Methods for enhancing the reproducibility of biomedical research findings using electronic health records View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Spiros Denaxas, Kenan Direk, Arturo Gonzalez-Izquierdo, Maria Pikoula, Aylin Cakiroglu, Jason Moore, Harry Hemingway, Liam Smeeth

ABSTRACT

BACKGROUND: The ability of external investigators to reproduce published scientific findings is critical for the evaluation and validation of biomedical research by the wider community. However, a substantial proportion of health research using electronic health records (EHR), data collected and generated during clinical care, is potentially not reproducible mainly due to the fact that the implementation details of most data preprocessing, cleaning, phenotyping and analysis approaches are not systematically made available or shared. With the complexity, volume and variety of electronic health record data sources made available for research steadily increasing, it is critical to ensure that scientific findings from EHR data are reproducible and replicable by researchers. Reporting guidelines, such as RECORD and STROBE, have set a solid foundation by recommending a series of items for researchers to include in their research outputs. Researchers however often lack the technical tools and methodological approaches to actuate such recommendations in an efficient and sustainable manner. RESULTS: In this paper, we review and propose a series of methods and tools utilized in adjunct scientific disciplines that can be used to enhance the reproducibility of research using electronic health records and enable researchers to report analytical approaches in a transparent manner. Specifically, we discuss the adoption of scientific software engineering principles and best-practices such as test-driven development, source code revision control systems, literate programming and the standardization and re-use of common data management and analytical approaches. CONCLUSION: The adoption of such approaches will enable scientists to systematically document and share EHR analytical workflows and increase the reproducibility of biomedical research using such complex data sources. More... »

PAGES

31

References to SciGraph publications

  • 2002. Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis in COMPSTAT
  • 2002-05. Creating a bioinformatics nation in NATURE
  • 2010-12. Advancing standards for bioinformatics activities: persistence, reproducibility, disambiguation and Minimum Information About a Bioinformatics investigation (MIABi) in BMC GENOMICS
  • 2016-12. The tip of the iceberg: challenges of accessing hospital electronic health record data for biological data mining in BIODATA MINING
  • 2012-12. Applying semantic web technologies for phenome-wide scan using an electronic health record linked Biobank in JOURNAL OF BIOMEDICAL SEMANTICS
  • 2017-04. Reproducibility of computational workflows is automated using continuous analysis in NATURE BIOTECHNOLOGY
  • 2012-04. Genetic variants associated with the white blood cell count in 13,923 subjects in the eMERGE Network in HUMAN GENETICS
  • 2016-05-24. MIMIC-III, a freely accessible critical care database in SCIENTIFIC DATA
  • 2011-12. Reproducible computational biology experiments with SED-ML - The Simulation Experiment Description Markup Language in BMC SYSTEMS BIOLOGY
  • 2016-12. From the desktop to the grid: scalable bioinformatics via workflow conversion in BMC BIOINFORMATICS
  • 2002. A Simple and Practical Approach to Unit Testing: The JML and JUnit Way in ECOOP 2002 — OBJECT-ORIENTED PROGRAMMING
  • 2013-10. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future in GENETICS IN MEDICINE
  • 2004-09. Bioconductor: open software development for computational biology and bioinformatics in GENOME BIOLOGY
  • 2014-12. All hail reproducibility in microbiome research in MICROBIOME
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13040-017-0151-7

    DOI

    http://dx.doi.org/10.1186/s13040-017-0151-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091571417

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28912836


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Farr Institute", 
              "id": "https://www.grid.ac/institutes/grid.488827.9", 
              "name": [
                "Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, London, UK", 
                "Farr Institute of Health Informatics Research, 222 Euston Road, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Denaxas", 
            "givenName": "Spiros", 
            "id": "sg:person.01160000022.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160000022.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Farr Institute", 
              "id": "https://www.grid.ac/institutes/grid.488827.9", 
              "name": [
                "Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, London, UK", 
                "Farr Institute of Health Informatics Research, 222 Euston Road, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Direk", 
            "givenName": "Kenan", 
            "id": "sg:person.0756161576.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756161576.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Farr Institute", 
              "id": "https://www.grid.ac/institutes/grid.488827.9", 
              "name": [
                "Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, London, UK", 
                "Farr Institute of Health Informatics Research, 222 Euston Road, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gonzalez-Izquierdo", 
            "givenName": "Arturo", 
            "id": "sg:person.01041326411.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041326411.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Farr Institute", 
              "id": "https://www.grid.ac/institutes/grid.488827.9", 
              "name": [
                "Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, London, UK", 
                "Farr Institute of Health Informatics Research, 222 Euston Road, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pikoula", 
            "givenName": "Maria", 
            "id": "sg:person.012427523747.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012427523747.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Francis Crick Institute", 
              "id": "https://www.grid.ac/institutes/grid.451388.3", 
              "name": [
                "The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cakiroglu", 
            "givenName": "Aylin", 
            "id": "sg:person.01125310013.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125310013.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Institute of Biomedical Informatics, University of Pennsylvania, Richards Medical Research Laboratories, 3700 Hamilton Walk, 19104, Philadelphia, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moore", 
            "givenName": "Jason", 
            "id": "sg:person.07517464062.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07517464062.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Farr Institute", 
              "id": "https://www.grid.ac/institutes/grid.488827.9", 
              "name": [
                "Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, London, UK", 
                "Farr Institute of Health Informatics Research, 222 Euston Road, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hemingway", 
            "givenName": "Harry", 
            "id": "sg:person.01211316531.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211316531.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "London School of Hygiene & Tropical Medicine", 
              "id": "https://www.grid.ac/institutes/grid.8991.9", 
              "name": [
                "EHR Research Group, Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Streeet, WC1E 7HT, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smeeth", 
            "givenName": "Liam", 
            "id": "sg:person.01302111327.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302111327.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1126/scitranslmed.aad9072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000424742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijsu.2014.07.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001555843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-011-1103-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002451271", 
              "https://doi.org/10.1007/s00439-011-1103-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-011-1103-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002451271", 
              "https://doi.org/10.1007/s00439-011-1103-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2013.72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004067082", 
              "https://doi.org/10.1038/gim.2013.72"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/eurheartj/eht533", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004691809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1005265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006223190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pmed.1001885", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010135876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s2213-8587(14)70219-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010791943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011232850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/amiajnl-2012-001145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011684746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.4086505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011879039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxp014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012014547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pmed.0020124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012818229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pmed.0020124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012818229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pmed.0020124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012818229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2041-1480-3-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013771680", 
              "https://doi.org/10.1186/2041-1480-3-10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/242223.242257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014368099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-47993-7_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015567658", 
              "https://doi.org/10.1007/3-540-47993-7_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-016-0978-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016008070", 
              "https://doi.org/10.1186/s12859-016-0978-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018457673", 
              "https://doi.org/10.1186/gb-2004-5-10-r80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018944052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/504087.504088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019476317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ejhf.709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019875667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/scitranslmed.aaf5027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019985521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbu043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020000096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ije/dys188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021896957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1003285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022987921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024064234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.infsof.2015.08.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024290268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/jama.2014.4228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025428751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/comjnl/27.2.97", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026490561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ehjqcco/qcv005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028410533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/417119a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028449814", 
              "https://doi.org/10.1038/417119a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/417119a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028449814", 
              "https://doi.org/10.1038/417119a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/361598.361623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028771445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/ede.0b013e3181577511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030339329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/ede.0b013e3181577511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030339329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(14)60685-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032342746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-s4-s27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033264629", 
              "https://doi.org/10.1186/1471-2164-11-s4-s27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1002802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033440247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pmed.1001779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033632930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmp1500523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033636982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.2008.0096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035921197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circresaha.114.303819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035981827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circresaha.114.303819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035981827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sdata.2016.35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039633073", 
              "https://doi.org/10.1038/sdata.2016.35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.1002333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040242792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-5-198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041096855", 
              "https://doi.org/10.1186/1752-0509-5-198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-57489-4_89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042406449", 
              "https://doi.org/10.1007/978-3-642-57489-4_89"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-57489-4_89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042406449", 
              "https://doi.org/10.1007/978-3-642-57489-4_89"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/amiajnl-2012-000896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044436231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aje/kwi075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046929955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13040-016-0109-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047061174", 
              "https://doi.org/10.1186/s13040-016-0109-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13040-016-0109-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047061174", 
              "https://doi.org/10.1186/s13040-016-0109-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bmj.i3163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047331281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0099825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047823746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2049-2618-2-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049720568", 
              "https://doi.org/10.1186/2049-2618-2-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bmjopen-2016-012785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052598832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jamia/ocv112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059743974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/2.161279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061105103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mc.2005.314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061387428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcse.2006.122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061398048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcse.2012.41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061398519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1179653", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062460584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1179653", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062460584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1250475", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062469811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/scitranslmed.3001807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062686900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1198/106186007x178663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064199561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18637/jss.v019.i04", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068672290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18637/jss.v019.i08", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068672294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077321040", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078762111", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0171784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083861056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0171784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083861056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3780", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128638", 
              "https://doi.org/10.1038/nbt.3780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bmj.j909", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084224821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1005209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084270195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/eurheartj/ehx487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091131804"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "BACKGROUND: The ability of external investigators to reproduce published scientific findings is critical for the evaluation and validation of biomedical research by the wider community. However, a substantial proportion of health research using electronic health records (EHR), data collected and generated during clinical care, is potentially not reproducible mainly due to the fact that the implementation details of most data preprocessing, cleaning, phenotyping and analysis approaches are not systematically made available or shared. With the complexity, volume and variety of electronic health record data sources made available for research steadily increasing, it is critical to ensure that scientific findings from EHR data are reproducible and replicable by researchers. Reporting guidelines, such as RECORD and STROBE, have set a solid foundation by recommending a series of items for researchers to include in their research outputs. Researchers however often lack the technical tools and methodological approaches to actuate such recommendations in an efficient and sustainable manner.\nRESULTS: In this paper, we review and propose a series of methods and tools utilized in adjunct scientific disciplines that can be used to enhance the reproducibility of research using electronic health records and enable researchers to report analytical approaches in a transparent manner. Specifically, we discuss the adoption of scientific software engineering principles and best-practices such as test-driven development, source code revision control systems, literate programming and the standardization and re-use of common data management and analytical approaches.\nCONCLUSION: The adoption of such approaches will enable scientists to systematically document and share EHR analytical workflows and increase the reproducibility of biomedical research using such complex data sources.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13040-017-0151-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5144333", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6798143", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2776432", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2766268", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3638499", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1039156", 
            "issn": [
              "1756-0381"
            ], 
            "name": "BioData Mining", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Methods for enhancing the reproducibility of biomedical research findings using electronic health records", 
        "pagination": "31", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7a824417d3ed83bc6c5b2a68f3ae183aa3969820c411ab4f6771b2eddd2df556"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28912836"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101319161"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13040-017-0151-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091571417"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13040-017-0151-7", 
          "https://app.dimensions.ai/details/publication/pub.1091571417"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000552.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2Fs13040-017-0151-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13040-017-0151-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13040-017-0151-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13040-017-0151-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13040-017-0151-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    356 TRIPLES      21 PREDICATES      98 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13040-017-0151-7 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author Nbdcd8950ecfc4c99a344dbbb80523c12
    4 schema:citation sg:pub.10.1007/3-540-47993-7_10
    5 sg:pub.10.1007/978-3-642-57489-4_89
    6 sg:pub.10.1007/s00439-011-1103-9
    7 sg:pub.10.1038/417119a
    8 sg:pub.10.1038/gim.2013.72
    9 sg:pub.10.1038/nbt.3780
    10 sg:pub.10.1038/sdata.2016.35
    11 sg:pub.10.1186/1471-2164-11-s4-s27
    12 sg:pub.10.1186/1752-0509-5-198
    13 sg:pub.10.1186/2041-1480-3-10
    14 sg:pub.10.1186/2049-2618-2-8
    15 sg:pub.10.1186/gb-2004-5-10-r80
    16 sg:pub.10.1186/s12859-016-0978-9
    17 sg:pub.10.1186/s13040-016-0109-1
    18 https://app.dimensions.ai/details/publication/pub.1077321040
    19 https://app.dimensions.ai/details/publication/pub.1078762111
    20 https://doi.org/10.1001/jama.2014.4228
    21 https://doi.org/10.1002/ejhf.709
    22 https://doi.org/10.1016/j.ijsu.2014.07.013
    23 https://doi.org/10.1016/j.infsof.2015.08.004
    24 https://doi.org/10.1016/s0140-6736(14)60685-1
    25 https://doi.org/10.1016/s2213-8587(14)70219-0
    26 https://doi.org/10.1056/nejmp1500523
    27 https://doi.org/10.1093/aje/kwi075
    28 https://doi.org/10.1093/bib/bbu043
    29 https://doi.org/10.1093/bioinformatics/btp163
    30 https://doi.org/10.1093/bioinformatics/bts480
    31 https://doi.org/10.1093/biostatistics/kxp014
    32 https://doi.org/10.1093/comjnl/27.2.97
    33 https://doi.org/10.1093/ehjqcco/qcv005
    34 https://doi.org/10.1093/eurheartj/eht533
    35 https://doi.org/10.1093/eurheartj/ehx487
    36 https://doi.org/10.1093/ije/dys188
    37 https://doi.org/10.1093/jamia/ocv112
    38 https://doi.org/10.1093/nar/gkt328
    39 https://doi.org/10.1097/ede.0b013e3181577511
    40 https://doi.org/10.1098/rsta.2008.0096
    41 https://doi.org/10.1101/gr.4086505
    42 https://doi.org/10.1109/2.161279
    43 https://doi.org/10.1109/mc.2005.314
    44 https://doi.org/10.1109/mcse.2006.122
    45 https://doi.org/10.1109/mcse.2012.41
    46 https://doi.org/10.1126/science.1179653
    47 https://doi.org/10.1126/science.1250475
    48 https://doi.org/10.1126/scitranslmed.3001807
    49 https://doi.org/10.1126/scitranslmed.aad9072
    50 https://doi.org/10.1126/scitranslmed.aaf5027
    51 https://doi.org/10.1136/amiajnl-2012-000896
    52 https://doi.org/10.1136/amiajnl-2012-001145
    53 https://doi.org/10.1136/bmj.i3163
    54 https://doi.org/10.1136/bmj.j909
    55 https://doi.org/10.1136/bmjopen-2016-012785
    56 https://doi.org/10.1145/242223.242257
    57 https://doi.org/10.1145/361598.361623
    58 https://doi.org/10.1145/504087.504088
    59 https://doi.org/10.1161/circresaha.114.303819
    60 https://doi.org/10.1198/106186007x178663
    61 https://doi.org/10.1371/journal.pbio.1002333
    62 https://doi.org/10.1371/journal.pcbi.1002802
    63 https://doi.org/10.1371/journal.pcbi.1003285
    64 https://doi.org/10.1371/journal.pcbi.1005209
    65 https://doi.org/10.1371/journal.pcbi.1005265
    66 https://doi.org/10.1371/journal.pmed.0020124
    67 https://doi.org/10.1371/journal.pmed.1001779
    68 https://doi.org/10.1371/journal.pmed.1001885
    69 https://doi.org/10.1371/journal.pone.0099825
    70 https://doi.org/10.1371/journal.pone.0171784
    71 https://doi.org/10.18637/jss.v019.i04
    72 https://doi.org/10.18637/jss.v019.i08
    73 schema:datePublished 2017-12
    74 schema:datePublishedReg 2017-12-01
    75 schema:description BACKGROUND: The ability of external investigators to reproduce published scientific findings is critical for the evaluation and validation of biomedical research by the wider community. However, a substantial proportion of health research using electronic health records (EHR), data collected and generated during clinical care, is potentially not reproducible mainly due to the fact that the implementation details of most data preprocessing, cleaning, phenotyping and analysis approaches are not systematically made available or shared. With the complexity, volume and variety of electronic health record data sources made available for research steadily increasing, it is critical to ensure that scientific findings from EHR data are reproducible and replicable by researchers. Reporting guidelines, such as RECORD and STROBE, have set a solid foundation by recommending a series of items for researchers to include in their research outputs. Researchers however often lack the technical tools and methodological approaches to actuate such recommendations in an efficient and sustainable manner. RESULTS: In this paper, we review and propose a series of methods and tools utilized in adjunct scientific disciplines that can be used to enhance the reproducibility of research using electronic health records and enable researchers to report analytical approaches in a transparent manner. Specifically, we discuss the adoption of scientific software engineering principles and best-practices such as test-driven development, source code revision control systems, literate programming and the standardization and re-use of common data management and analytical approaches. CONCLUSION: The adoption of such approaches will enable scientists to systematically document and share EHR analytical workflows and increase the reproducibility of biomedical research using such complex data sources.
    76 schema:genre research_article
    77 schema:inLanguage en
    78 schema:isAccessibleForFree true
    79 schema:isPartOf N397729a8927a490a9c3643df271f9d7b
    80 N62ca831339534c9ebfa07e3d111adcbf
    81 sg:journal.1039156
    82 schema:name Methods for enhancing the reproducibility of biomedical research findings using electronic health records
    83 schema:pagination 31
    84 schema:productId N2a1fb353803346a6bd7673eba5c0f329
    85 N7f1802c0a67f4c42952b6a6b20beae9b
    86 N88edbbe9eb044ee3a5aef63bc1043089
    87 N94d54c0cf2c8481b935161969e189c97
    88 Nfa5e35e0ce704842a448d79217d314b3
    89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091571417
    90 https://doi.org/10.1186/s13040-017-0151-7
    91 schema:sdDatePublished 2019-04-10T14:17
    92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    93 schema:sdPublisher N84708c3fff3341efbb4a9532fe89e65a
    94 schema:url http://link.springer.com/10.1186%2Fs13040-017-0151-7
    95 sgo:license sg:explorer/license/
    96 sgo:sdDataset articles
    97 rdf:type schema:ScholarlyArticle
    98 N16f672cee1dd42e7a3984c63b8a8f2ca rdf:first sg:person.01211316531.27
    99 rdf:rest N9adad75241ae47f585d1de22c6e40269
    100 N28250bb5c89e40ae923bb4eb2d98ad55 rdf:first sg:person.012427523747.22
    101 rdf:rest N602bbc4ed91a42edb2f23e2b1f63ca4e
    102 N2a1fb353803346a6bd7673eba5c0f329 schema:name doi
    103 schema:value 10.1186/s13040-017-0151-7
    104 rdf:type schema:PropertyValue
    105 N33432af5aac04707bb55ff182708dc28 rdf:first sg:person.01041326411.13
    106 rdf:rest N28250bb5c89e40ae923bb4eb2d98ad55
    107 N397729a8927a490a9c3643df271f9d7b schema:volumeNumber 10
    108 rdf:type schema:PublicationVolume
    109 N602bbc4ed91a42edb2f23e2b1f63ca4e rdf:first sg:person.01125310013.16
    110 rdf:rest Nc7ef40f948b3462d990bf35c7bd33892
    111 N62ca831339534c9ebfa07e3d111adcbf schema:issueNumber 1
    112 rdf:type schema:PublicationIssue
    113 N7f1802c0a67f4c42952b6a6b20beae9b schema:name nlm_unique_id
    114 schema:value 101319161
    115 rdf:type schema:PropertyValue
    116 N84708c3fff3341efbb4a9532fe89e65a schema:name Springer Nature - SN SciGraph project
    117 rdf:type schema:Organization
    118 N88edbbe9eb044ee3a5aef63bc1043089 schema:name dimensions_id
    119 schema:value pub.1091571417
    120 rdf:type schema:PropertyValue
    121 N94d54c0cf2c8481b935161969e189c97 schema:name readcube_id
    122 schema:value 7a824417d3ed83bc6c5b2a68f3ae183aa3969820c411ab4f6771b2eddd2df556
    123 rdf:type schema:PropertyValue
    124 N9adad75241ae47f585d1de22c6e40269 rdf:first sg:person.01302111327.46
    125 rdf:rest rdf:nil
    126 Nbdcd8950ecfc4c99a344dbbb80523c12 rdf:first sg:person.01160000022.74
    127 rdf:rest Ncc47e27d970a472ea9710c479575f6ae
    128 Nc7ef40f948b3462d990bf35c7bd33892 rdf:first sg:person.07517464062.70
    129 rdf:rest N16f672cee1dd42e7a3984c63b8a8f2ca
    130 Ncc47e27d970a472ea9710c479575f6ae rdf:first sg:person.0756161576.42
    131 rdf:rest N33432af5aac04707bb55ff182708dc28
    132 Nfa5e35e0ce704842a448d79217d314b3 schema:name pubmed_id
    133 schema:value 28912836
    134 rdf:type schema:PropertyValue
    135 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Information and Computing Sciences
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Information Systems
    140 rdf:type schema:DefinedTerm
    141 sg:grant.2766268 http://pending.schema.org/fundedItem sg:pub.10.1186/s13040-017-0151-7
    142 rdf:type schema:MonetaryGrant
    143 sg:grant.2776432 http://pending.schema.org/fundedItem sg:pub.10.1186/s13040-017-0151-7
    144 rdf:type schema:MonetaryGrant
    145 sg:grant.3638499 http://pending.schema.org/fundedItem sg:pub.10.1186/s13040-017-0151-7
    146 rdf:type schema:MonetaryGrant
    147 sg:grant.5144333 http://pending.schema.org/fundedItem sg:pub.10.1186/s13040-017-0151-7
    148 rdf:type schema:MonetaryGrant
    149 sg:grant.6798143 http://pending.schema.org/fundedItem sg:pub.10.1186/s13040-017-0151-7
    150 rdf:type schema:MonetaryGrant
    151 sg:journal.1039156 schema:issn 1756-0381
    152 schema:name BioData Mining
    153 rdf:type schema:Periodical
    154 sg:person.01041326411.13 schema:affiliation https://www.grid.ac/institutes/grid.488827.9
    155 schema:familyName Gonzalez-Izquierdo
    156 schema:givenName Arturo
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041326411.13
    158 rdf:type schema:Person
    159 sg:person.01125310013.16 schema:affiliation https://www.grid.ac/institutes/grid.451388.3
    160 schema:familyName Cakiroglu
    161 schema:givenName Aylin
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125310013.16
    163 rdf:type schema:Person
    164 sg:person.01160000022.74 schema:affiliation https://www.grid.ac/institutes/grid.488827.9
    165 schema:familyName Denaxas
    166 schema:givenName Spiros
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160000022.74
    168 rdf:type schema:Person
    169 sg:person.01211316531.27 schema:affiliation https://www.grid.ac/institutes/grid.488827.9
    170 schema:familyName Hemingway
    171 schema:givenName Harry
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211316531.27
    173 rdf:type schema:Person
    174 sg:person.012427523747.22 schema:affiliation https://www.grid.ac/institutes/grid.488827.9
    175 schema:familyName Pikoula
    176 schema:givenName Maria
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012427523747.22
    178 rdf:type schema:Person
    179 sg:person.01302111327.46 schema:affiliation https://www.grid.ac/institutes/grid.8991.9
    180 schema:familyName Smeeth
    181 schema:givenName Liam
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302111327.46
    183 rdf:type schema:Person
    184 sg:person.07517464062.70 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    185 schema:familyName Moore
    186 schema:givenName Jason
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07517464062.70
    188 rdf:type schema:Person
    189 sg:person.0756161576.42 schema:affiliation https://www.grid.ac/institutes/grid.488827.9
    190 schema:familyName Direk
    191 schema:givenName Kenan
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756161576.42
    193 rdf:type schema:Person
    194 sg:pub.10.1007/3-540-47993-7_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015567658
    195 https://doi.org/10.1007/3-540-47993-7_10
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/978-3-642-57489-4_89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042406449
    198 https://doi.org/10.1007/978-3-642-57489-4_89
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s00439-011-1103-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002451271
    201 https://doi.org/10.1007/s00439-011-1103-9
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/417119a schema:sameAs https://app.dimensions.ai/details/publication/pub.1028449814
    204 https://doi.org/10.1038/417119a
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/gim.2013.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004067082
    207 https://doi.org/10.1038/gim.2013.72
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nbt.3780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128638
    210 https://doi.org/10.1038/nbt.3780
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/sdata.2016.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039633073
    213 https://doi.org/10.1038/sdata.2016.35
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1186/1471-2164-11-s4-s27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033264629
    216 https://doi.org/10.1186/1471-2164-11-s4-s27
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1186/1752-0509-5-198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041096855
    219 https://doi.org/10.1186/1752-0509-5-198
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1186/2041-1480-3-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013771680
    222 https://doi.org/10.1186/2041-1480-3-10
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1186/2049-2618-2-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049720568
    225 https://doi.org/10.1186/2049-2618-2-8
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
    228 https://doi.org/10.1186/gb-2004-5-10-r80
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1186/s12859-016-0978-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016008070
    231 https://doi.org/10.1186/s12859-016-0978-9
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1186/s13040-016-0109-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047061174
    234 https://doi.org/10.1186/s13040-016-0109-1
    235 rdf:type schema:CreativeWork
    236 https://app.dimensions.ai/details/publication/pub.1077321040 schema:CreativeWork
    237 https://app.dimensions.ai/details/publication/pub.1078762111 schema:CreativeWork
    238 https://doi.org/10.1001/jama.2014.4228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025428751
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1002/ejhf.709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019875667
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1016/j.ijsu.2014.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001555843
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1016/j.infsof.2015.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024290268
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1016/s0140-6736(14)60685-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032342746
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1016/s2213-8587(14)70219-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010791943
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1056/nejmp1500523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033636982
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/aje/kwi075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046929955
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1093/bib/bbu043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020000096
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1093/bioinformatics/btp163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011232850
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1093/bioinformatics/bts480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018944052
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1093/biostatistics/kxp014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012014547
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1093/comjnl/27.2.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026490561
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1093/ehjqcco/qcv005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028410533
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1093/eurheartj/eht533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004691809
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1093/eurheartj/ehx487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091131804
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1093/ije/dys188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021896957
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1093/jamia/ocv112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059743974
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1093/nar/gkt328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024064234
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1097/ede.0b013e3181577511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030339329
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1098/rsta.2008.0096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035921197
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1101/gr.4086505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011879039
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1109/2.161279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061105103
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1109/mc.2005.314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061387428
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1109/mcse.2006.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398048
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1109/mcse.2012.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398519
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1126/science.1179653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460584
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1126/science.1250475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062469811
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1126/scitranslmed.3001807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062686900
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1126/scitranslmed.aad9072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000424742
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1126/scitranslmed.aaf5027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019985521
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1136/amiajnl-2012-000896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044436231
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1136/amiajnl-2012-001145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011684746
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1136/bmj.i3163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047331281
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1136/bmj.j909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084224821
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1136/bmjopen-2016-012785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052598832
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1145/242223.242257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014368099
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1145/361598.361623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028771445
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1145/504087.504088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019476317
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1161/circresaha.114.303819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035981827
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1198/106186007x178663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199561
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1371/journal.pbio.1002333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040242792
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1371/journal.pcbi.1002802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033440247
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1371/journal.pcbi.1003285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022987921
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1371/journal.pcbi.1005209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084270195
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1371/journal.pcbi.1005265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006223190
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1371/journal.pmed.0020124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012818229
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1371/journal.pmed.1001779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033632930
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1371/journal.pmed.1001885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010135876
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1371/journal.pone.0099825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047823746
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.1371/journal.pone.0171784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083861056
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.18637/jss.v019.i04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672290
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.18637/jss.v019.i08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672294
    343 rdf:type schema:CreativeWork
    344 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
    345 schema:name Institute of Biomedical Informatics, University of Pennsylvania, Richards Medical Research Laboratories, 3700 Hamilton Walk, 19104, Philadelphia, USA
    346 rdf:type schema:Organization
    347 https://www.grid.ac/institutes/grid.451388.3 schema:alternateName The Francis Crick Institute
    348 schema:name The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
    349 rdf:type schema:Organization
    350 https://www.grid.ac/institutes/grid.488827.9 schema:alternateName Farr Institute
    351 schema:name Farr Institute of Health Informatics Research, 222 Euston Road, London, UK
    352 Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, London, UK
    353 rdf:type schema:Organization
    354 https://www.grid.ac/institutes/grid.8991.9 schema:alternateName London School of Hygiene & Tropical Medicine
    355 schema:name EHR Research Group, Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Streeet, WC1E 7HT, London, UK
    356 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...