Human three-dimensional in vitro model of hepatic zonation to predict zonal hepatotoxicity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Jaehwan Ahn, Jun-Ho Ahn, Seokjoo Yoon, Yoon Sung Nam, Mi-Young Son, Jung-Hwa Oh

ABSTRACT

Background: Various hepatic models mimicking liver lobules have been investigated to evaluate the potential hepatotoxic effects of chemicals and drugs, but in vitro hepatic models of zonal hepatotoxicity have not yet been established. Herein, we developed a three-dimensional (3D) hepatic zonal channel to evaluate zone-specific hepatotoxicity. Based on the perivenous zone-3-like cytochrome P450 (CYP) expression patterns in metabolically active HepaRG cells treated with CHIR99021 (CHIR), which is an inducer of Wnt/β-catenin signaling, this culture model represents a novel tool for exploring hepatic zonation. Results: We generated and validated a 3D hepatic zonal channel model in which 3D HepaRG cells were well distributed in agarose hydrogel channels, and a linear gradient of CHIR was generated according to the zonal distance. According to the results from imaging analyses and bioanalytical experiments, acetaminophen (APAP) caused cytotoxicity in the zone-3 region of the 3D hepatic zonal channel, and the levels of nonphosphorylated β-catenin, CYP2E, and apoptotic proteins were remarkably increased in the zone-3-like region. Finally, the applicability of the 3D hepatic zonal channel model for the high-throughput screening of zonal hepatotoxicity was successfully evaluated using hepatotoxic drugs, including tamoxifen, bromobenzene, and APAP. Conclusions: The results indicated that tamoxifen induced cytotoxic effects, regardless of the zonal distance, while the zone-3-specific hepatotoxic drugs bromobenzene and APAP induced greater cytotoxic effects on cells in the zone-3-like region. This finding highlights the potential of our 3D hepatic zonation model as a valuable tool for replicating and evaluating zonal hepatotoxicity by mimicking the spatial features of liver lobules. More... »

PAGES

22

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13036-019-0148-5

DOI

http://dx.doi.org/10.1186/s13036-019-0148-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112593540

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30886645


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea Institute of Toxicology", 
          "id": "https://www.grid.ac/institutes/grid.418982.e", 
          "name": [
            "Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea", 
            "Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), 34114, Daejeon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Jaehwan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Toxicology", 
          "id": "https://www.grid.ac/institutes/grid.418982.e", 
          "name": [
            "Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), 34114, Daejeon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Jun-Ho", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Toxicology", 
          "id": "https://www.grid.ac/institutes/grid.418982.e", 
          "name": [
            "Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), 34114, Daejeon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Seokjoo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Advanced Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.37172.30", 
          "name": [
            "Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nam", 
        "givenName": "Yoon Sung", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.412786.e", 
          "name": [
            "Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 34141, Daejeon, Republic of Korea", 
            "Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Son", 
        "givenName": "Mi-Young", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Toxicology", 
          "id": "https://www.grid.ac/institutes/grid.418982.e", 
          "name": [
            "Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), 34114, Daejeon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Jung-Hwa", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1124/dmd.109.030197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003343512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-385233-5.00005-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003445294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/mol.114.094797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006137255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bm4015039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006609017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3290017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007253335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3290017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007253335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/toxsci/kfi052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008160726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.510310201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008519492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-7107-4_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008702764", 
          "https://doi.org/10.1007/978-1-4419-7107-4_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep26868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009614741", 
          "https://doi.org/10.1038/srep26868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.nu.16.070196.001143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009673344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2013.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010494491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ki.1997.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011544280", 
          "https://doi.org/10.1038/ki.1997.53"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10565-011-9208-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011794647", 
          "https://doi.org/10.1007/s10565-011-9208-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10565-011-9208-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011794647", 
          "https://doi.org/10.1007/s10565-011-9208-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/biot.200700228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012544415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.devcel.2006.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012581109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb3349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012767848", 
          "https://doi.org/10.1038/ncb3349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proghi.2006.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013775702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023234429596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018406671", 
          "https://doi.org/10.1023/a:1023234429596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.20485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018465052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cbi.2006.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019687345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-8165(76)80083-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021316627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/mol.114.097402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021988890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ar.1091190103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027913350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2014.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028105615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/fjc.0000000000000429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035193951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/fjc.0000000000000429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035193951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra021844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035982169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/rtph.2000.1399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036505614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20121284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036594313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20121284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036594313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbt.10085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039359315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.redox.2017.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042137012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6tx00101g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042382011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/toxsci/kft021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042568964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1524510113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043048110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14218/jcth.2014.00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044823153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsb.2016.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045582343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0163-7258(92)90055-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046910372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0163-7258(92)90055-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046910372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.10569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047436462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1317731111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050414309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vascn.2010.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051491760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2133/dmpk.dmpk-10-rv-089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051744378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03602530601093489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053424820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2008-1040554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057535947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01926230590522121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058308211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01926230590522121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058308211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/toxsci/kfv177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060056834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/nan.12396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083909380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fj.201700504r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091381792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/emm.2017.226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099669803", 
          "https://doi.org/10.1038/emm.2017.226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00204-018-2152-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100559716", 
          "https://doi.org/10.1007/s00204-018-2152-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-05450-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105886897", 
          "https://doi.org/10.1038/s41467-018-05450-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Background: Various hepatic models mimicking liver lobules have been investigated to evaluate the potential hepatotoxic effects of chemicals and drugs, but in vitro hepatic models of zonal hepatotoxicity have not yet been established. Herein, we developed a three-dimensional (3D) hepatic zonal channel to evaluate zone-specific hepatotoxicity. Based on the perivenous zone-3-like cytochrome P450 (CYP) expression patterns in metabolically active HepaRG cells treated with CHIR99021 (CHIR), which is an inducer of Wnt/\u03b2-catenin signaling, this culture model represents a novel tool for exploring hepatic zonation.\nResults: We generated and validated a 3D hepatic zonal channel model in which 3D HepaRG cells were well distributed in agarose hydrogel channels, and a linear gradient of CHIR was generated according to the zonal distance. According to the results from imaging analyses and bioanalytical experiments, acetaminophen (APAP) caused cytotoxicity in the zone-3 region of the 3D hepatic zonal channel, and the levels of nonphosphorylated \u03b2-catenin, CYP2E, and apoptotic proteins were remarkably increased in the zone-3-like region. Finally, the applicability of the 3D hepatic zonal channel model for the high-throughput screening of zonal hepatotoxicity was successfully evaluated using hepatotoxic drugs, including tamoxifen, bromobenzene, and APAP.\nConclusions: The results indicated that tamoxifen induced cytotoxic effects, regardless of the zonal distance, while the zone-3-specific hepatotoxic drugs bromobenzene and APAP induced greater cytotoxic effects on cells in the zone-3-like region. This finding highlights the potential of our 3D hepatic zonation model as a valuable tool for replicating and evaluating zonal hepatotoxicity by mimicking the spatial features of liver lobules.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13036-019-0148-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7491703", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1038668", 
        "issn": [
          "1754-1611"
        ], 
        "name": "Journal of Biological Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Human three-dimensional in vitro model of hepatic zonation to predict zonal hepatotoxicity", 
    "pagination": "22", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "56aea597dfc41070dccf9276d8c18bc61e7dd4fcf4023dbe644ad8a8aec69b06"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30886645"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101306640"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13036-019-0148-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112593540"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13036-019-0148-5", 
      "https://app.dimensions.ai/details/publication/pub.1112593540"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78935_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13036-019-0148-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13036-019-0148-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13036-019-0148-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13036-019-0148-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13036-019-0148-5'


 

This table displays all metadata directly associated to this object as RDF triples.

263 TRIPLES      21 PREDICATES      78 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13036-019-0148-5 schema:about anzsrc-for:11
2 anzsrc-for:1115
3 schema:author Nb05b93d23dae4dbda04ede9752cae567
4 schema:citation sg:pub.10.1007/978-1-4419-7107-4_2
5 sg:pub.10.1007/s00204-018-2152-9
6 sg:pub.10.1007/s10565-011-9208-4
7 sg:pub.10.1023/a:1023234429596
8 sg:pub.10.1038/emm.2017.226
9 sg:pub.10.1038/ki.1997.53
10 sg:pub.10.1038/ncb3349
11 sg:pub.10.1038/s41467-018-05450-8
12 sg:pub.10.1038/srep26868
13 https://doi.org/10.1002/ar.1091190103
14 https://doi.org/10.1002/bies.20485
15 https://doi.org/10.1002/biot.200700228
16 https://doi.org/10.1002/bit.10569
17 https://doi.org/10.1002/hep.510310201
18 https://doi.org/10.1002/jbt.10085
19 https://doi.org/10.1006/rtph.2000.1399
20 https://doi.org/10.1016/0163-7258(92)90055-5
21 https://doi.org/10.1016/b978-0-12-385233-5.00005-2
22 https://doi.org/10.1016/j.apsb.2016.07.014
23 https://doi.org/10.1016/j.biomaterials.2014.03.020
24 https://doi.org/10.1016/j.bios.2013.07.019
25 https://doi.org/10.1016/j.cbi.2006.12.003
26 https://doi.org/10.1016/j.devcel.2006.03.015
27 https://doi.org/10.1016/j.proghi.2006.12.001
28 https://doi.org/10.1016/j.redox.2017.01.012
29 https://doi.org/10.1016/j.vascn.2010.04.013
30 https://doi.org/10.1016/s0005-8165(76)80083-2
31 https://doi.org/10.1021/bm4015039
32 https://doi.org/10.1039/c6tx00101g
33 https://doi.org/10.1042/bj20121284
34 https://doi.org/10.1042/bj3290017
35 https://doi.org/10.1055/s-2008-1040554
36 https://doi.org/10.1056/nejmra021844
37 https://doi.org/10.1073/pnas.1317731111
38 https://doi.org/10.1073/pnas.1524510113
39 https://doi.org/10.1080/01926230590522121
40 https://doi.org/10.1080/03602530601093489
41 https://doi.org/10.1093/toxsci/kfi052
42 https://doi.org/10.1093/toxsci/kft021
43 https://doi.org/10.1093/toxsci/kfv177
44 https://doi.org/10.1096/fj.201700504r
45 https://doi.org/10.1097/fjc.0000000000000429
46 https://doi.org/10.1111/nan.12396
47 https://doi.org/10.1124/dmd.109.030197
48 https://doi.org/10.1124/mol.114.094797
49 https://doi.org/10.1124/mol.114.097402
50 https://doi.org/10.1146/annurev.nu.16.070196.001143
51 https://doi.org/10.14218/jcth.2014.00014
52 https://doi.org/10.2133/dmpk.dmpk-10-rv-089
53 schema:datePublished 2019-12
54 schema:datePublishedReg 2019-12-01
55 schema:description Background: Various hepatic models mimicking liver lobules have been investigated to evaluate the potential hepatotoxic effects of chemicals and drugs, but in vitro hepatic models of zonal hepatotoxicity have not yet been established. Herein, we developed a three-dimensional (3D) hepatic zonal channel to evaluate zone-specific hepatotoxicity. Based on the perivenous zone-3-like cytochrome P450 (CYP) expression patterns in metabolically active HepaRG cells treated with CHIR99021 (CHIR), which is an inducer of Wnt/β-catenin signaling, this culture model represents a novel tool for exploring hepatic zonation. Results: We generated and validated a 3D hepatic zonal channel model in which 3D HepaRG cells were well distributed in agarose hydrogel channels, and a linear gradient of CHIR was generated according to the zonal distance. According to the results from imaging analyses and bioanalytical experiments, acetaminophen (APAP) caused cytotoxicity in the zone-3 region of the 3D hepatic zonal channel, and the levels of nonphosphorylated β-catenin, CYP2E, and apoptotic proteins were remarkably increased in the zone-3-like region. Finally, the applicability of the 3D hepatic zonal channel model for the high-throughput screening of zonal hepatotoxicity was successfully evaluated using hepatotoxic drugs, including tamoxifen, bromobenzene, and APAP. Conclusions: The results indicated that tamoxifen induced cytotoxic effects, regardless of the zonal distance, while the zone-3-specific hepatotoxic drugs bromobenzene and APAP induced greater cytotoxic effects on cells in the zone-3-like region. This finding highlights the potential of our 3D hepatic zonation model as a valuable tool for replicating and evaluating zonal hepatotoxicity by mimicking the spatial features of liver lobules.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf N0e4b3956951b4fb491be5fb4d8eb4a98
60 N3a119e9395d04c4bbdfa11959f7fb638
61 sg:journal.1038668
62 schema:name Human three-dimensional in vitro model of hepatic zonation to predict zonal hepatotoxicity
63 schema:pagination 22
64 schema:productId N13c7e93733af434eb57c6a86ed3bcd98
65 N83b778864d4e4f36ad7fea0dd79e8c4d
66 N94816c2cdf2f495382382d125b17442f
67 N97c03369f9284b2bb191556f3e4b71f5
68 N9e80de7cfbc14ac0a16667a75bd6039c
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112593540
70 https://doi.org/10.1186/s13036-019-0148-5
71 schema:sdDatePublished 2019-04-11T13:17
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Nd3b9c0d9bc68455daba80bee4a6ff345
74 schema:url https://link.springer.com/10.1186%2Fs13036-019-0148-5
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N068b42e085094b84bc05fc1c4170b4ad rdf:first Nf0f2e1d6517d49c88a097eeb89b93028
79 rdf:rest rdf:nil
80 N0e4b3956951b4fb491be5fb4d8eb4a98 schema:issueNumber 1
81 rdf:type schema:PublicationIssue
82 N13c7e93733af434eb57c6a86ed3bcd98 schema:name doi
83 schema:value 10.1186/s13036-019-0148-5
84 rdf:type schema:PropertyValue
85 N24344a1deb8a4f6a9dbe47edf25d55b5 schema:affiliation https://www.grid.ac/institutes/grid.418982.e
86 schema:familyName Yoon
87 schema:givenName Seokjoo
88 rdf:type schema:Person
89 N3a119e9395d04c4bbdfa11959f7fb638 schema:volumeNumber 13
90 rdf:type schema:PublicationVolume
91 N5f1d35b903f141f1801d74eb01557790 rdf:first N24344a1deb8a4f6a9dbe47edf25d55b5
92 rdf:rest Nd4c0fd29dba4479a9083205e81fb3571
93 N6238b5a587c04e47b3ea721a373f9d76 rdf:first Nc32fde6f0f02444c83d9f2a092065a40
94 rdf:rest N5f1d35b903f141f1801d74eb01557790
95 N80318bc17b3e4979bba509e77688dad1 rdf:first N9798948b838b47a9b202de7428dece5d
96 rdf:rest N068b42e085094b84bc05fc1c4170b4ad
97 N83b778864d4e4f36ad7fea0dd79e8c4d schema:name nlm_unique_id
98 schema:value 101306640
99 rdf:type schema:PropertyValue
100 N94816c2cdf2f495382382d125b17442f schema:name dimensions_id
101 schema:value pub.1112593540
102 rdf:type schema:PropertyValue
103 N9798948b838b47a9b202de7428dece5d schema:affiliation https://www.grid.ac/institutes/grid.412786.e
104 schema:familyName Son
105 schema:givenName Mi-Young
106 rdf:type schema:Person
107 N97c03369f9284b2bb191556f3e4b71f5 schema:name readcube_id
108 schema:value 56aea597dfc41070dccf9276d8c18bc61e7dd4fcf4023dbe644ad8a8aec69b06
109 rdf:type schema:PropertyValue
110 N9e80de7cfbc14ac0a16667a75bd6039c schema:name pubmed_id
111 schema:value 30886645
112 rdf:type schema:PropertyValue
113 Na72a79acb7df49c3a35e08330364517f schema:affiliation https://www.grid.ac/institutes/grid.418982.e
114 schema:familyName Ahn
115 schema:givenName Jaehwan
116 rdf:type schema:Person
117 Naf063218b0fb456a8cd3a87574de5fb9 schema:affiliation https://www.grid.ac/institutes/grid.37172.30
118 schema:familyName Nam
119 schema:givenName Yoon Sung
120 rdf:type schema:Person
121 Nb05b93d23dae4dbda04ede9752cae567 rdf:first Na72a79acb7df49c3a35e08330364517f
122 rdf:rest N6238b5a587c04e47b3ea721a373f9d76
123 Nc32fde6f0f02444c83d9f2a092065a40 schema:affiliation https://www.grid.ac/institutes/grid.418982.e
124 schema:familyName Ahn
125 schema:givenName Jun-Ho
126 rdf:type schema:Person
127 Nd3b9c0d9bc68455daba80bee4a6ff345 schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 Nd4c0fd29dba4479a9083205e81fb3571 rdf:first Naf063218b0fb456a8cd3a87574de5fb9
130 rdf:rest N80318bc17b3e4979bba509e77688dad1
131 Nf0f2e1d6517d49c88a097eeb89b93028 schema:affiliation https://www.grid.ac/institutes/grid.418982.e
132 schema:familyName Oh
133 schema:givenName Jung-Hwa
134 rdf:type schema:Person
135 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
136 schema:name Medical and Health Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
139 schema:name Pharmacology and Pharmaceutical Sciences
140 rdf:type schema:DefinedTerm
141 sg:grant.7491703 http://pending.schema.org/fundedItem sg:pub.10.1186/s13036-019-0148-5
142 rdf:type schema:MonetaryGrant
143 sg:journal.1038668 schema:issn 1754-1611
144 schema:name Journal of Biological Engineering
145 rdf:type schema:Periodical
146 sg:pub.10.1007/978-1-4419-7107-4_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008702764
147 https://doi.org/10.1007/978-1-4419-7107-4_2
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s00204-018-2152-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100559716
150 https://doi.org/10.1007/s00204-018-2152-9
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s10565-011-9208-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011794647
153 https://doi.org/10.1007/s10565-011-9208-4
154 rdf:type schema:CreativeWork
155 sg:pub.10.1023/a:1023234429596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018406671
156 https://doi.org/10.1023/a:1023234429596
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/emm.2017.226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099669803
159 https://doi.org/10.1038/emm.2017.226
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/ki.1997.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011544280
162 https://doi.org/10.1038/ki.1997.53
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/ncb3349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012767848
165 https://doi.org/10.1038/ncb3349
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/s41467-018-05450-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105886897
168 https://doi.org/10.1038/s41467-018-05450-8
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/srep26868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009614741
171 https://doi.org/10.1038/srep26868
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/ar.1091190103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027913350
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/bies.20485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018465052
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/biot.200700228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012544415
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/bit.10569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047436462
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/hep.510310201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008519492
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/jbt.10085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039359315
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1006/rtph.2000.1399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036505614
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/0163-7258(92)90055-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046910372
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/b978-0-12-385233-5.00005-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003445294
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.apsb.2016.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045582343
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.biomaterials.2014.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028105615
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.bios.2013.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010494491
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.cbi.2006.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019687345
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.devcel.2006.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012581109
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.proghi.2006.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013775702
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.redox.2017.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042137012
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.vascn.2010.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051491760
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/s0005-8165(76)80083-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021316627
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1021/bm4015039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006609017
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1039/c6tx00101g schema:sameAs https://app.dimensions.ai/details/publication/pub.1042382011
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1042/bj20121284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036594313
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1042/bj3290017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007253335
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1055/s-2008-1040554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057535947
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1056/nejmra021844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035982169
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1073/pnas.1317731111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050414309
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1073/pnas.1524510113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043048110
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1080/01926230590522121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058308211
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1080/03602530601093489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053424820
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/toxsci/kfi052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008160726
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/toxsci/kft021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042568964
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/toxsci/kfv177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060056834
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1096/fj.201700504r schema:sameAs https://app.dimensions.ai/details/publication/pub.1091381792
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1097/fjc.0000000000000429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035193951
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1111/nan.12396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083909380
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1124/dmd.109.030197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003343512
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1124/mol.114.094797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006137255
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1124/mol.114.097402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021988890
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1146/annurev.nu.16.070196.001143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009673344
248 rdf:type schema:CreativeWork
249 https://doi.org/10.14218/jcth.2014.00014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044823153
250 rdf:type schema:CreativeWork
251 https://doi.org/10.2133/dmpk.dmpk-10-rv-089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051744378
252 rdf:type schema:CreativeWork
253 https://www.grid.ac/institutes/grid.37172.30 schema:alternateName Korea Advanced Institute of Science and Technology
254 schema:name Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.412786.e schema:alternateName Korea University of Science and Technology
257 schema:name Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea
258 Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 34141, Daejeon, Republic of Korea
259 rdf:type schema:Organization
260 https://www.grid.ac/institutes/grid.418982.e schema:alternateName Korea Institute of Toxicology
261 schema:name Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
262 Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), 34114, Daejeon, Republic of Korea
263 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...