44a8fe40bf86aefa51a045e60c rdf:first sg:person.0643262176.71
    198 rdf:rest Na24cffa921e94688af0816b4d599f554
    199 N85cdf9d1d59043fbada450a20608cefb rdf:first sg:person.0677256620.87
    200 rdf:rest N7152b77320844041b1fc7bee24351fd8
    201 Na06e0baf87c94937b85338514cd5df8c schema:volumeNumber 11
    202 rdf:type schema:PublicationVolume
    203 Na24cffa921e94688af0816b4d599f554 rdf:first sg:person.01075423610.54
    204 rdf:rest N4e27a5b3c3f4453f85a3d2be77cb4e70
    205 Na395ae514ce44bb4ac9b7ace28d8ba62 schema:name dimensions_id
    206 schema:value pub.1107535461
    207 rdf:type schema:PropertyValue
    208 Na5d3cc64f5a642c7b69afefaaa5054dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Female
    210 rdf:type schema:DefinedTerm
    211 Naeda5fdaa66e44258149d620b626be12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Prognosis
    213 rdf:type schema:DefinedTerm
    214 Nb5b6ab0411514051abc4a79cda9e09f0 rdf:first sg:person.01254174307.24
    215 rdf:rest rdf:nil
    216 Nb5ca89261ae44555a2d7802e64658923 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    217 schema:name Humans
    218 rdf:type schema:DefinedTerm
    219 Nc052874809f745b0ad3ddda1ccbe19e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    220 schema:name Neoadjuvant Therapy
    221 rdf:type schema:DefinedTerm
    222 Nc20dd9612ea94bdb964afcc727d446a4 rdf:first sg:person.01162147270.55
    223 rdf:rest Nd820499c711949a3a6c4ef7bdb93a771
    224 Nc962b3b91bfa4137a4ef9666781acc0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    225 schema:name Antineoplastic Agents, Hormonal
    226 rdf:type schema:DefinedTerm
    227 Ncaae3ef8890149879507351064a3af2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    228 schema:name RNA, Neoplasm
    229 rdf:type schema:DefinedTerm
    230 Ncd9e8882e1ed4a408b9b421fc468dc7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    231 schema:name Lymphocytes, Tumor-Infiltrating
    232 rdf:type schema:DefinedTerm
    233 Nd2d94da4c4df4f6eaf058b3cf0052173 rdf:first sg:person.01176013267.91
    234 rdf:rest N601fec6cdc274745840619bceb3f1244
    235 Nd6ffa78c7b0c4e43ad5eec5221493ae6 schema:name Springer Nature - SN SciGraph project
    236 rdf:type schema:Organization
    237 Nd820499c711949a3a6c4ef7bdb93a771 rdf:first sg:person.01137561627.16
    238 rdf:rest N85cdf9d1d59043fbada450a20608cefb
    239 Nd89847b1136c4e1994bbec7b89e78d70 schema:name doi
    240 schema:value 10.1186/s13045-018-0670-9
    241 rdf:type schema:PropertyValue
    242 Nda8f432bd5b549a29520e5d17f45a4ac rdf:first sg:person.0711375376.07
    243 rdf:rest N82d0bb44a8fe40bf86aefa51a045e60c
    244 Nf9dddebe11bf4f5f90b5a3ba824f0893 schema:issueNumber 1
    245 rdf:type schema:PublicationIssue
    246 Nfbfd688b85714b1fba3164629c082579 schema:name pubmed_id
    247 schema:value 30305115
    248 rdf:type schema:PropertyValue
    249 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    250 schema:name Medical and Health Sciences
    251 rdf:type schema:DefinedTerm
    252 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    253 schema:name Oncology and Carcinogenesis
    254 rdf:type schema:DefinedTerm
    255 sg:journal.1039771 schema:issn 1756-8722
    256 schema:name Journal of Hematology & Oncology
    257 schema:publisher Springer Nature
    258 rdf:type schema:Periodical
    259 sg:person.010662144121.80 schema:affiliation grid-institutes:grid.418596.7
    260 schema:familyName Benoist
    261 schema:givenName Camille
    262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662144121.80
    263 rdf:type schema:Person
    264 sg:person.01075423610.54 schema:affiliation grid-institutes:grid.418596.7
    265 schema:familyName Baulande
    266 schema:givenName Sylvain
    267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075423610.54
    268 rdf:type schema:Person
    269 sg:person.01075435727.26 schema:affiliation grid-institutes:grid.418205.a
    270 schema:familyName Lerebours
    271 schema:givenName Florence
    272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075435727.26
    273 rdf:type schema:Person
    274 sg:person.01137561627.16 schema:affiliation grid-institutes:grid.418596.7
    275 schema:familyName Briaux
    276 schema:givenName Adrien
    277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137561627.16
    278 rdf:type schema:Person
    279 sg:person.01162147270.55 schema:affiliation grid-institutes:grid.418596.7
    280 schema:familyName Liang
    281 schema:givenName Xu
    282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162147270.55
    283 rdf:type schema:Person
    284 sg:person.01176013267.91 schema:affiliation grid-institutes:None
    285 schema:familyName Lemonnier
    286 schema:givenName Jérôme
    287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176013267.91
    288 rdf:type schema:Person
    289 sg:person.01254174307.24 schema:affiliation grid-institutes:grid.418596.7
    290 schema:familyName Callens
    291 schema:givenName Céline
    292 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254174307.24
    293 rdf:type schema:Person
    294 sg:person.013616164443.00 schema:affiliation grid-institutes:None
    295 schema:familyName Bouvet
    296 schema:givenName Laurence Venat
    297 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013616164443.00
    298 rdf:type schema:Person
    299 sg:person.0643262176.71 schema:affiliation grid-institutes:grid.418596.7
    300 schema:familyName Schnitzler
    301 schema:givenName Anne
    302 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643262176.71
    303 rdf:type schema:Person
    304 sg:person.0677256620.87 schema:affiliation grid-institutes:grid.418205.a
    305 schema:familyName Becette
    306 schema:givenName Véronique
    307 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677256620.87
    308 rdf:type schema:Person
    309 sg:person.0677500261.85 schema:affiliation grid-institutes:grid.418113.e
    310 schema:familyName Mouret-Reynier
    311 schema:givenName Marie-Ange
    312 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677500261.85
    313 rdf:type schema:Person
    314 sg:person.0704016445.09 schema:affiliation grid-institutes:grid.14925.3b
    315 schema:familyName Rivera
    316 schema:givenName Sofia
    317 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704016445.09
    318 rdf:type schema:Person
    319 sg:person.0711375376.07 schema:affiliation grid-institutes:grid.418596.7
    320 schema:familyName Chemlali
    321 schema:givenName Walid
    322 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711375376.07
    323 rdf:type schema:Person
    324 sg:person.0737243140.42 schema:affiliation grid-institutes:grid.418596.7
    325 schema:familyName Boulai
    326 schema:givenName Anais
    327 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737243140.42
    328 rdf:type schema:Person
    329 sg:pub.10.1007/978-3-319-22909-6_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005541252
    330 https://doi.org/10.1007/978-3-319-22909-6_5
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1007/s10549-008-9897-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050984101
    333 https://doi.org/10.1007/s10549-008-9897-4
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1007/s10549-009-0575-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1011069188
    336 https://doi.org/10.1007/s10549-009-0575-y
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1007/s10549-010-0887-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041062559
    339 https://doi.org/10.1007/s10549-010-0887-y
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1007/s12282-017-0812-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092457660
    342 https://doi.org/10.1007/s12282-017-0812-x
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1038/nature11412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024942368
    345 https://doi.org/10.1038/nature11412
    346 rdf:type schema:CreativeWork
    347 sg:pub.10.1038/nbt.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035095
    348 https://doi.org/10.1038/nbt.1621
    349 rdf:type schema:CreativeWork
    350 sg:pub.10.1038/ncomms12498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034470951
    351 https://doi.org/10.1038/ncomms12498
    352 rdf:type schema:CreativeWork
    353 sg:pub.10.1038/nrclinonc.2015.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002958014
    354 https://doi.org/10.1038/nrclinonc.2015.117
    355 rdf:type schema:CreativeWork
    356 sg:pub.10.1186/bcr2833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023415107
    357 https://doi.org/10.1186/bcr2833
    358 rdf:type schema:CreativeWork
    359 sg:pub.10.1186/gb-2013-14-4-r36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015459845
    360 https://doi.org/10.1186/gb-2013-14-4-r36
    361 rdf:type schema:CreativeWork
    362 sg:pub.10.1186/s12885-016-2270-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014955638
    363 https://doi.org/10.1186/s12885-016-2270-9
    364 rdf:type schema:CreativeWork
    365 grid-institutes:None schema:alternateName Department of Medical Oncology, CHU, Limoges, France
    366 R&D Unicancer, UCBG, Paris, France
    367 schema:name Department of Medical Oncology, CHU, Limoges, France
    368 R&D Unicancer, UCBG, Paris, France
    369 rdf:type schema:Organization
    370 grid-institutes:grid.14925.3b schema:alternateName Department of Radiotherapy, Gustave Roussy, Villejuif, France
    371 schema:name Department of Radiotherapy, Gustave Roussy, Villejuif, France
    372 rdf:type schema:Organization
    373 grid-institutes:grid.417988.b schema:alternateName Department of Medical Oncology, Centre Eugene Marquis, Rennes, France
    374 schema:name Department of Medical Oncology, Centre Eugene Marquis, Rennes, France
    375 rdf:type schema:Organization
    376 grid-institutes:grid.418113.e schema:alternateName Department of Medical Oncology, Centre Jean Perrin, Clermont-Ferrand, France
    377 schema:name Department of Medical Oncology, Centre Jean Perrin, Clermont-Ferrand, France
    378 rdf:type schema:Organization
    379 grid-institutes:grid.418205.a schema:alternateName Department of Biopathology, Curie Institute, René Huguenin Hospital, Saint-Cloud, France
    380 Department of Medical Oncology, Curie Institute, René Huguenin Hospital, Saint-Cloud, France
    381 schema:name Department of Biopathology, Curie Institute, René Huguenin Hospital, Saint-Cloud, France
    382 Department of Medical Oncology, Curie Institute, René Huguenin Hospital, Saint-Cloud, France
    383 rdf:type schema:Organization
    384 grid-institutes:grid.418596.7 schema:alternateName Institut Curie Genomics of Excellence (ICGex) Platform, Curie Institute, PSL Research University, Paris, France
    385 Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris, France
    386 schema:name Institut Curie Genomics of Excellence (ICGex) Platform, Curie Institute, PSL Research University, Paris, France
    387 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
    388 Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris, France
    389 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...