Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-06-24

AUTHORS

Belachew Gizachew, Svein Solberg, Erik Næsset, Terje Gobakken, Ole Martin Bollandsås, Johannes Breidenbach, Eliakimu Zahabu, Ernest William Mauya

ABSTRACT

BACKGROUND: A functional forest carbon measuring, reporting and verification (MRV) system to support climate change mitigation policies, such as REDD+, requires estimates of forest biomass carbon, as an input to estimate emissions. A combination of field inventory and remote sensing is expected to provide those data. By linking Landsat 8 and forest inventory data, we (1) developed linear mixed effects models for total living biomass (TLB) estimation as a function of spectral variables, (2) developed a 30 m resolution map of the total living carbon (TLC), and (3) estimated the total TLB stock of the study area. Inventory data consisted of tree measurements from 500 plots in 63 clusters in a 15,700 km2 study area, in miombo woodlands of Tanzania. The Landsat 8 data comprised two climate data record images covering the inventory area. RESULTS: We found a linear relationship between TLB and Landsat 8 derived spectral variables, and there was no clear evidence of spectral data saturation at higher biomass values. The root-mean-square error of the values predicted by the linear model linking the TLB and the normalized difference vegetation index (NDVI) is equal to 44 t/ha (49 % of the mean value). The estimated TLB for the study area was 140 Mt, with a mean TLB density of 81 t/ha, and a 95 % confidence interval of 74-88 t/ha. We mapped the distribution of TLC of the study area using the TLB model, where TLC was estimated at 47 % of TLB. CONCLUSION: The low biomass in the miombo woodlands, and the absence of a spectral data saturation problem suggested that Landsat 8 derived NDVI is suitable auxiliary information for carbon monitoring in the context of REDD+, for low-biomass, open-canopy woodlands. More... »

PAGES

13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13021-016-0055-8

DOI

http://dx.doi.org/10.1186/s13021-016-0055-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036218101

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27418944


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0705", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Forestry Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Norwegian Institute of Bioeconomy Research, Post Box 115, 1431 \u00c5s, Norway", 
          "id": "http://www.grid.ac/institutes/grid.454322.6", 
          "name": [
            "Norwegian Institute of Bioeconomy Research, Post Box 115, 1431 \u00c5s, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gizachew", 
        "givenName": "Belachew", 
        "id": "sg:person.010342472411.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010342472411.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian Institute of Bioeconomy Research, Post Box 115, 1431 \u00c5s, Norway", 
          "id": "http://www.grid.ac/institutes/grid.454322.6", 
          "name": [
            "Norwegian Institute of Bioeconomy Research, Post Box 115, 1431 \u00c5s, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Solberg", 
        "givenName": "Svein", 
        "id": "sg:person.01101564153.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101564153.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Natural Resource Management, Norwegian University of Life Sciences, Post Box 5003, 1432 \u00c5s, Norway", 
          "id": "http://www.grid.ac/institutes/grid.19477.3c", 
          "name": [
            "Department of Natural Resource Management, Norwegian University of Life Sciences, Post Box 5003, 1432 \u00c5s, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "N\u00e6sset", 
        "givenName": "Erik", 
        "id": "sg:person.01364716373.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364716373.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Natural Resource Management, Norwegian University of Life Sciences, Post Box 5003, 1432 \u00c5s, Norway", 
          "id": "http://www.grid.ac/institutes/grid.19477.3c", 
          "name": [
            "Department of Natural Resource Management, Norwegian University of Life Sciences, Post Box 5003, 1432 \u00c5s, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gobakken", 
        "givenName": "Terje", 
        "id": "sg:person.015232221633.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015232221633.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Natural Resource Management, Norwegian University of Life Sciences, Post Box 5003, 1432 \u00c5s, Norway", 
          "id": "http://www.grid.ac/institutes/grid.19477.3c", 
          "name": [
            "Department of Natural Resource Management, Norwegian University of Life Sciences, Post Box 5003, 1432 \u00c5s, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bollands\u00e5s", 
        "givenName": "Ole Martin", 
        "id": "sg:person.014741602477.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014741602477.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian Institute of Bioeconomy Research, Post Box 115, 1431 \u00c5s, Norway", 
          "id": "http://www.grid.ac/institutes/grid.454322.6", 
          "name": [
            "Norwegian Institute of Bioeconomy Research, Post Box 115, 1431 \u00c5s, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Breidenbach", 
        "givenName": "Johannes", 
        "id": "sg:person.0630735623.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630735623.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Forestry and Nature Conservation, Sokoine University of Agriculture, P.O. Box 3009, Chuo Kikuu, Morogoro, Tanzania", 
          "id": "http://www.grid.ac/institutes/grid.11887.37", 
          "name": [
            "Faculty of Forestry and Nature Conservation, Sokoine University of Agriculture, P.O. Box 3009, Chuo Kikuu, Morogoro, Tanzania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zahabu", 
        "givenName": "Eliakimu", 
        "id": "sg:person.010744744471.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010744744471.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Forestry and Nature Conservation, Sokoine University of Agriculture, P.O. Box 3009, Chuo Kikuu, Morogoro, Tanzania", 
          "id": "http://www.grid.ac/institutes/grid.11887.37", 
          "name": [
            "Faculty of Forestry and Nature Conservation, Sokoine University of Agriculture, P.O. Box 3009, Chuo Kikuu, Morogoro, Tanzania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mauya", 
        "givenName": "Ernest William", 
        "id": "sg:person.016571701661.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571701661.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s13021-015-0029-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011808426", 
          "https://doi.org/10.1186/s13021-015-0029-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1750-0680-8-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000587117", 
          "https://doi.org/10.1186/1750-0680-8-11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1750-0680-8-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038913056", 
          "https://doi.org/10.1186/1750-0680-8-10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13021-015-0037-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046833253", 
          "https://doi.org/10.1186/s13021-015-0037-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032222929", 
          "https://doi.org/10.1038/nclimate1354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13021-015-0027-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040485914", 
          "https://doi.org/10.1186/s13021-015-0027-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13021-014-0011-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008433947", 
          "https://doi.org/10.1186/s13021-014-0011-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06-24", 
    "datePublishedReg": "2016-06-24", 
    "description": "BACKGROUND: A functional forest carbon measuring, reporting and verification (MRV) system to support climate change mitigation policies, such as REDD+, requires estimates of forest biomass carbon, as an input to estimate emissions. A combination of field inventory and remote sensing is expected to provide those data. By linking Landsat 8 and forest inventory data, we (1) developed linear mixed effects models for total living biomass (TLB) estimation as a function of spectral variables, (2) developed a 30\u00a0m resolution map of the total living carbon (TLC), and (3) estimated the total TLB stock of the study area. Inventory data consisted of tree measurements from 500 plots in 63 clusters in a 15,700\u00a0km2 study area, in miombo woodlands of Tanzania. The Landsat 8 data comprised two climate data record images covering the inventory area.\nRESULTS: We found a linear relationship between TLB and Landsat 8 derived spectral variables, and there was no clear evidence of spectral data saturation at higher biomass values. The root-mean-square error of the values predicted by the linear model linking the TLB and the normalized difference vegetation index (NDVI) is equal to 44 t/ha (49\u00a0% of the mean value). The estimated TLB for the study area was 140\u00a0Mt, with a mean TLB density of 81\u00a0t/ha, and a 95\u00a0% confidence interval of 74-88\u00a0t/ha. We mapped the distribution of TLC of the study area using the TLB model, where TLC was estimated at 47\u00a0% of TLB.\nCONCLUSION: The low biomass in the miombo woodlands, and the absence of a spectral data saturation problem suggested that Landsat 8 derived NDVI is suitable auxiliary information for carbon monitoring in the context of REDD+, for low-biomass, open-canopy woodlands.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13021-016-0055-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036711", 
        "issn": [
          "1750-0680"
        ], 
        "name": "Carbon Balance and Management", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "normalized difference vegetation index", 
      "study area", 
      "Landsat 8", 
      "miombo woodlands", 
      "inventory data", 
      "forest inventory data", 
      "open-canopy woodlands", 
      "forest biomass carbon", 
      "spectral variables", 
      "difference vegetation index", 
      "total living biomass", 
      "high biomass values", 
      "Landsat 8 data", 
      "climate change mitigation policies", 
      "biomass carbon", 
      "carbon monitoring", 
      "field inventory", 
      "change mitigation policies", 
      "living biomass", 
      "vegetation index", 
      "low biomass", 
      "woodland", 
      "biomass values", 
      "biomass estimation", 
      "inventory area", 
      "remote sensing", 
      "linear mixed effects models", 
      "living carbon", 
      "tree measurements", 
      "mitigation policies", 
      "resolution maps", 
      "carbon", 
      "biomass", 
      "mixed effects models", 
      "area", 
      "linear model", 
      "plots", 
      "stocks", 
      "auxiliary information", 
      "Tanzania", 
      "square error", 
      "linear relationship", 
      "Inventory", 
      "variables", 
      "sensing", 
      "input", 
      "clear evidence", 
      "monitoring", 
      "maps", 
      "distribution", 
      "emission", 
      "MT", 
      "effects model", 
      "data", 
      "estimates", 
      "density", 
      "index", 
      "mapping", 
      "values", 
      "saturation", 
      "policy", 
      "record images", 
      "saturation problem", 
      "model", 
      "relationship", 
      "information", 
      "context", 
      "combination", 
      "estimation", 
      "absence", 
      "evidence", 
      "system", 
      "reporting", 
      "intervals", 
      "measurements", 
      "measuring", 
      "verification system", 
      "function", 
      "clusters", 
      "problem", 
      "images", 
      "data saturation problem", 
      "confidence intervals", 
      "error", 
      "TLB", 
      "data saturation", 
      "CDR data", 
      "functional forest carbon measuring", 
      "forest carbon measuring", 
      "carbon measuring", 
      "total living biomass (TLB) estimation", 
      "living biomass (TLB) estimation", 
      "TLC", 
      "total TLB stock", 
      "TLB stock", 
      "climate data record images", 
      "data record images", 
      "spectral data saturation", 
      "mean TLB density", 
      "TLB density", 
      "distribution of TLC", 
      "TLB model", 
      "spectral data saturation problem", 
      "suitable auxiliary information", 
      "low-biomass woodlands", 
      "Landsat 8 CDR data"
    ], 
    "name": "Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data", 
    "pagination": "13", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036218101"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13021-016-0055-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27418944"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13021-016-0055-8", 
      "https://app.dimensions.ai/details/publication/pub.1036218101"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_712.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13021-016-0055-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13021-016-0055-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13021-016-0055-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13021-016-0055-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13021-016-0055-8'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      22 PREDICATES      139 URIs      124 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13021-016-0055-8 schema:about anzsrc-for:07
2 anzsrc-for:0705
3 schema:author N831543c9e06b4811b63b2551407734de
4 schema:citation sg:pub.10.1038/nclimate1354
5 sg:pub.10.1186/1750-0680-8-10
6 sg:pub.10.1186/1750-0680-8-11
7 sg:pub.10.1186/s13021-014-0011-4
8 sg:pub.10.1186/s13021-015-0027-4
9 sg:pub.10.1186/s13021-015-0029-2
10 sg:pub.10.1186/s13021-015-0037-2
11 schema:datePublished 2016-06-24
12 schema:datePublishedReg 2016-06-24
13 schema:description BACKGROUND: A functional forest carbon measuring, reporting and verification (MRV) system to support climate change mitigation policies, such as REDD+, requires estimates of forest biomass carbon, as an input to estimate emissions. A combination of field inventory and remote sensing is expected to provide those data. By linking Landsat 8 and forest inventory data, we (1) developed linear mixed effects models for total living biomass (TLB) estimation as a function of spectral variables, (2) developed a 30 m resolution map of the total living carbon (TLC), and (3) estimated the total TLB stock of the study area. Inventory data consisted of tree measurements from 500 plots in 63 clusters in a 15,700 km<sup>2</sup> study area, in miombo woodlands of Tanzania. The Landsat 8 data comprised two climate data record images covering the inventory area. RESULTS: We found a linear relationship between TLB and Landsat 8 derived spectral variables, and there was no clear evidence of spectral data saturation at higher biomass values. The root-mean-square error of the values predicted by the linear model linking the TLB and the normalized difference vegetation index (NDVI) is equal to 44 t/ha (49 % of the mean value). The estimated TLB for the study area was 140 Mt, with a mean TLB density of 81 t/ha, and a 95 % confidence interval of 74-88 t/ha. We mapped the distribution of TLC of the study area using the TLB model, where TLC was estimated at 47 % of TLB. CONCLUSION: The low biomass in the miombo woodlands, and the absence of a spectral data saturation problem suggested that Landsat 8 derived NDVI is suitable auxiliary information for carbon monitoring in the context of REDD+, for low-biomass, open-canopy woodlands.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N1443c5e66c674cfea23b12005b53bcf7
18 N2156c9d2c14049bbb7bf77b0ec9552b7
19 sg:journal.1036711
20 schema:keywords CDR data
21 Inventory
22 Landsat 8
23 Landsat 8 CDR data
24 Landsat 8 data
25 MT
26 TLB
27 TLB density
28 TLB model
29 TLB stock
30 TLC
31 Tanzania
32 absence
33 area
34 auxiliary information
35 biomass
36 biomass carbon
37 biomass estimation
38 biomass values
39 carbon
40 carbon measuring
41 carbon monitoring
42 change mitigation policies
43 clear evidence
44 climate change mitigation policies
45 climate data record images
46 clusters
47 combination
48 confidence intervals
49 context
50 data
51 data record images
52 data saturation
53 data saturation problem
54 density
55 difference vegetation index
56 distribution
57 distribution of TLC
58 effects model
59 emission
60 error
61 estimates
62 estimation
63 evidence
64 field inventory
65 forest biomass carbon
66 forest carbon measuring
67 forest inventory data
68 function
69 functional forest carbon measuring
70 high biomass values
71 images
72 index
73 information
74 input
75 intervals
76 inventory area
77 inventory data
78 linear mixed effects models
79 linear model
80 linear relationship
81 living biomass
82 living biomass (TLB) estimation
83 living carbon
84 low biomass
85 low-biomass woodlands
86 mapping
87 maps
88 mean TLB density
89 measurements
90 measuring
91 miombo woodlands
92 mitigation policies
93 mixed effects models
94 model
95 monitoring
96 normalized difference vegetation index
97 open-canopy woodlands
98 plots
99 policy
100 problem
101 record images
102 relationship
103 remote sensing
104 reporting
105 resolution maps
106 saturation
107 saturation problem
108 sensing
109 spectral data saturation
110 spectral data saturation problem
111 spectral variables
112 square error
113 stocks
114 study area
115 suitable auxiliary information
116 system
117 total TLB stock
118 total living biomass
119 total living biomass (TLB) estimation
120 tree measurements
121 values
122 variables
123 vegetation index
124 verification system
125 woodland
126 schema:name Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data
127 schema:pagination 13
128 schema:productId N1aac2bc993c84ecd83d482b82d5a5804
129 N69e4849a655e46e1a0a1d8f17748ee43
130 Nc1ec7c0ad8f1411e85492881a5a3e4eb
131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036218101
132 https://doi.org/10.1186/s13021-016-0055-8
133 schema:sdDatePublished 2022-01-01T18:41
134 schema:sdLicense https://scigraph.springernature.com/explorer/license/
135 schema:sdPublisher N7b7b9746f07642a5a95535eaaeb8332a
136 schema:url https://doi.org/10.1186/s13021-016-0055-8
137 sgo:license sg:explorer/license/
138 sgo:sdDataset articles
139 rdf:type schema:ScholarlyArticle
140 N1443c5e66c674cfea23b12005b53bcf7 schema:issueNumber 1
141 rdf:type schema:PublicationIssue
142 N1aac2bc993c84ecd83d482b82d5a5804 schema:name doi
143 schema:value 10.1186/s13021-016-0055-8
144 rdf:type schema:PropertyValue
145 N1baec2ba1fde4c3d8290be32508f4eae rdf:first sg:person.01364716373.59
146 rdf:rest N9bc3138f1aef4ef1b33989e4a4acfb08
147 N2156c9d2c14049bbb7bf77b0ec9552b7 schema:volumeNumber 11
148 rdf:type schema:PublicationVolume
149 N2cbc12771b3b49c0ae9fbb74c323bf3a rdf:first sg:person.01101564153.25
150 rdf:rest N1baec2ba1fde4c3d8290be32508f4eae
151 N3fa3c1e9dd6e4506a3290e25b1a79483 rdf:first sg:person.016571701661.99
152 rdf:rest rdf:nil
153 N5dc0fa7b0aab4661a3e9b269e51cb8f5 rdf:first sg:person.014741602477.53
154 rdf:rest N648470f72881474a91eef1cd112a6ebb
155 N648470f72881474a91eef1cd112a6ebb rdf:first sg:person.0630735623.05
156 rdf:rest Ncbdc6a06829a4e138be7848a8a393778
157 N69e4849a655e46e1a0a1d8f17748ee43 schema:name dimensions_id
158 schema:value pub.1036218101
159 rdf:type schema:PropertyValue
160 N7b7b9746f07642a5a95535eaaeb8332a schema:name Springer Nature - SN SciGraph project
161 rdf:type schema:Organization
162 N831543c9e06b4811b63b2551407734de rdf:first sg:person.010342472411.70
163 rdf:rest N2cbc12771b3b49c0ae9fbb74c323bf3a
164 N9bc3138f1aef4ef1b33989e4a4acfb08 rdf:first sg:person.015232221633.20
165 rdf:rest N5dc0fa7b0aab4661a3e9b269e51cb8f5
166 Nc1ec7c0ad8f1411e85492881a5a3e4eb schema:name pubmed_id
167 schema:value 27418944
168 rdf:type schema:PropertyValue
169 Ncbdc6a06829a4e138be7848a8a393778 rdf:first sg:person.010744744471.00
170 rdf:rest N3fa3c1e9dd6e4506a3290e25b1a79483
171 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
172 schema:name Agricultural and Veterinary Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:0705 schema:inDefinedTermSet anzsrc-for:
175 schema:name Forestry Sciences
176 rdf:type schema:DefinedTerm
177 sg:journal.1036711 schema:issn 1750-0680
178 schema:name Carbon Balance and Management
179 schema:publisher Springer Nature
180 rdf:type schema:Periodical
181 sg:person.010342472411.70 schema:affiliation grid-institutes:grid.454322.6
182 schema:familyName Gizachew
183 schema:givenName Belachew
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010342472411.70
185 rdf:type schema:Person
186 sg:person.010744744471.00 schema:affiliation grid-institutes:grid.11887.37
187 schema:familyName Zahabu
188 schema:givenName Eliakimu
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010744744471.00
190 rdf:type schema:Person
191 sg:person.01101564153.25 schema:affiliation grid-institutes:grid.454322.6
192 schema:familyName Solberg
193 schema:givenName Svein
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101564153.25
195 rdf:type schema:Person
196 sg:person.01364716373.59 schema:affiliation grid-institutes:grid.19477.3c
197 schema:familyName Næsset
198 schema:givenName Erik
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364716373.59
200 rdf:type schema:Person
201 sg:person.014741602477.53 schema:affiliation grid-institutes:grid.19477.3c
202 schema:familyName Bollandsås
203 schema:givenName Ole Martin
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014741602477.53
205 rdf:type schema:Person
206 sg:person.015232221633.20 schema:affiliation grid-institutes:grid.19477.3c
207 schema:familyName Gobakken
208 schema:givenName Terje
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015232221633.20
210 rdf:type schema:Person
211 sg:person.016571701661.99 schema:affiliation grid-institutes:grid.11887.37
212 schema:familyName Mauya
213 schema:givenName Ernest William
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571701661.99
215 rdf:type schema:Person
216 sg:person.0630735623.05 schema:affiliation grid-institutes:grid.454322.6
217 schema:familyName Breidenbach
218 schema:givenName Johannes
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630735623.05
220 rdf:type schema:Person
221 sg:pub.10.1038/nclimate1354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032222929
222 https://doi.org/10.1038/nclimate1354
223 rdf:type schema:CreativeWork
224 sg:pub.10.1186/1750-0680-8-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038913056
225 https://doi.org/10.1186/1750-0680-8-10
226 rdf:type schema:CreativeWork
227 sg:pub.10.1186/1750-0680-8-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000587117
228 https://doi.org/10.1186/1750-0680-8-11
229 rdf:type schema:CreativeWork
230 sg:pub.10.1186/s13021-014-0011-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008433947
231 https://doi.org/10.1186/s13021-014-0011-4
232 rdf:type schema:CreativeWork
233 sg:pub.10.1186/s13021-015-0027-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040485914
234 https://doi.org/10.1186/s13021-015-0027-4
235 rdf:type schema:CreativeWork
236 sg:pub.10.1186/s13021-015-0029-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011808426
237 https://doi.org/10.1186/s13021-015-0029-2
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/s13021-015-0037-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046833253
240 https://doi.org/10.1186/s13021-015-0037-2
241 rdf:type schema:CreativeWork
242 grid-institutes:grid.11887.37 schema:alternateName Faculty of Forestry and Nature Conservation, Sokoine University of Agriculture, P.O. Box 3009, Chuo Kikuu, Morogoro, Tanzania
243 schema:name Faculty of Forestry and Nature Conservation, Sokoine University of Agriculture, P.O. Box 3009, Chuo Kikuu, Morogoro, Tanzania
244 rdf:type schema:Organization
245 grid-institutes:grid.19477.3c schema:alternateName Department of Natural Resource Management, Norwegian University of Life Sciences, Post Box 5003, 1432 Ås, Norway
246 schema:name Department of Natural Resource Management, Norwegian University of Life Sciences, Post Box 5003, 1432 Ås, Norway
247 rdf:type schema:Organization
248 grid-institutes:grid.454322.6 schema:alternateName Norwegian Institute of Bioeconomy Research, Post Box 115, 1431 Ås, Norway
249 schema:name Norwegian Institute of Bioeconomy Research, Post Box 115, 1431 Ås, Norway
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...