A nomenclature and classification for the congenital myasthenic syndromes: preparing for FAIR data in the genomic era View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11-26

AUTHORS

Rachel Thompson, Angela Abicht, David Beeson, Andrew G. Engel, Bruno Eymard, Emmanuel Maxime, Hanns Lochmüller

ABSTRACT

BACKGROUND: Congenital myasthenic syndromes (CMS) are a heterogeneous group of inherited neuromuscular disorders sharing the common feature of fatigable weakness due to defective neuromuscular transmission. Despite rapidly increasing knowledge about the genetic origins, specific features and potential treatments for the known CMS entities, the lack of standardized classification at the most granular level has hindered the implementation of computer-based systems for knowledge capture and reuse. Where individual clinical or genetic entities do not exist in disease coding systems, they are often invisible in clinical records and inadequately annotated in information systems, and features that apply to one disease but not another cannot be adequately differentiated. RESULTS: We created a detailed classification of all CMS disease entities suitable for use in clinical and genetic databases and decision support systems. To avoid conflict with existing coding systems as well as with expert-defined group-level classifications, we developed a collaboration with the Orphanet nomenclature for rare diseases, creating a clinically understandable name for each entity and placing it within a logical hierarchy that paves the way towards computer-aided clinical systems and improved knowledge bases for CMS that can adequately differentiate between types and ascribe relevant expert knowledge to each. CONCLUSIONS: We suggest that data science approaches can be used effectively in the clinical domain in a way that does not disrupt preexisting expert classification and that enhances the utility of existing coding systems. Our classification provides a comprehensive view of the individual CMS entities in a manner that supports differential diagnosis and understanding of the range and heterogeneity of the disease but that also enables robust computational coding and hierarchy for machine-readability. It can be extended as required in the light of future scientific advances, but already provides the starting point for the creation of FAIR (Findable, Accessible, Interoperable and Reusable) knowledge bases of data on the congenital myasthenic syndromes. More... »

PAGES

211

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13023-018-0955-7

DOI

http://dx.doi.org/10.1186/s13023-018-0955-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110209848

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30477555


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1199", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myasthenic Syndromes, Congenital", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuromuscular Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuromuscular Junction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rare Diseases", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK", 
          "id": "http://www.grid.ac/institutes/grid.1006.7", 
          "name": [
            "Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thompson", 
        "givenName": "Rachel", 
        "id": "sg:person.01253760446.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253760446.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Genetics Centre, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Medical Genetics Centre, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abicht", 
        "givenName": "Angela", 
        "id": "sg:person.01216167275.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216167275.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beeson", 
        "givenName": "David", 
        "id": "sg:person.01260255341.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260255341.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Mayo Clinic, Rochester, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Neurology, Mayo Clinic, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Engel", 
        "givenName": "Andrew G.", 
        "id": "sg:person.0627224155.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627224155.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Myologie, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.418250.a", 
          "name": [
            "Institut de Myologie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eymard", 
        "givenName": "Bruno", 
        "id": "sg:person.01114324165.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114324165.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INSERM US14 - Orphanet, Plateforme Maladies Rares, 75014 Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.7429.8", 
          "name": [
            "INSERM US14 - Orphanet, Plateforme Maladies Rares, 75014 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maxime", 
        "givenName": "Emmanuel", 
        "id": "sg:person.011035260717.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011035260717.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro Nacional de An\u00e1lisis Gen\u00f3mico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.452341.5", 
          "name": [
            "Children\u2019s Hospital of Eastern Ontario (CHEO) Research Institute, University of Ottawa, Ottawa, ON K1H 8L1 Canada", 
            "Department of Neuropediatrics and Muscle Disorders, Medical Center \u2013 University of Freiburg, Faculty of Medicine, Freiburg, Germany", 
            "Centro Nacional de An\u00e1lisis Gen\u00f3mico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lochm\u00fcller", 
        "givenName": "Hanns", 
        "id": "sg:person.015416721437.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015416721437.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-319-67144-4_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099611168", 
          "https://doi.org/10.1007/978-3-319-67144-4_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022471086", 
          "https://doi.org/10.1038/ng.3642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-67144-4_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099613551", 
          "https://doi.org/10.1007/978-3-319-67144-4_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41431-018-0115-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101239367", 
          "https://doi.org/10.1038/s41431-018-0115-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13023-015-0251-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034471145", 
          "https://doi.org/10.1186/s13023-015-0251-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2016.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005603549", 
          "https://doi.org/10.1038/sdata.2016.18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-67144-4_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099614291", 
          "https://doi.org/10.1007/978-3-319-67144-4_5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-26", 
    "datePublishedReg": "2018-11-26", 
    "description": "BACKGROUND: Congenital myasthenic syndromes (CMS) are a heterogeneous group of inherited neuromuscular disorders sharing the common feature of fatigable weakness due to defective neuromuscular transmission. Despite rapidly increasing knowledge about the genetic origins, specific features and potential treatments for the known CMS entities, the lack of standardized classification at the most granular level has hindered the implementation of computer-based systems for knowledge capture and reuse. Where individual clinical or genetic entities do not exist in disease coding systems, they are often invisible in clinical records and inadequately annotated in information systems, and features that apply to one disease but not another cannot be adequately differentiated.\nRESULTS: We created a detailed classification of all CMS disease entities suitable for use in clinical and genetic databases and decision support systems. To avoid conflict with existing coding systems as well as with expert-defined group-level classifications, we developed a collaboration with the Orphanet nomenclature for rare diseases, creating a clinically understandable name for each entity and placing it within a logical hierarchy that paves the way towards computer-aided clinical systems and improved knowledge bases for CMS that can adequately differentiate between types and ascribe relevant expert knowledge to each.\nCONCLUSIONS: We suggest that data science approaches can be used effectively in the clinical domain in a way that does not disrupt preexisting expert classification and that enhances the utility of existing coding systems. Our classification provides a comprehensive view of the individual CMS entities in a manner that supports differential diagnosis and understanding of the range and heterogeneity of the disease but that also enables robust computational coding and hierarchy for machine-readability. It can be extended as required in the light of future scientific advances, but already provides the starting point for the creation of FAIR (Findable, Accessible, Interoperable and Reusable) knowledge bases of data on the congenital myasthenic syndromes.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13023-018-0955-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3959064", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7506316", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036535", 
        "issn": [
          "1750-1172"
        ], 
        "name": "Orphanet Journal of Rare Diseases", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "keywords": [
      "knowledge bases", 
      "computer-based systems", 
      "decision support system", 
      "data science approach", 
      "relevant expert knowledge", 
      "computational coding", 
      "knowledge capture", 
      "FAIR data", 
      "information systems", 
      "future scientific advances", 
      "expert knowledge", 
      "support system", 
      "expert classification", 
      "logical hierarchy", 
      "granular level", 
      "coding system", 
      "clinical systems", 
      "clinical domains", 
      "classification", 
      "science approach", 
      "entities", 
      "system", 
      "detailed classification", 
      "genetic databases", 
      "coding", 
      "hierarchy", 
      "reuse", 
      "comprehensive view", 
      "features", 
      "implementation", 
      "database", 
      "specific features", 
      "way", 
      "knowledge", 
      "collaboration", 
      "starting point", 
      "creation", 
      "data", 
      "domain", 
      "transmission", 
      "era", 
      "weakness", 
      "advances", 
      "view", 
      "capture", 
      "utility", 
      "name", 
      "basis", 
      "manner", 
      "point", 
      "common feature", 
      "use", 
      "standardized classification", 
      "defective neuromuscular transmission", 
      "genomic era", 
      "records", 
      "scientific advances", 
      "lack", 
      "types", 
      "clinical records", 
      "conflict", 
      "nomenclature", 
      "heterogeneity", 
      "understanding", 
      "levels", 
      "range", 
      "diagnosis", 
      "congenital myasthenic syndrome", 
      "myasthenic syndrome", 
      "light", 
      "neuromuscular disorders", 
      "genetic entities", 
      "fatigable weakness", 
      "heterogeneous group", 
      "group", 
      "neuromuscular transmission", 
      "disease entity", 
      "differential diagnosis", 
      "rare disease", 
      "potential treatment", 
      "syndrome", 
      "disease", 
      "genetic origin", 
      "disorders", 
      "treatment", 
      "origin", 
      "approach", 
      "CMS entities", 
      "CMS disease entities", 
      "expert-defined group-level classifications", 
      "group-level classifications", 
      "Orphanet nomenclature", 
      "understandable name", 
      "computer-aided clinical systems", 
      "improved knowledge bases", 
      "preexisting expert classification", 
      "individual CMS entities", 
      "robust computational coding", 
      "FAIR (Findable, Accessible, Interoperable and Reusable) knowledge bases"
    ], 
    "name": "A nomenclature and classification for the congenital myasthenic syndromes: preparing for FAIR data in the genomic era", 
    "pagination": "211", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110209848"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13023-018-0955-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30477555"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13023-018-0955-7", 
      "https://app.dimensions.ai/details/publication/pub.1110209848"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_774.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13023-018-0955-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13023-018-0955-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13023-018-0955-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13023-018-0955-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13023-018-0955-7'


 

This table displays all metadata directly associated to this object as RDF triples.

278 TRIPLES      22 PREDICATES      138 URIs      123 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13023-018-0955-7 schema:about N7416dd062a6546e18fc991aed677c45c
2 N7b90fae8964a410f8462fc2e6948c83f
3 Na39f1655ab2a4251b300c915b701adc8
4 Nd702f367473344b9978fbc5eb4333b46
5 Nd9012fa9e5ee44efbbfd7dd6a1d0be49
6 Nfa5d6021b8644476804fb4374cf2f468
7 anzsrc-for:11
8 anzsrc-for:1199
9 schema:author Na28d01eada654b0793925eea31c60267
10 schema:citation sg:pub.10.1007/978-3-319-67144-4_4
11 sg:pub.10.1007/978-3-319-67144-4_5
12 sg:pub.10.1007/978-3-319-67144-4_9
13 sg:pub.10.1038/ng.3642
14 sg:pub.10.1038/s41431-018-0115-5
15 sg:pub.10.1038/sdata.2016.18
16 sg:pub.10.1186/s13023-015-0251-8
17 schema:datePublished 2018-11-26
18 schema:datePublishedReg 2018-11-26
19 schema:description BACKGROUND: Congenital myasthenic syndromes (CMS) are a heterogeneous group of inherited neuromuscular disorders sharing the common feature of fatigable weakness due to defective neuromuscular transmission. Despite rapidly increasing knowledge about the genetic origins, specific features and potential treatments for the known CMS entities, the lack of standardized classification at the most granular level has hindered the implementation of computer-based systems for knowledge capture and reuse. Where individual clinical or genetic entities do not exist in disease coding systems, they are often invisible in clinical records and inadequately annotated in information systems, and features that apply to one disease but not another cannot be adequately differentiated. RESULTS: We created a detailed classification of all CMS disease entities suitable for use in clinical and genetic databases and decision support systems. To avoid conflict with existing coding systems as well as with expert-defined group-level classifications, we developed a collaboration with the Orphanet nomenclature for rare diseases, creating a clinically understandable name for each entity and placing it within a logical hierarchy that paves the way towards computer-aided clinical systems and improved knowledge bases for CMS that can adequately differentiate between types and ascribe relevant expert knowledge to each. CONCLUSIONS: We suggest that data science approaches can be used effectively in the clinical domain in a way that does not disrupt preexisting expert classification and that enhances the utility of existing coding systems. Our classification provides a comprehensive view of the individual CMS entities in a manner that supports differential diagnosis and understanding of the range and heterogeneity of the disease but that also enables robust computational coding and hierarchy for machine-readability. It can be extended as required in the light of future scientific advances, but already provides the starting point for the creation of FAIR (Findable, Accessible, Interoperable and Reusable) knowledge bases of data on the congenital myasthenic syndromes.
20 schema:genre article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N611fbde442e84c7a8d1e4c067df39019
24 Nc9d0a50fa5fe487996a564f2dabd8146
25 sg:journal.1036535
26 schema:keywords CMS disease entities
27 CMS entities
28 FAIR (Findable, Accessible, Interoperable and Reusable) knowledge bases
29 FAIR data
30 Orphanet nomenclature
31 advances
32 approach
33 basis
34 capture
35 classification
36 clinical domains
37 clinical records
38 clinical systems
39 coding
40 coding system
41 collaboration
42 common feature
43 comprehensive view
44 computational coding
45 computer-aided clinical systems
46 computer-based systems
47 conflict
48 congenital myasthenic syndrome
49 creation
50 data
51 data science approach
52 database
53 decision support system
54 defective neuromuscular transmission
55 detailed classification
56 diagnosis
57 differential diagnosis
58 disease
59 disease entity
60 disorders
61 domain
62 entities
63 era
64 expert classification
65 expert knowledge
66 expert-defined group-level classifications
67 fatigable weakness
68 features
69 future scientific advances
70 genetic databases
71 genetic entities
72 genetic origin
73 genomic era
74 granular level
75 group
76 group-level classifications
77 heterogeneity
78 heterogeneous group
79 hierarchy
80 implementation
81 improved knowledge bases
82 individual CMS entities
83 information systems
84 knowledge
85 knowledge bases
86 knowledge capture
87 lack
88 levels
89 light
90 logical hierarchy
91 manner
92 myasthenic syndrome
93 name
94 neuromuscular disorders
95 neuromuscular transmission
96 nomenclature
97 origin
98 point
99 potential treatment
100 preexisting expert classification
101 range
102 rare disease
103 records
104 relevant expert knowledge
105 reuse
106 robust computational coding
107 science approach
108 scientific advances
109 specific features
110 standardized classification
111 starting point
112 support system
113 syndrome
114 system
115 transmission
116 treatment
117 types
118 understandable name
119 understanding
120 use
121 utility
122 view
123 way
124 weakness
125 schema:name A nomenclature and classification for the congenital myasthenic syndromes: preparing for FAIR data in the genomic era
126 schema:pagination 211
127 schema:productId N1a0fc03195b04ba0a5ca9e6f18d01822
128 N5c028fc6ce2749bca9be3f2e12ff6b5f
129 Na0337f0e1b5d4a2898c018bb3e0384a5
130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110209848
131 https://doi.org/10.1186/s13023-018-0955-7
132 schema:sdDatePublished 2022-01-01T18:48
133 schema:sdLicense https://scigraph.springernature.com/explorer/license/
134 schema:sdPublisher N5635d1776c264b238207de636cedb6d2
135 schema:url https://doi.org/10.1186/s13023-018-0955-7
136 sgo:license sg:explorer/license/
137 sgo:sdDataset articles
138 rdf:type schema:ScholarlyArticle
139 N1a0fc03195b04ba0a5ca9e6f18d01822 schema:name doi
140 schema:value 10.1186/s13023-018-0955-7
141 rdf:type schema:PropertyValue
142 N2ce7393fe6c6400a8dbdc54aa7d2fba4 rdf:first sg:person.015416721437.85
143 rdf:rest rdf:nil
144 N5635d1776c264b238207de636cedb6d2 schema:name Springer Nature - SN SciGraph project
145 rdf:type schema:Organization
146 N5c028fc6ce2749bca9be3f2e12ff6b5f schema:name pubmed_id
147 schema:value 30477555
148 rdf:type schema:PropertyValue
149 N611fbde442e84c7a8d1e4c067df39019 schema:volumeNumber 13
150 rdf:type schema:PublicationVolume
151 N7416dd062a6546e18fc991aed677c45c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Neuromuscular Diseases
153 rdf:type schema:DefinedTerm
154 N7b90fae8964a410f8462fc2e6948c83f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Neuromuscular Junction
156 rdf:type schema:DefinedTerm
157 N7bf4c66003d548b08a3143a123f59547 rdf:first sg:person.01114324165.07
158 rdf:rest Ndf59eb55a5714277a51ef2479f1f2970
159 N86871e3c44e94203813d0f49f7690e72 rdf:first sg:person.0627224155.78
160 rdf:rest N7bf4c66003d548b08a3143a123f59547
161 Na0337f0e1b5d4a2898c018bb3e0384a5 schema:name dimensions_id
162 schema:value pub.1110209848
163 rdf:type schema:PropertyValue
164 Na28d01eada654b0793925eea31c60267 rdf:first sg:person.01253760446.90
165 rdf:rest Nc4b564f278f9473499fdd49384c2c105
166 Na39f1655ab2a4251b300c915b701adc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Humans
168 rdf:type schema:DefinedTerm
169 Nc4b564f278f9473499fdd49384c2c105 rdf:first sg:person.01216167275.68
170 rdf:rest Nf6a4721109344df08e72ad5151af092b
171 Nc9d0a50fa5fe487996a564f2dabd8146 schema:issueNumber 1
172 rdf:type schema:PublicationIssue
173 Nd702f367473344b9978fbc5eb4333b46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Rare Diseases
175 rdf:type schema:DefinedTerm
176 Nd9012fa9e5ee44efbbfd7dd6a1d0be49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Mutation
178 rdf:type schema:DefinedTerm
179 Ndf59eb55a5714277a51ef2479f1f2970 rdf:first sg:person.011035260717.09
180 rdf:rest N2ce7393fe6c6400a8dbdc54aa7d2fba4
181 Nf6a4721109344df08e72ad5151af092b rdf:first sg:person.01260255341.75
182 rdf:rest N86871e3c44e94203813d0f49f7690e72
183 Nfa5d6021b8644476804fb4374cf2f468 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Myasthenic Syndromes, Congenital
185 rdf:type schema:DefinedTerm
186 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
187 schema:name Medical and Health Sciences
188 rdf:type schema:DefinedTerm
189 anzsrc-for:1199 schema:inDefinedTermSet anzsrc-for:
190 schema:name Other Medical and Health Sciences
191 rdf:type schema:DefinedTerm
192 sg:grant.3959064 http://pending.schema.org/fundedItem sg:pub.10.1186/s13023-018-0955-7
193 rdf:type schema:MonetaryGrant
194 sg:grant.7506316 http://pending.schema.org/fundedItem sg:pub.10.1186/s13023-018-0955-7
195 rdf:type schema:MonetaryGrant
196 sg:journal.1036535 schema:issn 1750-1172
197 schema:name Orphanet Journal of Rare Diseases
198 schema:publisher Springer Nature
199 rdf:type schema:Periodical
200 sg:person.011035260717.09 schema:affiliation grid-institutes:grid.7429.8
201 schema:familyName Maxime
202 schema:givenName Emmanuel
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011035260717.09
204 rdf:type schema:Person
205 sg:person.01114324165.07 schema:affiliation grid-institutes:grid.418250.a
206 schema:familyName Eymard
207 schema:givenName Bruno
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114324165.07
209 rdf:type schema:Person
210 sg:person.01216167275.68 schema:affiliation grid-institutes:None
211 schema:familyName Abicht
212 schema:givenName Angela
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216167275.68
214 rdf:type schema:Person
215 sg:person.01253760446.90 schema:affiliation grid-institutes:grid.1006.7
216 schema:familyName Thompson
217 schema:givenName Rachel
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253760446.90
219 rdf:type schema:Person
220 sg:person.01260255341.75 schema:affiliation grid-institutes:grid.4991.5
221 schema:familyName Beeson
222 schema:givenName David
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260255341.75
224 rdf:type schema:Person
225 sg:person.015416721437.85 schema:affiliation grid-institutes:grid.452341.5
226 schema:familyName Lochmüller
227 schema:givenName Hanns
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015416721437.85
229 rdf:type schema:Person
230 sg:person.0627224155.78 schema:affiliation grid-institutes:grid.66875.3a
231 schema:familyName Engel
232 schema:givenName Andrew G.
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627224155.78
234 rdf:type schema:Person
235 sg:pub.10.1007/978-3-319-67144-4_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099613551
236 https://doi.org/10.1007/978-3-319-67144-4_4
237 rdf:type schema:CreativeWork
238 sg:pub.10.1007/978-3-319-67144-4_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099614291
239 https://doi.org/10.1007/978-3-319-67144-4_5
240 rdf:type schema:CreativeWork
241 sg:pub.10.1007/978-3-319-67144-4_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099611168
242 https://doi.org/10.1007/978-3-319-67144-4_9
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/ng.3642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022471086
245 https://doi.org/10.1038/ng.3642
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/s41431-018-0115-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101239367
248 https://doi.org/10.1038/s41431-018-0115-5
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/sdata.2016.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005603549
251 https://doi.org/10.1038/sdata.2016.18
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/s13023-015-0251-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034471145
254 https://doi.org/10.1186/s13023-015-0251-8
255 rdf:type schema:CreativeWork
256 grid-institutes:None schema:alternateName Medical Genetics Centre, Munich, Germany
257 schema:name Medical Genetics Centre, Munich, Germany
258 rdf:type schema:Organization
259 grid-institutes:grid.1006.7 schema:alternateName Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
260 schema:name Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
261 rdf:type schema:Organization
262 grid-institutes:grid.418250.a schema:alternateName Institut de Myologie, Paris, France
263 schema:name Institut de Myologie, Paris, France
264 rdf:type schema:Organization
265 grid-institutes:grid.452341.5 schema:alternateName Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
266 schema:name Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
267 Children’s Hospital of Eastern Ontario (CHEO) Research Institute, University of Ottawa, Ottawa, ON K1H 8L1 Canada
268 Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
269 rdf:type schema:Organization
270 grid-institutes:grid.4991.5 schema:alternateName Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU UK
271 schema:name Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU UK
272 rdf:type schema:Organization
273 grid-institutes:grid.66875.3a schema:alternateName Department of Neurology, Mayo Clinic, Rochester, USA
274 schema:name Department of Neurology, Mayo Clinic, Rochester, USA
275 rdf:type schema:Organization
276 grid-institutes:grid.7429.8 schema:alternateName INSERM US14 - Orphanet, Plateforme Maladies Rares, 75014 Paris, France
277 schema:name INSERM US14 - Orphanet, Plateforme Maladies Rares, 75014 Paris, France
278 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...