Blood cholesterol in late-life and cognitive decline: a longitudinal study of the Chinese elderly View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03-07

AUTHORS

Chaoran Ma, Zhaoxue Yin, Pengfei Zhu, Jiesi Luo, Xiaoming Shi, Xiang Gao

ABSTRACT

BackgroundPrevious studies regarding the lipid-cognition relation in older adults are limited and have generated mixed results. We thus examined whether higher blood cholesterol concentrations were associated with faster cognitive decline in a community-based longitudinal study of Chinese elderly.MethodsThe study included 1,159 Chinese adults aged over 60 years (women: 48.7%, mean age: 79.4 years), who were free of dementia, Parkinson disease and stroke at the baseline. Blood concentrations of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG), were assessed at the baseline. Global cognitive functions were assessed using the Chinese Mini-Mental State Examination (MMSE) at in 2009, 2012 and 2014. Association between blood cholesterol and repeated cognitive function was analyzed with linear mixed models, adjusting for sociodemographic information, behavior and lifestyle, depression symptoms, physical examination, hypertension, and laboratory indexes.ResultsHigher baseline TC and LDL-C concentrations were significantly associated with greater cognitive decline. Adjusted mean difference in cognitive decline rate, comparing two extreme quartiles, was 0.28 points (MMSE score) per year (95% confident interval (CI): -0.54,–0.02; P-trend = 0.005) for TC and 0.42 points per year (95% CI: -0.69, -0.16; P-trend = 0.006) for LDL-C. In a subgroup analysis, the associations between all lipids and cognitive decline appeared to be more pronounced among individuals aged 100 years or older (n = 90), relative to others.ConclusionsHigher blood concentrations of TC and LDL-C in late-life were associated with faster global cognitive decline. More... »

PAGES

24

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13024-017-0167-y

DOI

http://dx.doi.org/10.1186/s13024-017-0167-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084251832

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28270179


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asians", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cholesterol", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cognitive Dysfunction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Longitudinal Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Nutritional Sciences, The Pennsylvania State University, 16802, University Park, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Nutritional Sciences, The Pennsylvania State University, 16802, University Park, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Chaoran", 
        "id": "sg:person.014177045363.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014177045363.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Chronic Disease Control and Community Health, Chinese Center for Disease Control and Prevention, 102206, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "Division of Chronic Disease Control and Community Health, Chinese Center for Disease Control and Prevention, 102206, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Zhaoxue", 
        "id": "sg:person.012775561317.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012775561317.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Pengfei", 
        "id": "sg:person.016453413547.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016453413547.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Chronic Disease Control and Community Health, Chinese Center for Disease Control and Prevention, 102206, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "Division of Chronic Disease Control and Community Health, Chinese Center for Disease Control and Prevention, 102206, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Jiesi", 
        "id": "sg:person.015460373371.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015460373371.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Xiaoming", 
        "id": "sg:person.011701201707.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011701201707.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nutritional Sciences, The Pennsylvania State University, 16802, University Park, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Nutritional Sciences, The Pennsylvania State University, 16802, University Park, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Xiang", 
        "id": "sg:person.012302354341.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012302354341.05"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-03-07", 
    "datePublishedReg": "2017-03-07", 
    "description": "BackgroundPrevious studies regarding the lipid-cognition relation in older adults are limited and have generated mixed results. We thus examined whether higher blood cholesterol concentrations were associated with faster cognitive decline in a community-based longitudinal study of Chinese elderly.MethodsThe study included 1,159 Chinese adults aged over 60\u00a0years (women: 48.7%, mean age: 79.4\u00a0years), who were free of dementia, Parkinson disease and stroke at the baseline. Blood concentrations of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG), were assessed at the baseline. Global cognitive functions were assessed using the Chinese Mini-Mental State Examination (MMSE) at in 2009, 2012 and 2014. Association between blood cholesterol and repeated cognitive function was analyzed with linear mixed models, adjusting for sociodemographic information, behavior and lifestyle, depression symptoms, physical examination, hypertension, and laboratory indexes.ResultsHigher baseline TC and LDL-C concentrations were significantly associated with greater cognitive decline. Adjusted mean difference in cognitive decline rate, comparing two extreme quartiles, was 0.28 points (MMSE score) per year (95% confident interval (CI): -0.54,\u20130.02; P-trend\u2009=\u20090.005) for TC and 0.42 points per year (95% CI: -0.69, -0.16; P-trend\u2009=\u20090.006) for LDL-C. In a subgroup analysis, the associations between all lipids and cognitive decline appeared to be more pronounced among individuals aged 100\u00a0years or older (n\u2009=\u200990), relative to others.ConclusionsHigher blood concentrations of TC and LDL-C in late-life were associated with faster global cognitive decline.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13024-017-0167-y", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7176338", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3802143", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036533", 
        "issn": [
          "1750-1326"
        ], 
        "name": "Molecular Neurodegeneration", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "Mini-Mental State Examination", 
      "total cholesterol", 
      "cognitive decline", 
      "lipoprotein cholesterol", 
      "blood cholesterol", 
      "blood concentrations", 
      "high-density lipoprotein cholesterol", 
      "low-density lipoprotein cholesterol", 
      "cognitive function", 
      "community-based longitudinal study", 
      "baseline total cholesterol", 
      "LDL-C concentrations", 
      "blood cholesterol concentrations", 
      "Chinese Mini-Mental State Examination", 
      "longitudinal study", 
      "cognitive decline rate", 
      "higher blood cholesterol concentrations", 
      "global cognitive function", 
      "faster cognitive decline", 
      "greater cognitive decline", 
      "global cognitive decline", 
      "physical examination", 
      "subgroup analysis", 
      "laboratory indices", 
      "BackgroundPrevious studies", 
      "extreme quartiles", 
      "MethodsThe study", 
      "Parkinson's disease", 
      "State Examination", 
      "cholesterol concentrations", 
      "Chinese adults", 
      "depression symptoms", 
      "sociodemographic information", 
      "mean difference", 
      "cholesterol", 
      "older adults", 
      "linear mixed models", 
      "LDL", 
      "triglycerides", 
      "baseline", 
      "adults", 
      "examination", 
      "association", 
      "years", 
      "mixed models", 
      "hypertension", 
      "mixed results", 
      "decline", 
      "dementia", 
      "symptoms", 
      "quartile", 
      "stroke", 
      "disease", 
      "study", 
      "concentration", 
      "decline rate", 
      "lifestyle", 
      "lipids", 
      "individuals", 
      "function", 
      "index", 
      "differences", 
      "rate", 
      "point", 
      "analysis", 
      "results", 
      "information", 
      "relation", 
      "model", 
      "behavior"
    ], 
    "name": "Blood cholesterol in late-life and cognitive decline: a longitudinal study of the Chinese elderly", 
    "pagination": "24", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084251832"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13024-017-0167-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28270179"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13024-017-0167-y", 
      "https://app.dimensions.ai/details/publication/pub.1084251832"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_718.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13024-017-0167-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13024-017-0167-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13024-017-0167-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13024-017-0167-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13024-017-0167-y'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      20 PREDICATES      105 URIs      97 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13024-017-0167-y schema:about N1ca468ce97a04241a83a647baf0855ee
2 N2642dfd209044f12b6a4a05b3d4fe7fb
3 N3c7495374c83413ab8254191ce2682d7
4 N44fa0a6308034d538cf500f8f4c12f39
5 N736ed0451c89485e9fdf1e54c9a55ac0
6 N83d639b6a0d74497a6ce72b111dbd7b6
7 Na14b2ab9adf54cc1bf846b5db755793b
8 Nb625ca2bfdb34e3b940dcd6008e00be8
9 Nc973a48f8d0a499f8b7af63b03465bb5
10 Nd8d889944b674b00a0bda870c759b970
11 anzsrc-for:11
12 anzsrc-for:1103
13 schema:author N2f106414f979423b924f88e25889b19b
14 schema:datePublished 2017-03-07
15 schema:datePublishedReg 2017-03-07
16 schema:description BackgroundPrevious studies regarding the lipid-cognition relation in older adults are limited and have generated mixed results. We thus examined whether higher blood cholesterol concentrations were associated with faster cognitive decline in a community-based longitudinal study of Chinese elderly.MethodsThe study included 1,159 Chinese adults aged over 60 years (women: 48.7%, mean age: 79.4 years), who were free of dementia, Parkinson disease and stroke at the baseline. Blood concentrations of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG), were assessed at the baseline. Global cognitive functions were assessed using the Chinese Mini-Mental State Examination (MMSE) at in 2009, 2012 and 2014. Association between blood cholesterol and repeated cognitive function was analyzed with linear mixed models, adjusting for sociodemographic information, behavior and lifestyle, depression symptoms, physical examination, hypertension, and laboratory indexes.ResultsHigher baseline TC and LDL-C concentrations were significantly associated with greater cognitive decline. Adjusted mean difference in cognitive decline rate, comparing two extreme quartiles, was 0.28 points (MMSE score) per year (95% confident interval (CI): -0.54,–0.02; P-trend = 0.005) for TC and 0.42 points per year (95% CI: -0.69, -0.16; P-trend = 0.006) for LDL-C. In a subgroup analysis, the associations between all lipids and cognitive decline appeared to be more pronounced among individuals aged 100 years or older (n = 90), relative to others.ConclusionsHigher blood concentrations of TC and LDL-C in late-life were associated with faster global cognitive decline.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf Nd29e1383b1fb41c097e67bc69080aa51
20 Nd6bc7544ff2d4f3ebc6635cad4b0ca65
21 sg:journal.1036533
22 schema:keywords BackgroundPrevious studies
23 Chinese Mini-Mental State Examination
24 Chinese adults
25 LDL
26 LDL-C concentrations
27 MethodsThe study
28 Mini-Mental State Examination
29 Parkinson's disease
30 State Examination
31 adults
32 analysis
33 association
34 baseline
35 baseline total cholesterol
36 behavior
37 blood cholesterol
38 blood cholesterol concentrations
39 blood concentrations
40 cholesterol
41 cholesterol concentrations
42 cognitive decline
43 cognitive decline rate
44 cognitive function
45 community-based longitudinal study
46 concentration
47 decline
48 decline rate
49 dementia
50 depression symptoms
51 differences
52 disease
53 examination
54 extreme quartiles
55 faster cognitive decline
56 function
57 global cognitive decline
58 global cognitive function
59 greater cognitive decline
60 high-density lipoprotein cholesterol
61 higher blood cholesterol concentrations
62 hypertension
63 index
64 individuals
65 information
66 laboratory indices
67 lifestyle
68 linear mixed models
69 lipids
70 lipoprotein cholesterol
71 longitudinal study
72 low-density lipoprotein cholesterol
73 mean difference
74 mixed models
75 mixed results
76 model
77 older adults
78 physical examination
79 point
80 quartile
81 rate
82 relation
83 results
84 sociodemographic information
85 stroke
86 study
87 subgroup analysis
88 symptoms
89 total cholesterol
90 triglycerides
91 years
92 schema:name Blood cholesterol in late-life and cognitive decline: a longitudinal study of the Chinese elderly
93 schema:pagination 24
94 schema:productId N869c7e98d76145218e9227fa863a04b4
95 Ne0908d3aeff44f6db4fd29a2bcdc4715
96 Nf6c43ae875d049f6a2f28f06fcb73781
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084251832
98 https://doi.org/10.1186/s13024-017-0167-y
99 schema:sdDatePublished 2022-11-24T21:01
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher Nc145f52764e64a1d99ac8b07a91403fe
102 schema:url https://doi.org/10.1186/s13024-017-0167-y
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N1ca468ce97a04241a83a647baf0855ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Cholesterol
108 rdf:type schema:DefinedTerm
109 N2642dfd209044f12b6a4a05b3d4fe7fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Cognitive Dysfunction
111 rdf:type schema:DefinedTerm
112 N2f106414f979423b924f88e25889b19b rdf:first sg:person.014177045363.36
113 rdf:rest Ne16773e0f864401780af67ea503d9506
114 N3c7495374c83413ab8254191ce2682d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Female
116 rdf:type schema:DefinedTerm
117 N44fa0a6308034d538cf500f8f4c12f39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Middle Aged
119 rdf:type schema:DefinedTerm
120 N48ba203c8c944c82a695e75d2dc2b156 rdf:first sg:person.012302354341.05
121 rdf:rest rdf:nil
122 N4a65d090aa0049078090f97d518df5a1 rdf:first sg:person.015460373371.84
123 rdf:rest Ndf6427739b8c424aa238e5046b1a32f0
124 N5b1c17e66b6140cd81fa43960cf890dc rdf:first sg:person.016453413547.39
125 rdf:rest N4a65d090aa0049078090f97d518df5a1
126 N736ed0451c89485e9fdf1e54c9a55ac0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Male
128 rdf:type schema:DefinedTerm
129 N83d639b6a0d74497a6ce72b111dbd7b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Humans
131 rdf:type schema:DefinedTerm
132 N869c7e98d76145218e9227fa863a04b4 schema:name doi
133 schema:value 10.1186/s13024-017-0167-y
134 rdf:type schema:PropertyValue
135 Na14b2ab9adf54cc1bf846b5db755793b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Longitudinal Studies
137 rdf:type schema:DefinedTerm
138 Nb625ca2bfdb34e3b940dcd6008e00be8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Aged
140 rdf:type schema:DefinedTerm
141 Nc145f52764e64a1d99ac8b07a91403fe schema:name Springer Nature - SN SciGraph project
142 rdf:type schema:Organization
143 Nc973a48f8d0a499f8b7af63b03465bb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Aged, 80 and over
145 rdf:type schema:DefinedTerm
146 Nd29e1383b1fb41c097e67bc69080aa51 schema:issueNumber 1
147 rdf:type schema:PublicationIssue
148 Nd6bc7544ff2d4f3ebc6635cad4b0ca65 schema:volumeNumber 12
149 rdf:type schema:PublicationVolume
150 Nd8d889944b674b00a0bda870c759b970 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Asians
152 rdf:type schema:DefinedTerm
153 Ndf6427739b8c424aa238e5046b1a32f0 rdf:first sg:person.011701201707.07
154 rdf:rest N48ba203c8c944c82a695e75d2dc2b156
155 Ne0908d3aeff44f6db4fd29a2bcdc4715 schema:name pubmed_id
156 schema:value 28270179
157 rdf:type schema:PropertyValue
158 Ne16773e0f864401780af67ea503d9506 rdf:first sg:person.012775561317.27
159 rdf:rest N5b1c17e66b6140cd81fa43960cf890dc
160 Nf6c43ae875d049f6a2f28f06fcb73781 schema:name dimensions_id
161 schema:value pub.1084251832
162 rdf:type schema:PropertyValue
163 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
164 schema:name Medical and Health Sciences
165 rdf:type schema:DefinedTerm
166 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
167 schema:name Clinical Sciences
168 rdf:type schema:DefinedTerm
169 sg:grant.3802143 http://pending.schema.org/fundedItem sg:pub.10.1186/s13024-017-0167-y
170 rdf:type schema:MonetaryGrant
171 sg:grant.7176338 http://pending.schema.org/fundedItem sg:pub.10.1186/s13024-017-0167-y
172 rdf:type schema:MonetaryGrant
173 sg:journal.1036533 schema:issn 1750-1326
174 schema:name Molecular Neurodegeneration
175 schema:publisher Springer Nature
176 rdf:type schema:Periodical
177 sg:person.011701201707.07 schema:affiliation grid-institutes:grid.198530.6
178 schema:familyName Shi
179 schema:givenName Xiaoming
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011701201707.07
181 rdf:type schema:Person
182 sg:person.012302354341.05 schema:affiliation grid-institutes:grid.29857.31
183 schema:familyName Gao
184 schema:givenName Xiang
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012302354341.05
186 rdf:type schema:Person
187 sg:person.012775561317.27 schema:affiliation grid-institutes:grid.198530.6
188 schema:familyName Yin
189 schema:givenName Zhaoxue
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012775561317.27
191 rdf:type schema:Person
192 sg:person.014177045363.36 schema:affiliation grid-institutes:grid.29857.31
193 schema:familyName Ma
194 schema:givenName Chaoran
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014177045363.36
196 rdf:type schema:Person
197 sg:person.015460373371.84 schema:affiliation grid-institutes:grid.198530.6
198 schema:familyName Luo
199 schema:givenName Jiesi
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015460373371.84
201 rdf:type schema:Person
202 sg:person.016453413547.39 schema:affiliation grid-institutes:grid.198530.6
203 schema:familyName Zhu
204 schema:givenName Pengfei
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016453413547.39
206 rdf:type schema:Person
207 grid-institutes:grid.198530.6 schema:alternateName Division of Chronic Disease Control and Community Health, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
208 National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021, Beijing, China
209 schema:name Division of Chronic Disease Control and Community Health, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
210 National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021, Beijing, China
211 rdf:type schema:Organization
212 grid-institutes:grid.29857.31 schema:alternateName Department of Nutritional Sciences, The Pennsylvania State University, 16802, University Park, PA, USA
213 schema:name Department of Nutritional Sciences, The Pennsylvania State University, 16802, University Park, PA, USA
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...