The optimal crowd learning machine View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Bilguunzaya Battogtokh, Majid Mojirsheibani, James Malley

ABSTRACT

BACKGROUND: Any family of learning machines can be combined into a single learning machine using various methods with myriad degrees of usefulness. RESULTS: For making predictions on an outcome, it is provably at least as good as the best machine in the family, given sufficient data. And if one machine in the family minimizes the probability of misclassification, in the limit of large data, then Optimal Crowd does also. That is, the Optimal Crowd is asymptotically Bayes optimal if any machine in the crowd is such. CONCLUSIONS: The only assumption needed for proving optimality is that the outcome variable is bounded. The scheme is illustrated using real-world data from the UCI machine learning site, and possible extensions are proposed. More... »

PAGES

16

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13040-017-0135-7

DOI

http://dx.doi.org/10.1186/s13040-017-0135-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085438860

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28533819


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Information Technology", 
          "id": "https://www.grid.ac/institutes/grid.410422.1", 
          "name": [
            "Center for Information Technology, National Institutes of Health, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Battogtokh", 
        "givenName": "Bilguunzaya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "California State University, Northridge", 
          "id": "https://www.grid.ac/institutes/grid.253563.4", 
          "name": [
            "Department of Mathematics, California State University Northridge, Northridge, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mojirsheibani", 
        "givenName": "Majid", 
        "id": "sg:person.015672564570.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015672564570.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Information Technology", 
          "id": "https://www.grid.ac/institutes/grid.410422.1", 
          "name": [
            "Center for Information Technology, National Institutes of Health, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malley", 
        "givenName": "James", 
        "id": "sg:person.01206263614.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206263614.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0167-7152(97)00047-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003530570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13040-014-0028-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013162558", 
          "https://doi.org/10.1186/s13040-014-0028-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13040-014-0028-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013162558", 
          "https://doi.org/10.1186/s13040-014-0028-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmva.2015.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015385206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-015-0571-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032522628", 
          "https://doi.org/10.1007/s00180-015-0571-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmva.2001.1990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036516646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2016.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046430216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2016.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046430216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2016.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046430216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0381-7-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052649884", 
          "https://doi.org/10.1186/1756-0381-7-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1999.10474154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3414/me00-01-0052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071311913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511975820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098680594"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "BACKGROUND: Any family of learning machines can be combined into a single learning machine using various methods with myriad degrees of usefulness.\nRESULTS: For making predictions on an outcome, it is provably at least as good as the best machine in the family, given sufficient data. And if one machine in the family minimizes the probability of misclassification, in the limit of large data, then Optimal Crowd does also. That is, the Optimal Crowd is asymptotically Bayes optimal if any machine in the crowd is such.\nCONCLUSIONS: The only assumption needed for proving optimality is that the outcome variable is bounded. The scheme is illustrated using real-world data from the UCI machine learning site, and possible extensions are proposed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13040-017-0135-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2724461", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039156", 
        "issn": [
          "1756-0381"
        ], 
        "name": "BioData Mining", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "The optimal crowd learning machine", 
    "pagination": "16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4a4f49d4c4a4a34630775d2606add44fbafa113ada1a9b5d391bab92874270f1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28533819"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101319161"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13040-017-0135-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085438860"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13040-017-0135-7", 
      "https://app.dimensions.ai/details/publication/pub.1085438860"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89814_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13040-017-0135-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13040-017-0135-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13040-017-0135-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13040-017-0135-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13040-017-0135-7'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      21 PREDICATES      39 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13040-017-0135-7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N9532b46ef7ab4ff9a7dbad6e44b6125b
4 schema:citation sg:pub.10.1007/s00180-015-0571-0
5 sg:pub.10.1186/1756-0381-7-2
6 sg:pub.10.1186/s13040-014-0028-y
7 https://doi.org/10.1006/jmva.2001.1990
8 https://doi.org/10.1016/j.jmva.2015.04.007
9 https://doi.org/10.1016/j.spl.2016.07.017
10 https://doi.org/10.1016/s0167-7152(97)00047-3
11 https://doi.org/10.1017/cbo9780511975820
12 https://doi.org/10.1080/01621459.1999.10474154
13 https://doi.org/10.3414/me00-01-0052
14 schema:datePublished 2017-12
15 schema:datePublishedReg 2017-12-01
16 schema:description BACKGROUND: Any family of learning machines can be combined into a single learning machine using various methods with myriad degrees of usefulness. RESULTS: For making predictions on an outcome, it is provably at least as good as the best machine in the family, given sufficient data. And if one machine in the family minimizes the probability of misclassification, in the limit of large data, then Optimal Crowd does also. That is, the Optimal Crowd is asymptotically Bayes optimal if any machine in the crowd is such. CONCLUSIONS: The only assumption needed for proving optimality is that the outcome variable is bounded. The scheme is illustrated using real-world data from the UCI machine learning site, and possible extensions are proposed.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N798d1017fe9f43eba422fd5e592b7c9d
21 N7f2fcc25bcb94d52b7ef09e8f9f22765
22 sg:journal.1039156
23 schema:name The optimal crowd learning machine
24 schema:pagination 16
25 schema:productId N28c53374d6e6479c8e8a49aeb895bdf1
26 N33756424a6894d4fbfcaff5ec7de49d9
27 Nd62f5e08e99d460882674ab90485f6dc
28 Nf8f5633d8d33453e82d98936c646921d
29 Nff9ddb7967f5469399bffbd9e7dbcfd1
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085438860
31 https://doi.org/10.1186/s13040-017-0135-7
32 schema:sdDatePublished 2019-04-11T09:59
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Ne75a9528a7714274aee068e4aa26e20f
35 schema:url https://link.springer.com/10.1186%2Fs13040-017-0135-7
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N03b69126220a4ff6a40e5926987fe41e rdf:first sg:person.01206263614.76
40 rdf:rest rdf:nil
41 N28c53374d6e6479c8e8a49aeb895bdf1 schema:name nlm_unique_id
42 schema:value 101319161
43 rdf:type schema:PropertyValue
44 N33756424a6894d4fbfcaff5ec7de49d9 schema:name readcube_id
45 schema:value 4a4f49d4c4a4a34630775d2606add44fbafa113ada1a9b5d391bab92874270f1
46 rdf:type schema:PropertyValue
47 N708da427bcde4271ab9adc6f70765b5f schema:affiliation https://www.grid.ac/institutes/grid.410422.1
48 schema:familyName Battogtokh
49 schema:givenName Bilguunzaya
50 rdf:type schema:Person
51 N798d1017fe9f43eba422fd5e592b7c9d schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 N7f2fcc25bcb94d52b7ef09e8f9f22765 schema:volumeNumber 10
54 rdf:type schema:PublicationVolume
55 N9532b46ef7ab4ff9a7dbad6e44b6125b rdf:first N708da427bcde4271ab9adc6f70765b5f
56 rdf:rest Nf681e931b7514aa6b48eb146be8648c8
57 Nd62f5e08e99d460882674ab90485f6dc schema:name pubmed_id
58 schema:value 28533819
59 rdf:type schema:PropertyValue
60 Ne75a9528a7714274aee068e4aa26e20f schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Nf681e931b7514aa6b48eb146be8648c8 rdf:first sg:person.015672564570.30
63 rdf:rest N03b69126220a4ff6a40e5926987fe41e
64 Nf8f5633d8d33453e82d98936c646921d schema:name dimensions_id
65 schema:value pub.1085438860
66 rdf:type schema:PropertyValue
67 Nff9ddb7967f5469399bffbd9e7dbcfd1 schema:name doi
68 schema:value 10.1186/s13040-017-0135-7
69 rdf:type schema:PropertyValue
70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
71 schema:name Mathematical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
74 schema:name Statistics
75 rdf:type schema:DefinedTerm
76 sg:grant.2724461 http://pending.schema.org/fundedItem sg:pub.10.1186/s13040-017-0135-7
77 rdf:type schema:MonetaryGrant
78 sg:journal.1039156 schema:issn 1756-0381
79 schema:name BioData Mining
80 rdf:type schema:Periodical
81 sg:person.01206263614.76 schema:affiliation https://www.grid.ac/institutes/grid.410422.1
82 schema:familyName Malley
83 schema:givenName James
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206263614.76
85 rdf:type schema:Person
86 sg:person.015672564570.30 schema:affiliation https://www.grid.ac/institutes/grid.253563.4
87 schema:familyName Mojirsheibani
88 schema:givenName Majid
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015672564570.30
90 rdf:type schema:Person
91 sg:pub.10.1007/s00180-015-0571-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032522628
92 https://doi.org/10.1007/s00180-015-0571-0
93 rdf:type schema:CreativeWork
94 sg:pub.10.1186/1756-0381-7-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052649884
95 https://doi.org/10.1186/1756-0381-7-2
96 rdf:type schema:CreativeWork
97 sg:pub.10.1186/s13040-014-0028-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1013162558
98 https://doi.org/10.1186/s13040-014-0028-y
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1006/jmva.2001.1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036516646
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.jmva.2015.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015385206
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.spl.2016.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046430216
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0167-7152(97)00047-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003530570
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1017/cbo9780511975820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098680594
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1080/01621459.1999.10474154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305603
111 rdf:type schema:CreativeWork
112 https://doi.org/10.3414/me00-01-0052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071311913
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.253563.4 schema:alternateName California State University, Northridge
115 schema:name Department of Mathematics, California State University Northridge, Northridge, CA, USA
116 rdf:type schema:Organization
117 https://www.grid.ac/institutes/grid.410422.1 schema:alternateName Center for Information Technology
118 schema:name Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...