Forest degradation and biomass loss along the Chocó region of Colombia View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Victoria Meyer, Sassan Saatchi, António Ferraz, Liang Xu, Alvaro Duque, Mariano García, Jérôme Chave

ABSTRACT

BACKGROUND: Wet tropical forests of Chocó, along the Pacific Coast of Colombia, are known for their high plant diversity and endemic species. With increasing pressure of degradation and deforestation, these forests have been prioritized for conservation and carbon offset through Reducing Emissions from Deforestation and forest Degradation (REDD+) mechanisms. We provide the first regional assessment of forest structure and aboveground biomass using measurements from a combination of ground tree inventories and airborne Light Detection and Ranging (Lidar). More than 80,000 ha of lidar samples were collected based on a stratified random sampling to provide a regionally unbiased quantification of forest structure of Chocó across gradients of vegetation structure, disturbance and elevation. We developed a model to convert measurements of vertical structure of forests into aboveground biomass (AGB) for terra firme, wetlands, and mangrove forests. We used the Random Forest machine learning model and a formal uncertainty analysis to map forest height and AGB at 1-ha spatial resolution for the entire pacific coastal region using spaceborne data, extending from the coast to higher elevation of Andean forests. RESULTS: Upland Chocó forests have a mean canopy height of 21.8 m and AGB of 233.0 Mg/ha, while wetland forests are characterized by a lower height and AGB (13.5 m and 117.5 Mg/a). Mangroves have a lower mean height than upland forests (16.5 m), but have a similar AGB as upland forests (229.9 Mg/ha) due to their high wood density. Within the terra firme forest class, intact forests have the highest AGB (244.3 ± 34.8 Mg/ha) followed by degraded and secondary forests with 212.57 ± 62.40 Mg/ha of biomass. Forest degradation varies in biomass loss from small-scale selective logging and firewood harvesting to large-scale tree removals for gold mining, settlements, and illegal logging. Our findings suggest that the forest degradation has already caused the loss of more than 115 million tons of dry biomass, or 58 million tons of carbon. CONCLUSIONS: Our assessment of carbon stocks and forest degradation can be used as a reference for reporting on the state of the Chocó forests to REDD+ projects and to encourage restoration efforts through conservation and climate mitigation policies. More... »

PAGES

2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13021-019-0117-9

DOI

http://dx.doi.org/10.1186/s13021-019-0117-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112966254

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30904964


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0705", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Forestry Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jet Propulsion Lab", 
          "id": "https://www.grid.ac/institutes/grid.211367.0", 
          "name": [
            "Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meyer", 
        "givenName": "Victoria", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jet Propulsion Lab", 
          "id": "https://www.grid.ac/institutes/grid.211367.0", 
          "name": [
            "Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saatchi", 
        "givenName": "Sassan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA", 
            "Institute of the Environment and Sustainability, University of California, 90095, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferraz", 
        "givenName": "Ant\u00f3nio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jet Propulsion Lab", 
          "id": "https://www.grid.ac/institutes/grid.211367.0", 
          "name": [
            "Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Liang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Colombia", 
          "id": "https://www.grid.ac/institutes/grid.10689.36", 
          "name": [
            "Departamento de Ciencias Forestales, Universidad Nacional de Colombia, Calle 59A No. 63-20, Medell\u00edn, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duque", 
        "givenName": "Alvaro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alcal\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.7159.a", 
          "name": [
            "Environmental Remote Sensing Research Group, Department of Geology, Geography and Environment, University of Alcal\u00e1, Alcal\u00e1 de Henares, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda", 
        "givenName": "Mariano", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory Evolution and Biological Diversity", 
          "id": "https://www.grid.ac/institutes/grid.462594.8", 
          "name": [
            "Laboratoire Evolution et Diversit\u00e9 Biologique, UMR 5174, CNRS Universit\u00e9 Paul Sabatier, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chave", 
        "givenName": "J\u00e9r\u00f4me", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1139/x26-084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002382791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2016.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004688415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008802624275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005657268", 
          "https://doi.org/10.1023/a:1008802624275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2006.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008032393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1461-0248.2009.01285.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010594105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.05.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018008199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2012.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018724027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/4/3/034009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018865655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/4/3/034009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018865655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sys.21275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019189508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2011.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020512866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35002501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021819037", 
          "https://doi.org/10.1038/35002501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35002501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021819037", 
          "https://doi.org/10.1038/35002501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2003.1425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022095471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0085993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024451245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2012.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027839823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2005.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028303129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2005.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028303129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2006.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028830964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8060522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030694570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1360081032000146645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031091834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00442-012-2295-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032104803", 
          "https://doi.org/10.1007/s00442-012-2295-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0895-9811(90)90019-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032299187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0895-9811(90)90019-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032299187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/env.606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032511563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2011.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037930903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolind.2005.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041903911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolind.2005.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041903911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/a0016973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048172582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049859885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13021-016-0062-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052465510", 
          "https://doi.org/10.1186/s13021-016-0062-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13021-016-0062-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052465510", 
          "https://doi.org/10.1186/s13021-016-0062-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-ss054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2399084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069910334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2017.09.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092002735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-15050-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092504149", 
          "https://doi.org/10.1038/s41598-017-15050-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2017.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099602248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/bg-15-3377-2018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104462083"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Wet tropical forests of Choc\u00f3, along the Pacific Coast of Colombia, are known for their high plant diversity and endemic species. With increasing pressure of degradation and deforestation, these forests have been prioritized for conservation and carbon offset through Reducing Emissions from Deforestation and forest Degradation (REDD+) mechanisms. We provide the first regional assessment of forest structure and aboveground biomass using measurements from a combination of ground tree inventories and airborne Light Detection and Ranging (Lidar). More than 80,000\u00a0ha of lidar samples were collected based on a stratified random sampling to provide a regionally unbiased quantification of forest structure of Choc\u00f3 across gradients of vegetation structure, disturbance and elevation. We developed a model to convert measurements of vertical structure of forests into aboveground biomass (AGB) for terra firme, wetlands, and mangrove forests. We used the Random Forest machine learning model and a formal uncertainty analysis to map forest height and AGB at 1-ha spatial resolution for the entire pacific coastal region using spaceborne data, extending from the coast to higher elevation of Andean forests.\nRESULTS: Upland Choc\u00f3 forests have a mean canopy height of 21.8\u00a0m and AGB of 233.0\u00a0Mg/ha, while wetland forests are characterized by a lower height and AGB (13.5\u00a0m and 117.5\u00a0Mg/a). Mangroves have a lower mean height than upland forests (16.5\u00a0m), but have a similar AGB as upland forests (229.9\u00a0Mg/ha) due to their high wood density. Within the terra firme forest class, intact forests have the highest AGB (244.3\u2009\u00b1\u200934.8\u00a0Mg/ha) followed by degraded and secondary forests with 212.57\u2009\u00b1\u200962.40\u00a0Mg/ha of biomass. Forest degradation varies in biomass loss from small-scale selective logging and firewood harvesting to large-scale tree removals for gold mining, settlements, and illegal logging. Our findings suggest that the forest degradation has already caused the loss of more than 115 million tons of dry biomass, or 58 million tons of carbon.\nCONCLUSIONS: Our assessment of carbon stocks and forest degradation can be used as a reference for reporting on the state of the Choc\u00f3 forests to REDD+ projects and to encourage restoration efforts through conservation and climate mitigation policies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13021-019-0117-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036711", 
        "issn": [
          "1750-0680"
        ], 
        "name": "Carbon Balance and Management", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Forest degradation and biomass loss along the Choc\u00f3 region of Colombia", 
    "pagination": "2", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e5521d355d99644fae5c09bb47c5cff8d8ec91f9a2825aaccd6ce57b7b2e8d84"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30904964"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101271519"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13021-019-0117-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112966254"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13021-019-0117-9", 
      "https://app.dimensions.ai/details/publication/pub.1112966254"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130801_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13021-019-0117-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13021-019-0117-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13021-019-0117-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13021-019-0117-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13021-019-0117-9'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13021-019-0117-9 schema:about anzsrc-for:07
2 anzsrc-for:0705
3 schema:author Nc52f785f9d72407fafb137a22834bca6
4 schema:citation sg:pub.10.1007/s00442-012-2295-y
5 sg:pub.10.1023/a:1008802624275
6 sg:pub.10.1023/a:1010933404324
7 sg:pub.10.1038/35002501
8 sg:pub.10.1038/s41598-017-15050-z
9 sg:pub.10.1186/s13021-016-0062-9
10 https://doi.org/10.1002/env.606
11 https://doi.org/10.1002/sys.21275
12 https://doi.org/10.1016/0895-9811(90)90019-w
13 https://doi.org/10.1016/j.ecolind.2005.03.014
14 https://doi.org/10.1016/j.foreco.2006.06.024
15 https://doi.org/10.1016/j.foreco.2011.12.013
16 https://doi.org/10.1016/j.foreco.2017.09.048
17 https://doi.org/10.1016/j.isprsjprs.2016.01.011
18 https://doi.org/10.1016/j.jag.2017.11.017
19 https://doi.org/10.1016/j.patrec.2005.08.011
20 https://doi.org/10.1016/j.rse.2006.03.005
21 https://doi.org/10.1016/j.rse.2011.08.021
22 https://doi.org/10.1016/j.rse.2012.10.007
23 https://doi.org/10.1016/j.rse.2012.10.008
24 https://doi.org/10.1016/j.rse.2016.05.028
25 https://doi.org/10.1037/a0016973
26 https://doi.org/10.1080/1360081032000146645
27 https://doi.org/10.1088/1748-9326/4/3/034009
28 https://doi.org/10.1098/rstb.2003.1425
29 https://doi.org/10.1111/gcb.12822
30 https://doi.org/10.1111/j.1461-0248.2009.01285.x
31 https://doi.org/10.1139/x26-084
32 https://doi.org/10.1214/09-ss054
33 https://doi.org/10.1371/journal.pone.0085993
34 https://doi.org/10.2307/2399084
35 https://doi.org/10.3390/rs8060522
36 https://doi.org/10.5194/bg-15-3377-2018
37 schema:datePublished 2019-12
38 schema:datePublishedReg 2019-12-01
39 schema:description BACKGROUND: Wet tropical forests of Chocó, along the Pacific Coast of Colombia, are known for their high plant diversity and endemic species. With increasing pressure of degradation and deforestation, these forests have been prioritized for conservation and carbon offset through Reducing Emissions from Deforestation and forest Degradation (REDD+) mechanisms. We provide the first regional assessment of forest structure and aboveground biomass using measurements from a combination of ground tree inventories and airborne Light Detection and Ranging (Lidar). More than 80,000 ha of lidar samples were collected based on a stratified random sampling to provide a regionally unbiased quantification of forest structure of Chocó across gradients of vegetation structure, disturbance and elevation. We developed a model to convert measurements of vertical structure of forests into aboveground biomass (AGB) for terra firme, wetlands, and mangrove forests. We used the Random Forest machine learning model and a formal uncertainty analysis to map forest height and AGB at 1-ha spatial resolution for the entire pacific coastal region using spaceborne data, extending from the coast to higher elevation of Andean forests. RESULTS: Upland Chocó forests have a mean canopy height of 21.8 m and AGB of 233.0 Mg/ha, while wetland forests are characterized by a lower height and AGB (13.5 m and 117.5 Mg/a). Mangroves have a lower mean height than upland forests (16.5 m), but have a similar AGB as upland forests (229.9 Mg/ha) due to their high wood density. Within the terra firme forest class, intact forests have the highest AGB (244.3 ± 34.8 Mg/ha) followed by degraded and secondary forests with 212.57 ± 62.40 Mg/ha of biomass. Forest degradation varies in biomass loss from small-scale selective logging and firewood harvesting to large-scale tree removals for gold mining, settlements, and illegal logging. Our findings suggest that the forest degradation has already caused the loss of more than 115 million tons of dry biomass, or 58 million tons of carbon. CONCLUSIONS: Our assessment of carbon stocks and forest degradation can be used as a reference for reporting on the state of the Chocó forests to REDD+ projects and to encourage restoration efforts through conservation and climate mitigation policies.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N97ccd5a28d284bb88df90423a24f4789
44 Nf4ef73e5158d4088979f1d39c0d00996
45 sg:journal.1036711
46 schema:name Forest degradation and biomass loss along the Chocó region of Colombia
47 schema:pagination 2
48 schema:productId N107fd3102e4242698b54d6854f5edc68
49 N1439a424721e48f8931aa5adde913aef
50 N4a41364e99c74246996ce44210375225
51 N52142923b3b94723b803857bd93125e9
52 Naa0c824056ec4d54a65c4df1835f504d
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112966254
54 https://doi.org/10.1186/s13021-019-0117-9
55 schema:sdDatePublished 2019-04-11T13:52
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nfbac1bcb0399468c9020f5ffc0396aae
58 schema:url https://link.springer.com/10.1186%2Fs13021-019-0117-9
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N00f670df126e49d2a32f7b73c2ed6765 schema:affiliation https://www.grid.ac/institutes/grid.211367.0
63 schema:familyName Meyer
64 schema:givenName Victoria
65 rdf:type schema:Person
66 N0cb91ed4e1b841cd9a2e9bf4afaf3041 rdf:first N9508b5fe43f7498e82f790626b75479f
67 rdf:rest Na619680c127243709a660f5822929fc9
68 N107fd3102e4242698b54d6854f5edc68 schema:name doi
69 schema:value 10.1186/s13021-019-0117-9
70 rdf:type schema:PropertyValue
71 N1439a424721e48f8931aa5adde913aef schema:name dimensions_id
72 schema:value pub.1112966254
73 rdf:type schema:PropertyValue
74 N1daa0869e56d476c9868d62e42bcf4e4 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
75 schema:familyName Ferraz
76 schema:givenName António
77 rdf:type schema:Person
78 N2d35e2563dbe4c19ba80ab159ac6c280 schema:affiliation https://www.grid.ac/institutes/grid.211367.0
79 schema:familyName Xu
80 schema:givenName Liang
81 rdf:type schema:Person
82 N4a41364e99c74246996ce44210375225 schema:name nlm_unique_id
83 schema:value 101271519
84 rdf:type schema:PropertyValue
85 N52142923b3b94723b803857bd93125e9 schema:name readcube_id
86 schema:value e5521d355d99644fae5c09bb47c5cff8d8ec91f9a2825aaccd6ce57b7b2e8d84
87 rdf:type schema:PropertyValue
88 N68ef9729b24440348ed0603497e7165c schema:affiliation https://www.grid.ac/institutes/grid.462594.8
89 schema:familyName Chave
90 schema:givenName Jérôme
91 rdf:type schema:Person
92 N70296959498b4893a251852e65fbf863 schema:affiliation https://www.grid.ac/institutes/grid.211367.0
93 schema:familyName Saatchi
94 schema:givenName Sassan
95 rdf:type schema:Person
96 N7dbfe12b9f7f404480044eed096f7ebb rdf:first N2d35e2563dbe4c19ba80ab159ac6c280
97 rdf:rest N0cb91ed4e1b841cd9a2e9bf4afaf3041
98 N9508b5fe43f7498e82f790626b75479f schema:affiliation https://www.grid.ac/institutes/grid.10689.36
99 schema:familyName Duque
100 schema:givenName Alvaro
101 rdf:type schema:Person
102 N97ccd5a28d284bb88df90423a24f4789 schema:issueNumber 1
103 rdf:type schema:PublicationIssue
104 Na619680c127243709a660f5822929fc9 rdf:first Neff19d332018473e86e6c7d107fe1fae
105 rdf:rest Nef80811f2f0a4ed896c6d65e72649e59
106 Naa0c824056ec4d54a65c4df1835f504d schema:name pubmed_id
107 schema:value 30904964
108 rdf:type schema:PropertyValue
109 Nc52f785f9d72407fafb137a22834bca6 rdf:first N00f670df126e49d2a32f7b73c2ed6765
110 rdf:rest Ncded76db10324841bf2d9ae10c461bf2
111 Ncded76db10324841bf2d9ae10c461bf2 rdf:first N70296959498b4893a251852e65fbf863
112 rdf:rest Nde64dc22ba744a62ae7bd35cf2b04d33
113 Nde64dc22ba744a62ae7bd35cf2b04d33 rdf:first N1daa0869e56d476c9868d62e42bcf4e4
114 rdf:rest N7dbfe12b9f7f404480044eed096f7ebb
115 Nef80811f2f0a4ed896c6d65e72649e59 rdf:first N68ef9729b24440348ed0603497e7165c
116 rdf:rest rdf:nil
117 Neff19d332018473e86e6c7d107fe1fae schema:affiliation https://www.grid.ac/institutes/grid.7159.a
118 schema:familyName García
119 schema:givenName Mariano
120 rdf:type schema:Person
121 Nf4ef73e5158d4088979f1d39c0d00996 schema:volumeNumber 14
122 rdf:type schema:PublicationVolume
123 Nfbac1bcb0399468c9020f5ffc0396aae schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
126 schema:name Agricultural and Veterinary Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0705 schema:inDefinedTermSet anzsrc-for:
129 schema:name Forestry Sciences
130 rdf:type schema:DefinedTerm
131 sg:journal.1036711 schema:issn 1750-0680
132 schema:name Carbon Balance and Management
133 rdf:type schema:Periodical
134 sg:pub.10.1007/s00442-012-2295-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1032104803
135 https://doi.org/10.1007/s00442-012-2295-y
136 rdf:type schema:CreativeWork
137 sg:pub.10.1023/a:1008802624275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005657268
138 https://doi.org/10.1023/a:1008802624275
139 rdf:type schema:CreativeWork
140 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
141 https://doi.org/10.1023/a:1010933404324
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/35002501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021819037
144 https://doi.org/10.1038/35002501
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/s41598-017-15050-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1092504149
147 https://doi.org/10.1038/s41598-017-15050-z
148 rdf:type schema:CreativeWork
149 sg:pub.10.1186/s13021-016-0062-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052465510
150 https://doi.org/10.1186/s13021-016-0062-9
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/env.606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032511563
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/sys.21275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019189508
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/0895-9811(90)90019-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1032299187
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.ecolind.2005.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041903911
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.foreco.2006.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028830964
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.foreco.2011.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037930903
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.foreco.2017.09.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092002735
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.isprsjprs.2016.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004688415
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.jag.2017.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099602248
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.patrec.2005.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028303129
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.rse.2006.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008032393
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.rse.2011.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020512866
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.rse.2012.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018724027
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.rse.2012.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027839823
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.rse.2016.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018008199
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1037/a0016973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048172582
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1080/1360081032000146645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031091834
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1088/1748-9326/4/3/034009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018865655
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1098/rstb.2003.1425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022095471
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1111/gcb.12822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049859885
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1111/j.1461-0248.2009.01285.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010594105
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1139/x26-084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002382791
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1214/09-ss054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391087
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1371/journal.pone.0085993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024451245
199 rdf:type schema:CreativeWork
200 https://doi.org/10.2307/2399084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069910334
201 rdf:type schema:CreativeWork
202 https://doi.org/10.3390/rs8060522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030694570
203 rdf:type schema:CreativeWork
204 https://doi.org/10.5194/bg-15-3377-2018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104462083
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.10689.36 schema:alternateName National University of Colombia
207 schema:name Departamento de Ciencias Forestales, Universidad Nacional de Colombia, Calle 59A No. 63-20, Medellín, Colombia
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
210 schema:name Institute of the Environment and Sustainability, University of California, 90095, Los Angeles, CA, USA
211 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.211367.0 schema:alternateName Jet Propulsion Lab
214 schema:name Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.462594.8 schema:alternateName Laboratory Evolution and Biological Diversity
217 schema:name Laboratoire Evolution et Diversité Biologique, UMR 5174, CNRS Université Paul Sabatier, Toulouse, France
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.7159.a schema:alternateName University of Alcalá
220 schema:name Environmental Remote Sensing Research Group, Department of Geology, Geography and Environment, University of Alcalá, Alcalá de Henares, Spain
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...